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A SHRINKING OF A CATEGORY OF SOCIETIES IS A UNIVERSAL
PARTLY ORDERED CLASS

Ludé&k KUCERA, Praha

Introduction and summary. Partly ordered class
(P,&) (i.e. a clasa P together with a reflexive

and transitive binary relation an P ) is called univer-
sal if every partly ordered class can be isomorphically
embedded into (P, & ) .

All partly ordered classes can be considered as
shrinking of categories:

If X is a category then a shrinking of X is a
class of objects of X together with a partly ordering
® defined by a & & if and only if there is a

morphism of a from .0 into £ .

In [1) it is proved that, under an assumption of
non-existence of measurable cardinals, the shrinkings
of binding categories are universal. A binding catego-
ry is e.g. the category of all algebras with m -ary
operations, m & 2 , and their homomorphisms. For the
definition of a binding category and the other examples
see [1),
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The main result of this paper is
Theorem 1. In the Gddel-Bernays set theory, the

shrinking of tne category of societies and their compa-
tible mappings ([2]) is a universal partly ordered
class.

(A society is a couple (X ,P) where X is
a set and P is a family of non-empty subsets of X .
A compatible mapping from (X,P) into (Y, R) is a
mapping f: X — Y such that f(U)e R for
every UWeP .)

The proof of the theorem 1 is based upon the theo-
rem 1 of [1) which says that the shrinking of the ca-
tegory Inc  (aee below) is universal:

Objects of Ine are indexed familiea of sets

(A, ,iel), A, , 1 osets,

morphisms of Inc from (A,,ie 1) into
(35,3'. €J) are all mappinga f: I — J such that
Ay D Byeyy

a composition of morphisms is a composition of
mappings.

The theorem 1 is an easy consequence of

Theorem 2. There is a full embedding from Ine
into the category of societies.

for every i el ,

(A full embedding is a one-to-one functor F ;: X —
— 1, which maps X onto a full subcategory of L .)

The proof of the theorem 2 is divided into three
steps:

1) A full embedding of the category of all sets and
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identities into the category of societies (§ 2).
2) A full embedding of the dual of the category of all
sets and inclusions into the category of societies (§ 3).
3) A full embedding of the category Inc into the ca-
tegory of societies (§ 4).

In the paragraph 1 we shall prove some lemmas. As
a consequence of the theorem 1, we shall construct a
simple universal concrete category (see (31) from bina-

ry relations and societies in the paragraph 5.

§ 1. Definition. A category Soc (m) , m natural,
is defined as follows:

Objects of Soe (m) are m +1 -tuples (X,F,...,F, ),
where X is a set and F,..., T, are families of non-
empty subsets of X ,

worphisms of Soe¢ (m) from (X,E, ..., E ) inte
<Y,R,,...,R,) ere all mappings f: X —>Y such that
f(W) e R; for every v=41,..., m and UWeP, ,

a composition of morphisms is a composition of map-
pings.

Soce (1) (the category of societies) will be deno-
ted by Soe .

Lemma l.Given a natural m ,there exists a full em-
bedding Soe (m) —> Soc .

Proof. It is proved in (2] that there is a connec-
ted rigid 2 -society (Z,$5) (i.e. if x, 4 are points
of £ then there is a sequence U;,..., Uy  of ele-
ments of $ such that x e U, , €U, and U n
nR % g for i=4,...,% ; only compatible
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mapping of (2,5 ) into itself is the identity; ele-
ments of 5§ are two-point sets) such that Z has at
least 3m points. We can suppose without lose of gene-
rality that Z = {4,2,3, ...,m} 6 where m £ 3m .

