

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log38

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2 (1971)

A SHRINKING OF A CATEGORY OF SOCIETIES IS A UNIVERSAL PARTLY ORDERED CLASS

Luděk KUČERA, Praha

Introduction and summary. Partly ordered class (P, \leq) (i.e. a class P together with a reflexive and transitive binary relation on P) is called universal if every partly ordered class can be isomorphically embedded into (P, \leq) .

All partly ordered classes can be considered as shrinking of categories:

If K is a category then a shrinking of K is a class of objects of K together with a partly ordering \leftarrow defined by $a \leftarrow \mathscr{U}$ if and only if there is a morphism of a from \mathscr{U} into \mathscr{U} .

In [1] it is proved that, under an assumption of non-existence of measurable cardinals, the shrinkings of binding categories are universal. A binding category is e.g. the category of all algebras with m-ary operations, $m \geq 2$, and their homomorphisms. For the definition of a binding category and the other examples see [1].

AMS, Primary 18B15 Secondary - Ref.Z. 2.726.3

The main result of this paper is

Theorem 1. In the Gödel-Bernays set theory, the shrinking of the category of societies and their compatible mappings ([2]) is a universal partly ordered class

(A society is a couple (X, P) where X is a set and P is a family of non-empty subsets of X. A compatible mapping from (X, P) into (Y, R) is a mapping $f: X \longrightarrow Y$ such that $f(U) \in R$ for every $U \in P$.)

The proof of the theorem 1 is based upon the theorem 1 of [1] which says that the shrinking of the category Inc (see below) is universal:

Objects of Inc. are indexed families of sets (A_i , i \in I) , A_i , I sets,

morphisms of Inc from $(A_i, i \in I)$ into $(B_j, j \in J)$ are all mappings $f: I \to J$ such that $A_i \supset B_{q(i)}$ for every $i \in I$,

a composition of morphisms is a composition of mappings.

The theorem 1 is an easy consequence of

Theorem 2. There is a full embedding from Inc.
into the category of societies.

(A full embedding is a one-to-one functor F: K→
→ L, which maps K onto a full subcategory of L.)
The proof of the theorem 2 is divided into three steps:

1) A full embedding of the category of all sets and

identities into the category of societies (§ 2).

- 2) A full embedding of the dual of the category of all sets and inclusions into the category of societies (§ 3).
- 3) A full embedding of the category Inc into the category of societies (§ 4).

In the paragraph 1 we shall prove some lemmas. As a consequence of the theorem 1, we shall construct a simple universal concrete category (see [3]) from binary relations and societies in the paragraph 5.

§ 1. <u>Definition</u>. A category Soc (m), m natural, is defined as follows:

Objects of Soc(m) are m+1-tuples $(X,P_1,...,P_m)$, where X is a set and $P_1,...,P_m$ are families of non-empty subsets of X,

morphisms of Soc(m) from $(X, P_1, ..., P_m)$ into $(Y, R_1, ..., R_m)$ are all mappings $f: X \to Y$ such that $f(U) \in R_i$ for every i = 1, ..., m and $U \in P_i$,

a composition of morphisms is a composition of map-

Soc (4) (the category of societies) will be denoted by Soc.

Lemma 1. Given a natural m, there exists a full embedding $Soc(m) \longrightarrow Soc$.

<u>Proof.</u> It is proved in (21 that there is a connected rigid 2-society (Z,S) (i.e. if x,y are points of Z then there is a sequence U_0,\ldots,U_k of elements of S such that $x\in U_0$, $y\in U_k$ and $U_{2-1}\cap U_1+\emptyset$ for $i=1,\ldots,k$; only compatible

mapping of (Z,S) into itself is the identity; elements of S are two-point sets) such that Z has at least 3m points. We can suppose without loss of generality that $Z = \{1,2,3,...,m\}$, where $m \ge 3m$.

A full embedding $F:Soc(m) \longrightarrow Soc$ is defined as follows:

$$\begin{split} \mathbb{F}((X,P_1,\ldots,P_m)) &= (X\times Z,A_0\cup A_1\cup\ldots\cup A_m)\;, \\ \text{where } &\mathcal{U}\in A_0 \quad \text{if and only if there is } x\in X \quad \text{and} \\ &V\in \mathcal{S} \quad \text{such that } \mathcal{U}=\{x\}\times V\;, \end{split}$$

 $U \in A_i$ if and only if there is $V \in P_i$ such that $U = V \times \{3i-2, 3i-1, 3i\}$ for i = 1, ..., m,

 $F(f) = f \times id_{x}$.

It is evident that F is a one-to-one functor from Soc(m) into Soc. We shall prove that F maps Soc(m) onto a full subcategory of Soc:

Let $M = (X, P_1, ..., P_m)$ and $N = (Y, R_1, ..., R_m)$ be objects of Soc(m) and f be a compatible mapping from $F(M) = (X \times Z, A_0 \cup ... \cup A_m)$ into $F(N) = (Y \times Z, B_0 \cup ... \cup B_m)$.

