

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log34

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Commentationes Mathematicae Universitatis Carolinae
12,2 (1971)

ON DESCRIPTIVE CLASSIFICATION OF SET-FUNCTORS II.

Věra TRNKOVÁ, Praha

The present paper is a continuation of [1]. In [1] the preservation of limits of various types of diagrams by set-functors is studied. Here, the dual questions, concerning coequalizers, push-out-diagrams, colimits up to are investigated. The paper has three parts, numerated IX. to XI. In IX, the coequalizer-preserving set-functors are characterized. In X, the preservation of push-out-diagrams and colimits up to is considered. We prove, for example, that every set-functor which preserves colimits of finite diagrams, preserves also colimits of countable diagrams. In XI, the set-functors preserving some types of limits and some types of colimits are investigated. For example, the functors that preserve pull-back-push-out diagrams are characterized.

The notation, all the conventions and some facts from [1] are used.

IX.

IX.1. <u>Definition</u>. Let H be a functor, $f, g: X \longrightarrow Y$ mappings, $w_1, w_2 \in H(Y)$. An m-tuple

AMS, Primary 18B99, 18A30 Ref.Z. 2.726 Secondary - - 345 - << $>_4$, x_4 , t_1 >,..., < $>_m$, x_m , t_m >> will be called an (f,g) -chain from y_4 to y_2 in H iff

- 1) $\{b_i, t_i\} = \{f, g\}$ for i = 1, ..., m;
- 2) $x_1, \dots, x_m \in H(X)$;
- 3) $[H(x_1)](x_1) = y_1$, $[H(t_m)](x_m) = y_2$;
- 4) $[H(t_i)](x_i) = [H(t_{i+1})](x_{i+1})$ for i = 1,, m 1.

IX.2. <u>Proposition</u>. If $\mathscr F$ is a $\mathscr K_1$ -complete ultrafilter on a set M, then $G_{M,\mathscr F}$ preserves coequalizers.

Proof. Put $H = Q_{M, \mathcal{F}}$. Let $f, g: X \to Y$ be mappings, h = coeq (f, g). We prove that H(h) = coeq (H(f), H(q)). Let κ_1^+ , $\kappa_2^+ \in H(Y)$, $[H(h)](\kappa_1^+) = [H(h)](\kappa_2^+)$. Then there exists an $F_0 \in \mathcal{F}$ such that $h \circ \kappa_1(x) = h \circ \kappa_2(x)$ for every $x \in F_0$. Consequently one can choose an (f, g)-chain $h^x = \langle\langle s_1^x, s_1^x, t_1^x \rangle, \ldots, \langle s_{m_x}^x, s_{m_x}^x, t_{m_y}^x \rangle\rangle$ from $\kappa_1(x)$ to $\kappa_2(x)$ in I. Define an equivalence \sim on F_0 by

$$\begin{split} \boldsymbol{z} \sim \, \boldsymbol{z}' &\Longleftrightarrow \, \langle \langle \, \boldsymbol{s}_{1}^{z} \, , \, \boldsymbol{t}_{1}^{x} \, \rangle \, , \, \ldots, \langle \, \boldsymbol{s}_{n_{\chi}}^{z} \, , \, \boldsymbol{t}_{n_{\chi}}^{x} \, \rangle \rangle \, = \\ &= \, \langle \langle \, \boldsymbol{s}_{1}^{z'} , \, \boldsymbol{t}_{1}^{z'} \, \rangle \, , \, \ldots, \, \langle \, \boldsymbol{s}_{n_{\chi}}^{z'} \, , \, \, \boldsymbol{t}_{n_{\chi}}^{z'} \, \rangle \rangle \, \, . \end{split}$$

The decomposition of F_0 by means of \sim is countable; let A be its element which is in \mathscr{F} . If $\alpha_1: M \to X$ are mappings such that $\alpha_2: \alpha = \alpha_1^x$ for all $\alpha \in A$, then obviously $<< s_A^x$, α_1^+ , $t_1^x >$,..., $< s_{n_2}^x$, $\alpha_{n_2}^+$, $t_{n_2}^x >>$

is an (f, g)-chain from n_1^+ to n_2^+ in H for any $z \in A$.

