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A REMARK TO THE FINITE ELEMENT METHOD

Ivo BABUSKA, College Park

I. Introduction. The finite element method, its Adif-
ferent versions has become very important today in the theo-
ry and practice. See e.g. [1] - [17] and others.

One important form of the method is such that the ap-
proximate solution Ay (X) on the domain ). has the

following form
X
(1.1) sy (X) = Zc(h,l_e_;)ga(i’;—l_c_a)

where the function @ (X) has a compact support and the

sum is over all multiintegers f = (& ,..., & ) (% inte-

gers) such that
huppy g:(%-&)n.ﬂ.#ﬂ .

Many times the function @ (x), x € R is taken in

a special form

g
1.2) @ ((X) '4‘,114?("4)’ A=, 2,..,m, X=(x,...

» Xm) ¢
For some domains e.g. a square, for P (X) smooth enough

80 called "inverse theorem" is valid for some sequences
h&’ 0‘=4,2,a-0,h‘:’_"0-

S UM g 10
L M

£
W, ()
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where W: n) is the usual Sobolev space and C(.£)
does not depend on 1 .

Many very important theorems of the theory of the fi-
nite elements method are based on the validity of the men-
tioned "inverse theorem". Under this assumption e.g. the
computation of derivatives (see [14]) could be made much
easier as in [14], simply by derivating the approximate
solution. Without this "inverse theorem"” proofs of many
theorems will break down.

The purpose of this note is to show that for smooth
domains the inverse theorem is not true for any choice of

b, .

v

To simplify the arguments we shall deal only with the two
dimensional case i.e. L c R, .

The inverse theorem is in fact equivalent with a geometric
property of the domain (L . Let us explain this property.
Let L c R, be a bounded domain.

For every / > 0 1let us define the mesh P, =
=49k, h L)} with ko, £ integera.

Further let @, be the set of the all aquares 8:’,_

S:zz{x=(x4,xz); Mo < x < M (fo+1)
h«!.<x2<h(l.+4)}
and

Of =4, 50, s Smpgn D * 01,
B = {(M,2); Sy e Qni .

Let us define now the function v, (k,2) on 17% by
the following way :

- 368 -



M(S;:‘n )

(1-4) V.“(fb,t) - h’-
where (,5:" n ) means the measure of the set
S::L A £l . Further let
. o
(1.5) (b)) = wqrh(h,t), (k,2)e B, .

The crucial question is whether we may choose a sequence

ha.—> 0, =1,2,... such that

(1.6) ,_thim’:{(h?-)zoc.
rand-d

Certainly if () ia a square then such a sequence ha._

clearly exists.

In the next chapter we shall show that such a sequen-
ce does not exist in the case that the boundary has bounded
curvature.

For the simplicity we shall prove the statement for a cir-
cular domain only. By the same idea it is obviously pos-
sible to prove the general statement for domains with boune

ded curvature in X, .

II. Theorem. As we said we shall study the case of
the circular domain fl in R, only. Let
" (2.1) K(m)a{(x,n‘.);x"+@"< A

be a circle with the radfus 2« .

Further let us denote @ (x,q ) the distance of the
point (x,n ) to the boundary of the circle X (n) .
Let us prove the following theorem.
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Theorem. Let us denote

(2.2) ()= min @ (kL)

(R, L)€ Kix) ?

&, £ integers.

Then for every sequence rL; —> oo we have
(2.3) Rim imf ee (n) = 0 .
4 oo b

This theorem is obviously equivalent with the statement
which we introduced in the first chapter in the case that
fL  is a circle.

Proof. 1) Let us denote by W (£) the number of all
(k, L) in K(x) ,

(2.4) U(r) = Z
(,L)6 K(x)

Obviously U (x) is a not decreasing step function. Let

§5 §ipq > §; Dbe the sequence of all points of the dis-

continuity of the function W (x) .
Denote further

(2.5) .ﬂ.(lb)=§'w \fa- 73 | .
Our theorem will be proved if we shall show that
(2.6) Lim Alrv) = 0.
-~ co
In fact
“(2.m ge (x;) £ Alx;) .

2) Let us assume on the contrary that there exists a
sequence X;, i =1,2,...,K

en ”’4’ X, —> oo
such that

- 370 -



(2.8) ,Xi/mimf'x(b‘)23A>0.
& =y CO

Then for all x, , 42N we have

(2.9) Alx;) 2 24 .

So we may construct the subsequence f 4

such that
(2.10) f*'; = g‘.}_q > A
and
. 2> .
§4§ - ”’é,
Let us denote
where [Xx] means integral part of Xx .
We have
(2.12) W, £ g,-}_, € o +1 .

Because a);- and c.),-_ +1 is certainly the point of

the discontinuity of the function U (a) we have
(2.12) Qiégq'a-.fé?{‘-q"'Aégf;&é 6)41'4

and

(2.13) §1’.j_-4=""§*6; where 0 = G;él—A .

Let us define now the numbers or," Tre8p. /3? such that

2 2 2 2
(2.14) G)é + wt- = g’! = (G)’o + 6’-') 5

2 2 _ .2 2
(2.15) wé-t-ﬂ?._ F"#' > (wé+6;+A) .
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Therefore

1
2.16) ;= g £ 2 2 7 g, ! i’
( w; = V(a, + 6 Y- o 9? gf 2+g a7,

1
@ g s wf (g e 0 (24 (g st .

But

Therefore

1 1 1
(2.18) o éa.%a.*zﬂu ———— ) 2
and hence

E i % 1
(2.19)/.%- o, = 2%y [(g+A*-67(1+ —7 ],

(45-1)2
But
1 1 1 1
(2.20) mim [(X+A)*—x?*(1+ ——)*]1 =
dex £1-4 (";}“4)2
1 1 1
- - - 2 PO S— |
Therefore for r; big enough i.e. 4 > N1 we have
1 1
2 2 s

and hence for 4. N, > N wenave f3 - oc; 2 2

and therefore there exists an integer &9 such that

ﬁé > *41- > “’r' for all ?’ > Nz

1
and hence §. = (_w;- + )a; )2 ia a point of dis-
continuity of the function U (&)

But obviously
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Eo"-q < fg, < ?-e"-‘f + A

and this is a contradiction and the theorem is proved.

A closer analysis of the proof shows that obviously

by the same idea the general statement introduced in § 1

may be proved i.e. for m -dimensional domain with bounded

curvature of the boundary.
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