Elements of A_0 have two points, elements of B_1, \dots, B_m have at least three points. Therefore f maps elements of A_0 onto elements of B_0 .

If $i \in \mathbb{Z}$ then $i \in \mathbb{Z}$ are connected by a chain of elements of $i \in \mathbb{Z}$, which implies that $i \in \mathbb{Z}$ then $i \in \mathbb{Z}$ are connected by a chain of elements of $i \in \mathbb{Z}$.

According to a definition of B, , the first coor-

dinates of both f((x, 1)) and f((x, i)) are the same. Hence there are mappings $g: X \to Y$ and $h_X: Z \to Z, x \in X$ such that $f((x, i)) = (g(x), h_X(i))$ for every $x \in X$, i = 1, ..., m.

Let x be an element of X. Then $h_x: Z \to Z$ is a compatible mapping from (Z,S) into itself, because if $U \in S$ then

 $\{x\} \times \mathcal{U} \in A_0$, $f(\{x\} \times \mathcal{U}) = \{g(x)\} \times h_{\chi}(\mathcal{U}) \in B_0$, which implies $h_{\chi}(\mathcal{U}) \in S$.

As (2,5) is a rigid society, all \mathcal{H}_{χ} are the identities, which implies that $f=g\times id_{g}$.

If i is a natural number less than m and $U \in P_i$ then $U \times \{3i-2, 3i-1, 3i3\} \in A_i$. Therefore $f(U \times \{3i-2, 3i-1, 3i3\}) = g(U) \times \{3i-2, 3i-1, 3i3\} \in B_i$, which implies $g(U) \in R_i$.

Hence a mapping q is a compatible mapping from M into N and $f = F(q_r)$.

Thus, we have proved that F is a full embedding.

The next lemma enables us to simplify the proofs of the theorems 2,4.

Lemma 2. There exists a full embedding of Soc into itself such that for every different objects M, N of Soc the underlying sets of F(M) and F(N) are disjoint and do not contain \emptyset as an element.

<u>Proof.</u> A full embedding $P:Soc \longrightarrow Soc$ is defined as follows:

If M = (X, P) is a society then. $E(M) = (X \times (M1, P))$, where $U \in P'$ if and only if there is $V \in P$ such that $U = V \times \{M1\}$, if f is a compatible mapping from M into N then F(f)((x,M)=(f(x),N).

The details are left to the reader.

§ 2. Theorem 3. There is a full embedding of the category of all sets and identities into Soc .

Proof. It follows from the axiom of choice and the lemma 1 that it is sufficient to construct a full embedding P from the category of all ordinals greater than 4 and identities on them into Soc (3).

A set of ordinals less than m will be denoted by \mathbf{L}_m .

A full embedding F is defined by $F(m) = (L_m, 2(m), \{L_m\}, \{L_m: k \leq m\}),$ where 2(m) is a family of all two-point sets of cardinals less than m, $F(id_m) = (id_{F(m)})$. It is evident that F is a one-to-one functor.

Let m, n be ordinals and f be a compatible mapping from F(m) into F(m).

- † is a one-to-one mapping, because if n < q < m then $\{n, q\} \in 2(m), f(\{n, q\}) \in 2(m), \text{ which implies } f(n) + f(q)$.
- # maps L_m onto L_m , since $L_m \in \{L_m\}$, which implies $\{(L_m) \in \{L_m\}, \{(L_m) = L_m\}$.
- f is monotone, because if p < q < m and $f(q) \le f(p)$ then there is n < m such that $L_n = f(L_q)$ (see $L_q \in \{L_q: k \le m\}$). Therefore $f(q) \in f(L_q)$ and there is b < q such that f(q) = f(b), which is a contradiction.

As f is a monotone-1-1 mapping of the well-ordered set L_m , onto the well-ordered set L_m , it is m=n and f is the identity.

Thus, we have proved that F is a full embedding.

 \S 3. Theorem 4. There exists a full embedding of the dual of the category of all sets and inclusions into Soc.

<u>Proof.</u> Let F be a full embedding of the category of sets and identities into Soc (Theorem 3).

Denote F(X) by (S_X, R_X) . According to the lemma 2, we can suppose that $\emptyset \not \in S_X$, $S_X \cap S_Y = \emptyset$ for every different sets X, Y.

It is sufficient to construct a full embedding $\mathcal G$ from the dual of the category of sets and inclusions into Soc(3):

$$G(A) = (\{\emptyset\} \cup \bigcup_{x \in A} S_x, \{\{\emptyset\}\}, \{\{\emptyset\} \cup \bigcup_{x \in A} S_x\} \cup \{\{\emptyset\}\}, \{\{\emptyset\} \cup \bigcup_{x \in A} S_x\}\},$$

 $G(A \supset B)(u) = -u$ if there is $x \in B$ such that $u \in S_x$, \emptyset if $u \in S_x$ for no $x \in B$.

 $f = G(A \supset B)$ is a compatible mapping from F(A) into F(B), because f(B) = B, f maps S_X , $\times \in A$ either identically onto S_X or onto B and maps the underlying set of G(A) onto the underlying set of G(B).