IX.3. <u>Proposition</u>. A factorfunctor of a coequalizer-preserving functor preserves coequalizers.

Proof. Let $v: H \rightarrow G$ be an epitransformation. Let H preserve coequalizers, $f, g: X \rightarrow Y$ be mappings, $h = coeq_{i}(f, q_{i})$, $h: Y \rightarrow Z$. Let $y, y' \in G(Y), [G(h)](y) = [G(h)](y').$ We prove that there exists an (f, g) -chain from ψ to y' in G. Choose $z, z' \in H(Y)$ with y(z) = y, $y_{y}(x') = y'$. Let [H(h)](x) = b', [H(h)](x') = b'. Then $\mathcal{V}_{z}(\mathcal{L}) = a = \mathcal{V}_{z}(\mathcal{L}')$. Choose $\ell: \mathbb{Z} \to Y$ with $h \circ l = id_{\pi}$ and put c = [H(l)](b), c' = $= [H(\mathcal{L})](\mathcal{L}'). \text{ Since } [H(\mathcal{H})](\mathcal{Z}) = \mathcal{L} = [H(\mathcal{H})](\mathcal{C}),$ there is an (f, g)-chain $\langle\langle s_4, x_4, t_4 \rangle, ..., \langle s_m, x_n, t_m \rangle\rangle$ from z to c in H . Analogously, there exists an (f, g) -chain $(\langle s_1', s_1', t_1' \rangle, ..., \langle s_{m'}', s_{m'}', t_{m}', \rangle)$ from c' to x' in H. Since $y_{\ell}(c) = [G(\ell)](a) =$ $= \nu_y (c'), \langle\langle s_1, \nu_\chi(x_1), t_1 \rangle, ..., \langle s_m, \nu_\chi(x_m), t_m \rangle,$ $\langle s_1', s_2(x_1'), t_1' \rangle, ..., \langle s_m', s_2(x_m'), t_m', \rangle \rangle$ is an (f, g) -chain from y to y' in G IX.4. Definition. Let m be an infinite cardinal. We recall that a functor H preserves unions up to M iff $H(X) = \bigcup_{\alpha \in A} H(X_{\alpha})_{X}$ whenever $X = \bigcup_{\alpha \in A} X_{\alpha}$ and card A < m.

IX.5. Lemma. Let *** be an infinite cardinal, let H be a functor such that

if $\{X_{\infty} : \alpha \in A\}$ is a disjoint collection such that card A < m and card $X_{\infty} = \operatorname{card} X_{\infty}$, for every α , α , then $H(X) = \bigcup_{\alpha \in A} H(X_{\infty})_X$ where $X = \bigcup_{\alpha \in A} X_{\infty}$.

Then H preserves unions up to

Proof. 1) Let $\{Y_{\alpha}; \alpha \in A\}$ be a disjoint collection of non-empty sets, $\operatorname{card} A < \operatorname{un}$. Choose a disjoint collection $\{X_{\alpha}; \alpha \in A\}$ such that $Y_{\alpha} \subset X_{\alpha}$ and $\operatorname{card} X_{\alpha} = \sup_{\beta \in A} \operatorname{card} Y_{\beta}$ for all $\alpha \in A$. Put $X = \bigcup_{\alpha \in A} X_{\alpha}$, $Y = \bigcup_{\alpha \in A} Y_{\alpha}$. Then $H(X) = \bigcup_{\alpha \in A} H(X_{\alpha})_{X}$. Since $Y_{\alpha} \neq \emptyset$, $Y_{\alpha} = X_{\alpha} \cap Y$, we have $H(Y_{\alpha})_{X} = H(Y)_{X} \cap H(X_{\alpha})_{X}$. Consequently $H(Y)_{X} = H(Y)_{X} \cap H(X) = H(Y)_{X} \cap H(X) = H(Y)_{X} \cap H(X)_{X} \cap H(X)_{X} \cap H(Y)_{X} \cap H(X)_{X} \cap H(Y)_{X} \cap H($

Thus, $H(Y) = \bigcup_{\alpha \in A} H(Y_{\alpha})_{\gamma}$.