A full embedding F s Soe(m) —> Sov is defined
as follows:

FUX,B,...,B,)) = (XxZ2,A,uA V...V ALY,
where UL € A, if and only if there is x e X and

Ve & such that U = {xi < V ,
Ue A% if and only if there ia Ve P, such
that We=Vx {34-2,3i-1,34% for
A=14...,m,
F(#) = £ x id.z ‘

It ies evident that F is a one-to-one functor from
Soe (m) into Soc . We shall prove that F maps Soe ()
onto a full subcategory of Soc :

Let M= (X,B,,..., B,) end N=(X,X ... K))
be objects of Soe (m) and £ be a compatible mapping
from F(M) = (Xx 23 ,Aju...UA,) inte F(N) =
=(Y¥x Z,B,u...vB, ),

Elements of Ao have two points, elements of
31, veey :Bm‘ have at leaat three points. Therefore ¢
maps elements of A, onto elements of B,

If { €eZ tnen 41,4 are connected by a chain of
elements of S , Therefore if x € X then (x,4), (x,4)
are connected by a chain of elements of A, , which im-
plies that #((x,4)) , #((x,4)) are connected by
a chain of elements of B, .

According to a definition of B, , the first coor-
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dinates of both ¢ ((x, 1)) and ¢ ((x,4)) are
the same. Hence there are mappings g s X — }" and
b3 — EZ,x€X such that $Ux,4)) = (g ),
b, (1)) for every x x', iod,000, m .

Let X be an element of X, Then My : E— & is a
compatible mapping from ( Z,8&) into itself, because
if U €8 then
{xixUed, , flixlx u)-(q(x)! x h,(U)e 3, ,
which implies h, (W) e 5 .

Ae (Z,8) is a rigid society, all b, are the
identities, which implies that ¢ = ¢ x ‘t'd' A

If 4 is a natural number leas then m and U ¢ F,
then U x £34-2,34{-41,313 € A; . Therefare
£CUx £34-2,31-1,8{3)=@(U)x431-2,3¢-1,2<i3 e B, ,
which implies g (U)e R, .

Hence a mapping ¢ is a compatible mapping from M
inta N and ¢ = F(g) .

Thus, we have proved that F is a full embedding.

The next lemma enables us to simplify the proofs of
the theorems 2,4.

Lemma 2. There exists a full embedding of Soc
into itself such that for every different objects M, N
of Sec the underlying seta of F(M) and F(N)
are disjoint and do not contain @ as an element.

Proof. A full embedding P: Soc —>» Soc is
defined as follows:

If M=(X,P) ia a mociety then
F(M) = (X > §Mt ,2) , where L& P’ if and
only if there ia Ye P such that U = Vxx {M} ,
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if ¢ 4is a compatible mspping from M into N then
F(F) (Cx, M) = (FCx), N)
The details are left to the reader.

§ 2. Theorem 3. There is a full embedding of the
category of all sets and identities into Soc .

Proof. It follows from the axiom of choice and the
lemma 1 that it is sufficient to construct a full embed-
ding P from the category of all ordinals greater than

4 and identities on them into Soec (3) .
A set of ordinals less than m will be denoted by
L, -

A full embedding F is defined by
P(mn) = (L, ,2(m), €L, 3, {Ly s S 6§ m i),
where 2(m ) is a family of all two-point sets of car-
dinals less than m , F(id,) = (id_ . .

It is evident that T is a one-to-one functor.
Let m ,m be ordinals and § be a compatible map-
ping from F(m) into F(m) .

L 4 is a one-to-one mapping, because if ph<q<m
then {n,q1e€ 2(m), #({n,q8)e 2(m) , which im-
plies #(pn) 4 (@) .

4 maps L_ onto L ,aince L, e {L,}, which
impliea ‘f(I.,,,) e {L,%, #+(L,)=L, .

f ie monotone, because if n1 < g <m and
£(g) ® £(n) then there is x <m auck that L, =
- f-(t.") (s00 L, 6 (It o & m} ). Therefore
§Cq) @ f(L,) and there is 4 < ¢  such that f(g)=
= ¥(a)., which is a contradiction.
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As f is a monotone-1~1 mapping of the well-ordered
set L, onto the well-ordered set L ,it isa m = m
and £ 1is the identity.

Thus, we have proved that F is a full embedding.

§ 3. Theorem 4. There exists a full embedding of
the dual of the category of all sets and inclusions in-
to Soec .,

Proof. Let T be a full embedding of the catego-
ry of sets and identities into Sou (Theorea 3).

Denote F (X) by (Sx » Ry ) . According to the
lezma 2, we can suppose that § & S,, 5, n 8 = /£
for every different sets X ,6 Y .