Thus, G is a one-to-one functor.

Let A, B be sets and f be a compatible mapping from G(A) into G(B).

It is obvious that $f(\emptyset) = \emptyset$. If $x \in A$ then $\{\emptyset\} \cup S_x \in \{\{\emptyset\} \cup S_x\}, x \in A\} \cup \{\{\emptyset\}\}\}$.

Hence either $f(\{\emptyset\} \cup S_x) = \{\emptyset\} \cup S_w$, $w \in B$ or $f(\{\emptyset\} \cup S_x) = \{\emptyset\}$. In the first case, a restriction of f to S_x is a compatible mapping from (S_x, R_x) into (S_w, R_x) and from the properties of F it follows that x = w, the restriction of f to S_x is the identity.

If $u \in S_x$, $x \in A - B$ then u is not an element of an underlying set of G(B). Therefore it must be $F(u) = \emptyset$.

It is obvious that f is onto $\{\emptyset\} \cup \bigcup_{X \in B} S_X$. Hence if $u \in S_Z$, $x \in B$ then there is $v \in \{\emptyset\} \cup \bigcup_{X \in A} S_X$ such that f(v) = u. It is obvious that u = v. Hence it is f(u) = u, $x \in A$.

We have proved that $A \supset B$ and $f = G(A \supset B)$.

§ 4. Proof of the theorem 2. Let G be a full embedding of the dual of the category of sets and inclusions into \mathcal{B}_{OC} (Theorem 4).

Denote $G(A) = (T_A, T_A)$, $G(A \supset B) = g_{A,B}$. According to the lemma 2, we can suppose that $T_A \cap T_B = g_{A,B}$.

It is sufficient to construct a full embedding H from Inc into Soc (2):

$$\begin{split} & \text{H}\left((A_{i},\,i\in I)\right) = (\bigcup_{i\in I} \, T_{A_{i}}\,,\, \{X:X\subset T_{A_{i}},i\in I\}, \bigcup_{i\in I} \, P_{A}\,)\,, \\ & \text{H}\left(f\right)(u) = \, Q_{A_{i},\,B_{f(i)}}\left(u\right) \quad \text{for } u\in T_{A_{i}} \; . \end{split}$$

We can see that H is a one-to-one functor. Let $(A_i, i \in I) = M$ and $N = (B_j, j \in J)$ be objects of Inc and g be a compatible mapping from H(M) into H(N).

It is $T_{A_{A_1}} \in \{X: X \subset T_{A_{\frac{1}{4}}}, i \in I\}$, which implies $f(T_{A_{\frac{1}{4}}}) \in \{X: X \subset T_{B_{\frac{1}{4}}}, j \in J\}$. Therefore there is a mapping $f: I \longrightarrow J$ such that q maps $T_{A_{\frac{1}{4}}}$ into $T_{B_{\frac{1}{4}}(A_1)}$

Evidently, a restriction of q, to $T_{A_{AL}}$ is a compatible mapping from $(T_{A_{AL}}, P_{A_{AL}})$ into $(T_{B_{f(AL)}}, P_{B_{f(AL)}})$. Therefore $A_{A_{C}} \supset B_{f(A_{C})}$ and $g(u) = q_{A_{A_{C}}, B_{f(A_{C})}}(u)$ for $u \in T_{A_{A_{C}}}$, $A_{C} \in I$.

We have proved that H is a full embedding of Imc into Soc (2).

§ 5. A concrete category is a couple (K,F), where K is a category and F is a faithful functor from K into the category of sets and mappings.

A concrete category (X, F) is called universal if for every concrete category (L, G) there exists a full embedding $H: L \to X$ with G = FH.

Define a concrete category (U,E) as follows: objects of U are couples ($X,(A_R,R\subset X\times X)$),

where A_R are societies; morphisms of $\mathcal U$ from $(X,(A_R,R\subset X\times X))$ into $(Y,(B_S,S\subset Y\times Y))$ are all mappings $f\colon X\to Y$ such that if R is a binary relation on X and $S=\{(f(X),f(Y))\colon (X,Y)\in R\}$ is a relation on Y then there is a compatible mapping from A_R into B_S , a composition of morphisms is a composition of the

an underlying set of $(X,(A_R,R\subset X\times X))$ is X an underlying mapping of a morphism f is f itself.

corresponding mappings.

As a corollary of the theorem 1 we have the next theorem:

Theorem 5. The concrete category (u, E) is universal.

The proof of the theorem 5 can be obtained from the proof of the Theorem of [3] if we replace binary algebras by societies and homomorphisms by compatible mappings. Instead of Theorem 1 of [1] we must use Theorem 1 of the present paper.

References

- [1] Z. HEDRLÍN: On universal partly ordered sets and classes, Journ.of Alg.11,4(1969),503-509.
- [2] P. HELL, J. NESETRIL: Graphs and k-societies, Canad.Math.Bulletin 13,3(1970),375-381.
- [3] L. KUČERA: On universal concrete categories, to appear in Algebra Universalis 1(1971).

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 18.12.1976)