- 2) Let $\{Y_{\alpha}, \alpha \in A\}$ be a disjoint collection, cand A < m, $Y = \bigcup_{\alpha \in A} Y_{\alpha}$. If all Y_{α} are empty, then $Y = \emptyset$ and then $H(Y) = \bigcup_{\alpha \in A} H(Y_{\alpha})_{y}$. If $B = \{\alpha \in A, Y_{\alpha} \neq \emptyset\} \neq \emptyset$, then $Y = \bigcup_{\alpha \in B} Y_{\alpha}$ and $H(Y) = \bigcup_{\alpha \in B} H(Y_{\alpha})_{y} = \bigcup_{\alpha \in A} H(Y_{\alpha})_{y}$.
- 3) If $\{Y_{\alpha} : \alpha \in A \}$ is an arbitrary collection with card A < M, take a well-ordering < of A and put $Z_{\alpha} = Y_{\alpha} \bigcup_{\beta < \alpha} Y_{\beta}$. Then

 $Y = \bigcup_{\alpha \in A} Y_{\alpha} = \bigcup_{\alpha \in A} Z_{\alpha}$ and consequently $H(Y) = \bigcup_{\alpha \in A} H(Z_{\alpha})_{y}$. Since $H(Z_{\alpha})_{y} \subset H(Y_{\alpha})_{y} \subset H(Y)$, we have $H(Y) = \bigcup_{\alpha \in A} H(Y_{\alpha})_{y}$. IX.6. Lemma. Let m be an infinite cardinal. A functor H preserves unions up to m iff for every set X and every $x \in H(X)$ either the pair $\langle x, X \rangle$ is distinguished or $H^{x,X}$ is an m-complete ultrafilter.

<u>Proof.</u> 1) Let H preserve unions up to \mathcal{M} , let $X \in H(X)$, $\langle x, X \rangle$ be not distinguished. Let $\{X_{\alpha}; \alpha \in A\}$ be a decomposition of X, cand A < M. Since $X \in H(X_{\alpha_o})_X$ for some $\alpha_o \in A$, we have $X_{\alpha_o} \in H^{\times,X}$.

2) Let $H^{\times, X}$ be an \mathcal{M} -complete ultrafilter whenever $\langle x, X \rangle$ is not distinguished. Let $X = \bigcup_{\alpha \in A} X_{\alpha}$, cand $A < \mathcal{M}$. If $X = \emptyset$, then necessarily $H(X) = \bigcup_{\alpha \in A} H(X_{\alpha})_{X}$. If $X \neq \emptyset$, then there exists an $\alpha_{o} \in A$ such that $X_{\alpha_{o}} \neq \emptyset$. Then $x \in H(X_{\alpha_{o}})_{X}$ whenever $\langle x, X \rangle$ is distinguished. If $\langle x, X \rangle$ is not distinguished then $X_{\alpha_{d}} \in H^{\times, X}$ for some $\alpha_{d} \in A$. Thus, $H(X) = \bigcup_{\alpha \in A} H(X_{\alpha})_{X}$.

IX.7. <u>Lemma</u>. Let H preserve coequalizers of all pairs of bijections. Then it preserves countable unions.

