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ON BINDABILITY OF PRODUCTS AND JOINS OF CATEGORIES

Lud8k KUUERA, Praha

A category is called binding if it ie concrete and
every concrete category can be fully embedded into it.

(A full embedding F : X — I is a faithful func-
toe 1 which maps X onto a full subcategory of L .)

The existence of a binding category is proved in [1].

We investigate in this paper products and joins of ca-
tegories from the point of view of the property "to be a
bim_ling category".

The product X x L  of categories K, I is defined
as follows:

objects of X x L. are all couples (X,Y) where
X (Y vrespectively) is an object of X ( I respecti-
vely),

morphisms of X x L from (X,Y) into (U,Y) are
all couples (f, g ) , where f: X — U (gs 7=V
resp.) is a morphism of X ( 1 resp.),
(£,8)( 4, 4) = (fh,gF) .
1) F must not be one-to-one mapping of a class of objects

of X into a class of objects of L .
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The join Kv L of the categories X, L is defined
as follows:

objects of Xy L are all couples (X,<) , where
either X is an object of X and < = 0
or X isanobjectof L end i = 1,
morphisms of KX v L from (X,{) into ( Y, 4) are all
céupln (f, &) , where either i a4 = kb = 0 and
£: X—Y is a morphism of X
or {m 3=k =1 and f: X — Y is a wmorphism of L ,
(£, 0)(g,0) = ($g, 0), (f,1)(g,1) = (fg 1) .

We shall prove the following theorems:

Theorem 1. Xwv L 1is binding if and only if either
X or L is binding.

Theorem 2. If Kx L is binding then both X and L
have a rigid object (i.e. an object, only endomorphism of
which is the identity).

Theorem 3. If X is binding and a concrete category I,
has a rigid object then K x I is binding.

Theorem 4. If K x I, is binding and I, is a thin
category (i.e. there is at most one morphism from X into

Y for every two objects X,Y of L ) then KX is a
binding category.

The general problem whether the bindability of X x L
implies the bindability of either X or L 1is, as far as
we know, unsolved.

This paper is divided into three paragraphs: in § 1 we
shall prove Theorems 1,2,3. The proof of the theorem 4 (§ 3)
is based upon a theorem on EO-embeAdings and maximal cate-
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gories which are defined and investigated in § 2.

§ 1. Firsti we give three obvious lemmas:

Lemma 1. X x I ie concrete if and only if both X
and L  are concrete.

Lemma 2. X v L is concrete if and only if both X
and L are concrete.

Lemmg 3. If F: X —+ L  is a full embedding, X is
binding and I, is a concrete category then I is binding.

Proof of Theorem 1. The functors F: X — Kv 1 and
G:L — KvIL defined by

F(X) = (X,0) , F(f)= (§,0) ,
(XY = (X,1) , G4 = (gD

are full embeddings. Therefore if either X or I, is bin-
ding then KvI is binding in view of Lemmas 2,3.

Let KX v L be a binding category. Let the category M
be obtained from K v L. by a formal addition of an ini-
tial object 0 . It follaws that M is binding from Lem-
ma 3.

Because K vIL  is binding, there is a full embedding
F:M— XvL. If F(0) € X°x {0% then it is evi-
dent that F maps M° dnto X°x {0%. Therefore G: M—»
—> K defined by

G(X) =Y if and only if F(X) = (Y, 0) is a full
embedding.

This implies that X is binding by Lemma 3.

Similarly, if F(0) € 1° x {41} then there is a

full embedding from M into L | which implies that L is
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binding.

Proof of Theorem 2. It is evident that a binding cate-
gory has a rigid object. If (X, Y) is a rigid object of
KxL then X (Y resp.) is a rigid object of X
(L resp.).

' Proof of Theorem 3. Let Y be a rigid object of L .
Then Fs K —> K xIL defined by

F(X) = (X,Y), F($) = (£, 4 7Y)

is a full embedding. Therefore X x I is binding by Lem-

ma 3.

§ 2. In this paragraph we deal with EO-embeddings and
maximal categories:

Definition. A functor F: XK — [ is called an
EO-embedding if F is a one-to-one mapping of .MK(X,Y)
onto 'ML. (F(X), F(Y)) for every two objects X, Y
of X with Mo (X,Y) & ¢,

Next two lemmas are obvious:

Lemma_4. A composition of EO-embeddings is an EO-em-
bedding. ‘

Lemma 5. A full embedding is an EO-embedding.

