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ON MINIMAL SEMIRIGID RELATIONS

Tomé3 WICHS, Praha

By a graph we mean a pair (X.R) , where X % # is

a finite set and R &€ X x X 1is a binary relation on X.
The outdegree of x € X is the number od (x)=Il{g:y +x
and (X, a) e Ril, the indegree of x is the number

dd (x)=l{y: 4y +x and (g,x) € R¥|. I1f (X, R)
and (Y,S5) are graphs and f is a mapping of X into Y,
we say that f is a compatible mapping of (X, R) into
(Y, 8) if (f(x), f(g))e §  whenever (x,3 )€ R.
If moreover £ is 1-1 and alac -1 is compatible we say
that f is an isomorphism. (X ,R) and (Y,S) are cal-
led isomorphic if there exists an isomorphism of
(X,R) onto (Y,S) ;jnotation (X,R)= (Y, S).A graph
(X,C) is & cycle of length m ( m is a positive in-
teger) if (X,C) = (44,2,...,m3, £(i, 4 +1);i=1,2,...,m-1u
uilm,1)%) , the cycle of length 1 is also called trivi-
al cyc.e. A reflexive cycle of length m is any graph iso-
morphic to (£4,2,...,m},{(é,i+4) ;4 =4,2,..., m-13u
vi(€4,4); i=1,2,...,m} u4(m,1)3) . The set of all
compatible mappings of (X,R) into itself forms a monoid

(semigroup with a unit element) under composition, which
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is denoted M (X,R) . In the case M (X, R ) con-
sists of the identity and all the constant mappings, the
graph (X, R) is called a semirigid graph and R a
semirigid relation on the set X . In [1], there are
constructed semirigid relations on any finite set X + 4
such that |X| 3,4 and proved there are no semirigid
relations on sets of these powers. (As since the publish-
ing of the paper [1] the terminology hes stabilized so
that the expression “"rigid graph” is now exclusively used
for a rather different notion (see [2],[3]1), we use the
term "semirigid graph" instead of "rigid graph" as used
in [1].) The semirigid graphs given in [1] possess the fol-
lowing maximal property which is an obvious consequence of
Lemma 2 in [1]: If S is an arbitrary semirigid relation
on a finite set X, IX| % 0,3, 4 , then|S) & IXH-(%’)

and this bound is the beat in an obvious sense. On the con-
trary, the aim of this note (besides of giving some further
properties of semirigid graphs) is to construct for every
set X, IX| <+ 0,3, 4 a semirigid relation R on
X such that for any semirigid relation S on X the
inequality IR| & !S| holds. (In [3] similar ques-
tions were solved for rigid graphs.) We shall start with
several lemmas.

Lemma 1. Any semirigid graph is connected.

Proof. Let (X,R) be a semirigid graph, assume that
(X,R) is not connected. Denote X,,..., X,  its com-
ponents, m > 4, Define a mapping fs X — X setting
fx)=x for x6 X, v Xgu.., v X, , £(X) = a
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for x e X1 , Yhere a is an arbitrarily chosen element
of X, . From Lemma 1 of [1] it follows that f is com-
patible. Since f is neither identity nor a constant map-
ping we have got a contradiction.

Lemma 2. Let (X,R) be a semirigid graph, [X|> 3.
Then there are at least two different elements x, 4 in
X for which od (x) 2 2, od(g) = 2 hold.

Proof: By Lemmas 3,4 of [1] there is an x ¢ X for
#hich od (x) & 2 . Aesume there is no 4 ¢ X such that
4 #x ana ool (y) = 2 . From Lemma 3 of [1] it follows
that od (y) =1 for € X — {x} and 4d (y) = 1
for y € X .Let x,x,,..., X,  be all the different
points of X for which (x, X;) €eR, x4+ X, , =42, %.
Clearly A = od (x) = 2 . Define for © = 1,2,..., ke
the mappings @; : X — X in the following way: G, (x)= x.
Q‘.' () = for 4 4 X , vhere z is the unique point
of X for which a4 #% 2, (g, x)€ R holds. By Lemma
1 for every 4 € X there is an 4 among 1, 2,..., &
and a positive integer 4 such that 4 = Q: (x) .

In the case O.z"’ (x) % x for every integer
m > 1, and for every i =1,2,.., f ,put f(x) = x and
£(g)=x, for s # x.Obviously £ & M (X,R).

In the case there is an integer £ such that there
exists an integer s > 1 satisfying the condition
G?(.x) = X , just the two following situations cean occurx):
(1) There is an 4 such that m (4) = I1X1; (2) m (L)< |X|

t) We denote by m (<) the smallest o with Q‘? (x)=x.
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for every 4 , for which m (<) is meaningful.