<u>Proof.</u> Let Z be the set of all integers. It is sufficient to prove (see IX.5) that H preserves unions of all disjoint collections $\{X_m; m \in Z\}$, where

all X_m have the same cardinality. Put $X = \bigcup_{m \in \mathbb{Z}} X_m$ and denote by $i_m: X_m \to X$ the inclusion. For every $m \in \mathbb{Z}$ choose a bijection $g_m: X_m \to X_{m+1}$. Let $g: X \to X$ be the mapping with $g \circ i_m = i_{m+1} \circ g_m$ for all $m \in \mathbb{Z}$. Put $T = \bigcup_{m \in \mathbb{Z}} H(X_m)_X$. Then $(*) \ [H(g)](T) \subset T$, $[H(g)]^{-1} \subset T$. Let $\alpha = coeq(id_X, g)$. We may suppose $\alpha: X \to X_0$, $\alpha \circ i_0 = ia_{X_0}$. Let $x \in H(X)$. Put $c = x \in H(i_0) = x \in H(i_0)$. Consequently there exists an (id_X, g) -chain from $x \in I$ to $x \in I$. Then necessarily either $x \in I$ in I in I

- IX.8. Theorem. The following properties of a functor H are equivalent:
- (i) H preserves coequalizers;
- (ii) H preserves coequalizers of pairs of bijections;
- (iii) H preserves countable unions;
- (iv) for every set X and every $x \in H(X)$ either the pair $\langle x, X \rangle$ is distinguished or $H^{x,X}$ is a x_1 -complete ultrafilter.
- <u>Proof.</u> (i) \Longrightarrow (ii) is trivial, for (ii) \Longrightarrow (iii) see IX.7, for (iii) \Longrightarrow (iv) see IX.6.
- (iv) \Longrightarrow (i): Let H do not preserve coequalizers. Then there are $f, g: X \longrightarrow Y$ and $a, \& \in H(Y)$ such that $[H(\alpha)](a) = [H(\alpha)](\&)$, where

 $\alpha = coeq(f, g)$, while there is no (f, g)-chain from α to ℓ in H. Put $G = H_{\langle \alpha, \gamma \rangle} \cup H_{\langle \ell , \gamma \rangle}$. Then G does not preserve coequalisers. Put $K_{\alpha} = H_{\langle \alpha, \gamma \rangle}$ if $\langle \alpha, \gamma \rangle$ is distinguished, $K_{\alpha} = H_{\langle \alpha, \gamma \rangle}$ otherwise. Put $K_{\ell} = H_{\langle \ell , \gamma \rangle}$ if $\langle \ell, \gamma \rangle$ is distinguished, $K_{\ell} = G_{\gamma, H^{\ell}, \gamma}$ otherwise. Since G is a factorfunctor of $K_{\alpha} \vee K_{\ell}$, either K_{α} or K_{ℓ} does not preserve coequalizers (see IX.3). If K_{α} does not preserve coequalizers then $\langle \alpha, \gamma \rangle$ is not distinguished and $H^{\alpha, \gamma}$ is not an K_{ℓ} -complete ultrafilter (see IX.2)

<u>Corollary</u>. Every subfunctor of a coequalizer-preserving functor preserves coequalizers.

X.

X.1. Convention. Denote by P the category of all pointed sets, i.e. P^{σ} is the class of all $\langle A, a \rangle$, where A is a set and $a \in A$; $f:\langle A, a \rangle \longrightarrow \langle B, \ell \rangle$ is a morphism of P iff it is a mapping $f:A \to B$ with $f(a) = \ell r$. Denote by $\Box:P \to S$ the obvious forgetful-functor.

X.2. Lemma. In the category P every diagram has a colimit and the functor $\square:P\longrightarrow \mathfrak{H}$ preserves coequalizers and push-put-diagrams.

Proof is trivial.

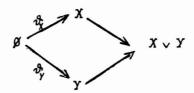
X.3. Lemma. Let $H: S \longrightarrow S$ be a connected functor with card $H(\emptyset) = 1$. Then there exists exactly one $\overline{H}: S \longrightarrow P$ with $\square \circ \overline{H} = H$

Proof: It is evident.