It is sufficient to construct a full embedding G
from the dual of the category of setes and inclusions in-
to 8oc (3)

GCA) = (481U U5,

UP3l, 46P1 U 5, xeAY L (K01} ,

MR S0 W8, 1,

G(ADB)«)= —— 4 if there ia x ¢ B such that
“ ¢,s,‘ -
0 if uLe8, forma xeB .
=G (AD3B) is a eo-pitiblc mapping from
FC(A) 1into F(B), because f () = 4, ¥ maps S, ,
X € A either identically onto S, or onto 4 and
maps the underlying set of G(A) onto the underlying
set of G(B) . ’ '
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Thus, ¢ is a one-to-one functor.
Let A,3 be sets and f be a compatible mapping
from G(A) into G(B) .
It is obvious that #(@) = @ . If x e A then
{P3v S, ¢ 4P9tu 8, xe At u g3,
Hence either #({duS,) = 4dju s, , we3d or
f(401 v 8,) = £P3 . In the first case, a restric-
tion of # to S, ia a compatible mapping from

(8, ,R,) into (5, ,Re ) and from the properties
of P it follows that x = w , the reatriction of ¢
to 8, is the identity.

If we 8 ,zeA-DP then « ia not an ele-
ment of an underlying set of G (BP) . Therefore it
must be F(w) = &,

It is obvious that £ is onto {llu‘k‘)‘ S, .Hen-
ce if w e §, ,z€ B then there is » e{f3v ), 5,
such that #(+) = 4 . It is obvious that 4« = 4 ., Hence
itis f(ul)=uw, €A .

We have proved that A o B andf=G(A 2D).

§ 4. Proof of the theorem 2. Let G  be a full em-
bedding of the dual of the category of sets and inclu-

sions into Soc (Theorem 4).

Denote G(A)= (T, ,F,), G(ADDP) = Yae °
According to the lemma 2, we can suppose that T, n T, =
= §  for every different asts A,BD .

It is sufficient to conatruct a full embedding H
from Imc into Soe (2)
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HCA, be DN = (T, ¢X:XeT, iall, UR),

"

H(f)(w) = g"i"«i) (W) tor u e 'I;i

We can see that H is a one-to-one functor.
Let (A;,ielI)=M and N=(B;, 7€J) be objects
of Ine and ¢- be a compatible mapping from X (M)
into H(N) .

Ttis T, € §Xs Xc TA , eI}  which implies

y 4+

’F‘("‘Rb) eiX:r Xc T" , # 6 Ji.Therefore there is
a mapping f: I — J such that q maps 'Ikh‘ into
‘T for e I .
Bicmy

Evidently, a restriction of ¢ to TAnp is a com-

patible mapping from ( '1;“. . P‘o) into ( T’“M , PB“”) P

Therefore .A& ) :b“ ~) and g (u) = %A’ b“M(a,) for
“weT , Rel,
‘e

We have proved that H is a full embedding of Ime
into Soc (2) .

§ 5. A concrete category is a couple (X, F) , whe-
re X 1s a category and F is a faithful functor from
X into the category of sets and lipp:lny.

A concrete category (X, F) is called universal
if for every concrete category ( L, @) there exists
a full embedding H: I, — X with G = FH .

Define a concrete category (U ,E) as follows:
objects of U are couplea (X, (A,, Rc X x X)),
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where Al! are societies,
morphisms of U from (X,(A,, Rc Xx X)) into
CY,(DS,.’C YY) are all mappings f+ X =Y
such that if R ia a binary relationon ¥ and S =
= {(f(x),f(yNs (x,4)e R} ia a relation on Y
then there is a compatible mapping from AR into 35 s
a composition of morphisms is a composition of the
éorruponding mappings,
an underlying set of (-x,(Au,Bc X x X)) is X,
an underlying mapping of a morphiam ¢ is f itself.

. As a corollary of the theorem 1 we have the next
theoren:

Theorem 5. The concrete category (U ,E) is uni-
versal.

The proof of the theorem 5 can be obtained from the
proof of the Theorem of [3] if we replace binary algeb-
ras by societies and homomorphisms by compatible map-
pings. Instead of Theorem 1 of [1] we must use Theorem
1 of the present paper.
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