In the case (1) the mapping g :+ X — X  defined
by ¢ (@7 (x)) = x; (3 & 4 is a fixed nuuber from
1,2,..., &) for & =4,2,3,...,2 ( n is the smal-
lest integer t for which G.z (x) = x;- holds)
and g(y)= g for y eX -{105(x):m=14,2,3,.,n%
is obviously a compatible mapping.

In the case (2) the two following situations will
be distinguished: (i) x is a cut point of (X,R) and
(ii) X 1is not a cut point of (X,R) . (i) The mapping

2 : X — X carrying one of the components of the
graph (X - {xJ((X-{x3] x[X-{x3DnR) into x and
being identical for all other points of X is evidently
compatible. (ii) In this case there exist < and j,i#%j,

t,3ed4,2,..., k1 and two integers g, @, 1<
< £ g such that the following conditions are satis-
ried: (a) QP (x) = QY (x) ;  (b) 4d (QF(x)) = 1

for 1< n < o ,and 4d (@7 (X)) =4 for f<n<g.
Define e CQ: (x)) = Q:’(x) for £ < pn ,
e (@ (x)= @% (x) for n = fr,ptl..,q am
e(y) =g for yeX- {Q.; (x):n =4,2,...,93 .
Evidently e €e M(X,R) .

As all the mappings f, g, 4, e are also noncon-
stant and nonidentical, Lemma 2 is proved.
Since semirigid relations on sets containing more than one

element are reflexive (see [1], Lemma 1) we get the follow-

ing corollary:
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Corollary 1. Let m be a positive integer, m =
+ 3,4 . Denote p(m) =min{lIRl: R is a semirigid
relation on a set of the cardinality m § . Then m > 3
implies @ (m) 2 2m + 2 .

Lemmg 3. Let (X,R ) be a semirigid graph, |XI| >
> 3., Then (X, R) contains a cycle of length m = 3.

Proof. According to Lemma 2 of [1] there is no cycle

of length 2 contained in ( X,R ) . Suppcse there is no
non-trivial cycle contained in (X, X) . Let us choose
a, € X . If for an integer po = 1 the point 4,
is constructed, then there is at least one x € X - {u,pi
such that (u,ﬂ, X) € X . Denote by Myy4q ODE of
these x ‘s. Since no non-trivial cycle is contained in
( X, R) ,the sequence {fu, 1:.1 of elements of the
finite set X is univalent, which is a contradiction.

The easy proof of the following Lemma 4 which is
useful for proving semirigidity of a relation, will be omit-
ted.

Lemma 4. Let (C, R) be a reflexive cycle, £ a
compatible mapping of (C,R) onto (X,S). Then there
exists T £ S such that (X, T) is a cycle.

Theorem 1. Let @ be the function defined in Corol-
lary 1. Then @ (1) =0, ¢(2)=3, ¢(5) =13 and
gm)=2m +2 for m Z 6 .

Proof. @ (4) = 0 since ({fj, 4) is semiri-
gid. @(2) = 3 follows immediately from Theorem 1 of
(1] and from its proof. From Corollary 1 we have @(5)=
Z 412 . However, by constructing all relations of the

power 12 on the set {1, 2,3, 4, 53} satiafying all

- 363 -



the well-known necessary conditions for semirigidity, we
f£ind out that none of them is semirigid (these considera-
tions are omitted for technical reasons). Therefore

@(5) 2 413 .  As the graph ({4,2,3,4,5%, {(i,4) ;
v=1,0,5301(,441);4=1,...,43U1(5,1),(3,1),(5,3),(4,2)})

is semirigid, we have @ (5) = 13. Let m be an odd
number, m = 6 ,i.e..m =2k +1, & = 3 . Put

X=14,2,..,m3, R=4{(i,4);¢=1,2,...,m} v i€,<+1);
4=4,2,...,0-130i(m 1), (4 e+4),(k + 3,20} .

Let m beeven, m 2 6, m=2p, p = 3 . Put
Y=44,2,..., m3,8=4(4i,i); 4=1,2,....m} u{ildi,is

+4);4=4,2,....m-130{(m,N), 1, p+1), (p,m)} .

Clearly IR|i=2m + 2 , I1S| = 2m + 2 , since both the
graphs (X,R) and (Y,S) are semirigid, we have
Pm)= 2m + 2 for m &= 6 . The proofs of semirigi-
dity of all relations given here are easy (they can be e.g.
based upon Lemma 4) and therefore omitted.

I thank Z. Hedrlin and J. NeSetfil for their helpful

advice.
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