<u>Convention</u>. If $H: S \to S$ is a connected functor with card $H(\emptyset) = 1$, then \overline{H} always denotes the functor from the lemma.

X.4. Lemma. Let $H: S \longrightarrow S$ be a connected functor with card $H(\emptyset) = 1$. If H preserves coequalizers or push-out-diagrams, then \overline{H} preserves colimits of finite diagrams.

<u>Proof.</u> If H preserves coequalizers or push-out-diagrams, then \overline{H} also preserves them. Consequently it is sufficient to prove that \overline{H} preserves finite sums. If H preserves coequalizers, this follows from IX.7. If H preserves push-out-diagrams, use the diagram



- X.5. <u>Proposition</u>. The following properties of a functor
 H are equivalent:
- (i) H preserves push-out-diagrams;
- (ii) H is regular and preserves coequalizers.

Proof. We may suppose H connected.

(i) \Longrightarrow (ii): If H preserves push-out-diagrams, it is regular, clearly. If $H(\emptyset) = \emptyset$, then H preserves finite sums, consequently it preserves finite colimits, in particular coequalizers. If $H(\emptyset) \neq \emptyset$, consider a functor G with $G^* = H^*$, cand $G(\emptyset) = 1$ and use X.4, X.2 for \overline{G} . Then G preserves coequalizers and so does H.

(ii) \Longrightarrow (i): If $H(\emptyset) = \emptyset$, then H preserves finite sums (see IX.8 and II.4 in [1]), consequently it preserves finite colimits, in particular push-out-diagrams. If $H(\emptyset) \neq \emptyset$, consider a functor G with $G^* = H^*$, cond $G(\emptyset) = 1$ and use X.4, X.2 again.

Corollary. Every regular subfunctor of a push-out-diagram-preserving functor preserves push-out-diagrams.

X.6. Theorem. The following properties of a functor H are equivalent:

- (i) H preserves colimits of countable diagrams;
- (ii) H preserves colimits of finite diagrams;
- (iii) H is separating and preserves push-out-diagrams;
- (iv) H is separating and preserves coequalizers of pairs of bijections;
- (v) H is separating and for every $x \in H(X)$ the filter $H^{x,X}$ is an \mathcal{X}_q -complete ultrafilter;
- (vi) H preserves countable sums.

<u>Proof.</u> The implications (i) \Longrightarrow (ii), (ii) \Longrightarrow (iii) are trivial. (iii) \Longleftrightarrow (iv) follows from X.5 and IX.8, (iv) \Longleftrightarrow (v) follows from IX.8, (v) \Longrightarrow (vi) is easy. Clearly, ((vi) and (iii)) \Longrightarrow (i).

- X.7. Theorem. Let $m > \kappa_o$. The following properties of a functor H are equivalent:
- (i) H preserves colimits of diagrams up to m,
- (ii) H preserves sums up to *** ;
- (iii) H is separating and for every $x \in H(X)$ the filter $H^{x,X}$ is an \mathcal{M} -complete ultrafilter.

Proof is analogous to the previous one.

<u>Corollary</u>. Every subfunctor of a functor which preserves colimits of diagrams up to we also preserves colimits up to we.

- X.8. Theorem. Every one from the following assertions is equivalent to the non-existence of measurable cardinal:
- (1) The functors preserving colimits of finite diagrams are precisely \simeq I \times C_M .
- (2) The functors preserving push-put-diagrams are precisely \simeq (I \times C_M) \vee C_{T, t L}, where t: T \rightarrow \rightarrow L is a surjection.
- (3) The functors preserving coequalizers are precisely \simeq (I × C_M) \vee C_{T,t,L} .

Proof follows easily from X.6, X.5 and IX.8.

XI.