Definjtion. A category X is called maximal if every
EO-embedding F: K — I, is a full embedding.

The main result of this paper is

Iheorem 5. Every concrete category is a full subcate-
gory of a maximal concrete category.

Proof. Demote by Set (0, 1) the following catego-
ry: objects of Sef (0,1) are all sets X auch that
0,1e X ,
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morphisms of Set (0,1) from X into Y are all map-
pings f: X — Y  such that f(0) =0, £(1) = 1,
the composition of morphisms is the composition of mappings.
Let K be a concrete category. Since Set (0,1) is
isomorphic to the category of all sets and all their map-
pings we can suppose, without loss of generality, that X
is a subcategory of Set (0,1)
We shall construct a sequence K,, K K, ,... of
subcategories of Set (0, 1) as follows:
1) X = K,

2) 1If K;_1 is defined then

objects of J(1: are all objects of ](1:_1
setsa {(X,Y), X, 0,13}
of K;_1 H

together with all

; Where X Y are abjects

if M, N are objects of K. then
. 0
‘MK‘- (M, N) MK;_1 (M,N) for M, Ne X, _, ,

\ set of all one-to-one morphisms

£+ M — N of Set(0,1)
for M = N ¢ K¢

T~ ?

set of all morphisms ¢f: M— N
of Set (0,41) such that ¢ (M)c
c 40,13 and 4((X,Y)) 4 £(X)
for M= {(X,Y), X,0,1%,where
X,Y,Ne X%, and

-1

set of all morphisma f: M — N for
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M= {(Xx,Y), X,0,13 ,  where
x, Y, )‘ € xo“_q and
‘M'K- (X, N)=» &,
44
p in the other cases.

The composition of morphisms is the composition of

mappings.
It is evident that all X; are subcategories of
Set (0, 1) and K; ., is a full subcategory of Xg

for every natural 4 .

Denote the union of the categories X ,X , ... by
L . L is a subcategory of Set (0, 4) and X is a
full subcategory of L .

We shall prove that I, is a maximal category:
Let F:L — M be an EO-embedding. Let X ,Y be ob-
Jeets of L such that M (X,Y)= @ 4 M, (F(X),F(Y)) .

There is a natural m such that X Y e X7 .

let f be a morphism of M from F(X) into F(Y).
A mapping ¢ s 4(X,Y), X,0,41} — X defined by
QUX, YN =g (X)=g(0)=0, g() =4 is a morphism of

x.,,,,“ + Since there is a morphism of X from

"+
{CX,¥Y),X,0,4% 4into Y there ia:norphiam
i (CX,Y) ,X,0,13>Y of X,,, such that F(h)= £ F(g).
Let m,m be morphisms of K,,‘_H from {(X,Y),
X, 0,41 into iteelf defined by
m {(X,YN)em((X)=(X,Y), m(X)=m((X,Y))= X.

Then it is gm = gm , and hm 4 hm and the following
inequality holds:

F(ham) s Fhm) = FA)F(n) = §F(¢)F(n) =
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= fF(gn) = fF(gm) = T (g) F(m)= F(h)F(m)= F(hm).
This is a contradiction. Therefore F is a full embedding.
Thus we have proved that I, is a maximal category.
As a corollary to the theorem 5, to Lemma 3 and to the
existence of binding category we have

Theorem 6. There is a maximal binding category.

§ 3. The proof of Theorem 4 is based upon the next
lemma:

Lemma 6. Let X be a category and I, be a thin cate-

gory. Then there is an EO-embedding from X x L into X .
Proof. A functor F: K x L —> X  defined by

FCX,Y) =X,F((f,¢gN =4 isan EO-embedding, be-

cause if (X, Y), (U,V) are objects of K x I, then eit-

her M (Y, V)= /g ana M, ((X,Y),(U,V) = f

or ‘ML. ()’, V) is a one-point set and F is a one-to-one

correspondence between MKM. UX,Y), (U, V) =

= Mg (X,u) x M Y, V) and M, (X, U) .

Eroof of Theorem 4. Let M be a maximal binding cate-

gory. Since X x I, is a binding category, there is a
full embedding F: M — X xL .If G:KxIL —>X is
an EO-embedding then GF: M —» X is an EO-embedding.
Since M is meximel, GF is a full embedding. Therefore
X isa binding category.
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