- XI.1. Theorem. Every one of the following assertions is equivalent to the non-existence of a measurable cardinal:
- (1) If a functor H preserves finite sums and countable products then either $H=C_o$ or $H\simeq I$.
- (2) If a functor H preserves countable sums and finite products then either $H = C_a$ or $H \simeq I$.
- (3) If a functor H preserves limits of finite diagrams and colimits of finite diagrams then either $H=\mathcal{C}_o$ or $H\simeq I$.

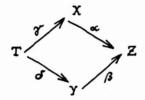
Proof follows easily from X.8.

XI.2. <u>Proposition</u>. If a functor preserves finite sums then it preserves proimages and sets of fixed points.

Proof. If a functor H preserves finite sums, then

it is separating and $H^{x,X}$ is an ultrafilter for every X, $x \in H(X)$. The mappings $\mathcal{G}_X : H(X) \longrightarrow \mathcal{G}(X)$ with $\mathcal{G}_X (x) = H^{x,X}$ form a natural transformation. Consequently H preserves proimages. Since \mathcal{G} preserves sets of fixed points (see VI.8) one can prove easily that H preserves sets of fixed points. XI.3. We recall that a pull-back-push-out diagram is called a double-diagram.

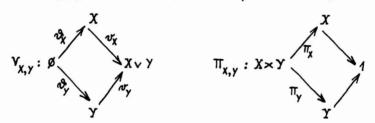
Lemma. Let



be a pull-back-diagram. Then it is a double-diagram iff $\propto (X) \cup \beta(Y) = Z$ and $\propto /\chi - \gamma(T)$, $\beta/\gamma - \sigma(T)$ are injections.

Proof is easy.

XI.4. Lemma. For arbitrary sets X, Y the diagrams



are double-diagrams.

Proof: Well-known and evident.

XI.5. Theorem. The following properties of a functor H

are equivalent:

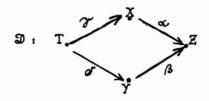
- (i) H preserves double-diagrams;
- (ii) every component of H $\,$ is either naturally equivalent to $\,$ C, $\,$ or preserves finite sums and finite products.

Proof. We may suppose H connected.

(i) \Longrightarrow (ii): Since H preserves double-diagrams $\Pi_{\chi,\gamma}$, it preserves finite products. Consequently either $H\simeq C_1$ or H is separating (see IV.4 of [1], note that $C_{0,1}$ does not preserve double-diagrams).

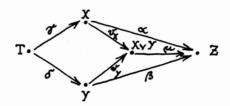
If a separating functor preserves double-diagrams $V_{\chi,\,\gamma}$, then it preserves finite sums.

(ii) ⇒ (i): Let H preserve finite sums and finite products. Then H is separating, consequently it preserves pull-back-diagrams (see VII.10). Let



be a double-diagram.

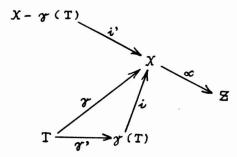
1) First, we prove that $[H(\alpha)](H(X)) \cup [H(\beta)](H(Y)) = H(Z)$. Consider the commutative diagram



(thus, $\mu = coeq(v_X \circ y, v_Y \circ \sigma)$). H(μ)

is a surjection since α is. Now, use $H(X \vee Y) = H(X) \vee H(Y)$.

2) Now we prove that $H(\alpha)/H(X) - [H(\gamma)](H(T))$ is an injection. Consider the following commutative diagram:



where i, i are the inclusions, γ is a surjection. Since $\infty \cdot i$ is an injection, $H(\alpha \cdot i)$ is also an injection. Since $H(X) = H(\gamma(T)) \vee H(X - \gamma(T))$ and $H(\gamma(T))_X = [H(\gamma)](H(T))$, we have $H(X - \gamma(T))_X = H(X) - [H(\gamma)](H(T))$. Now, use XI.3.

References

[1] V. TRNKOVÁ: On descriptive classification of set-functors I., Comment. Wath. Univ. Carolinae 12(1971), 143-174.

Matematicko.fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 25.9.1970)

