

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log33

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2 (1971)

ON BINDABILITY OF PRODUCTS AND JOINS OF CATEGORIES Luděk KUČERA, Praha

A category is called binding if it is concrete and every concrete category can be fully embedded into it.

(A full embedding $F: K \to L$ is a faithful functor 1) which maps K onto a full subcategory of L .)

The existence of a binding category is proved in [1].

We investigate in this paper products and joins of categories from the point of view of the property "to be a binding category".

The product $X \times L$ of categories K, L is defined as follows:

objects of $X \times L$ are all couples (X,Y) where X (Y respectively) is an object of X (L respectively),

morphisms of $X \times L$ from (X, Y) into (U, Y) are all couples (f, g), where $f: X \longrightarrow U$ $(g: Y \longrightarrow Y)$ resp.) is a morphism of X (L resp.),

(f,g)(h,j) = (fh,gj).

Ref.Z. 2.726.3

¹⁾ F must not be one-to-one mapping of a class of objects of K into a class of objects of L .

AMS, Primary 18B15 Secondary -

The join $K \vee L$ of the categories K, L is defined as follows:

objects of $K \vee L$ are all couples (X,i), where either X is an object of K and i=0 or X is an object of L and i=1, morphisms of $K \vee L$ from (X,i) into (Y,j) are all couples (f,k), where either i=j=k=0 and $f\colon X\to Y$ is a morphism of K or i=j=k=1 and $f\colon X\to Y$ is a morphism of L, (f,0)(g,0)=(fg,0), (f,1)(g,1)=(fg,1).

We shall prove the following theorems:

Theorem 1. $K \vee L$ is binding if and only if either K or L is binding.

Theorem 2. If $K \times L$ is binding then both K and L have a rigid object (i.e. an object, only endomorphism of which is the identity).

Theorem 3. If K is binding and a concrete category L has a rigid object then $K \times L$ is binding.

Theorem 4. If $K \times L$ is binding and L is a thin category (i.e. there is at most one morphism from X into Y for every two objects X, Y of L) then K is a binding category.

The general problem whether the bindability of $K\times L$ implies the bindability of either K or L is, as far as we know, unsolved.

This paper is divided into three paragraphs: in § 1 we shall prove Theorems 1,2,3. The proof of the theorem 4 (§ 3) is based upon a theorem on EO-embeddings and maximal cate-

gories which are defined and investigated in § 2.

§ 1. First we give three obvious lemmas:

Lemma 1. $K \times L$ is concrete if and only if both K and L are concrete.

Lemma 2. $K \vee L$ is concrete if and only if both K and L are concrete.

Lemma 3. If $F: K \to L$ is a full embedding, K is binding and L is a concrete category then L is binding.

<u>Proof of Theorem 1</u>. The functors $F: K \longrightarrow K \lor L$ and $G: L \longrightarrow K \lor L$ defined by

$$F(X) = (X, 0), F(f) = (f, 0),$$

$$G(X) = (X, 1), G(f) = (q, 1)$$

are full embeddings. Therefore if either K or L is binding then $K \vee L$ is binding in view of Lemmas 2,3.

Let $K \vee L$ be a binding category. Let the category M be obtained from $K \vee L$ by a formal addition of an initial object 0. It follows that M is binding from Lemma 3.

Because $K \vee L$ is binding, there is a full embedding $F: M \longrightarrow K \vee L$. If $F(0) \in K^0 \times \{0\}$ then it is evident that F maps M^0 into $K^0 \times \{0\}$. Therefore $G: M \longrightarrow K$ defined by

G(X) = Y if and only if F(X) = (Y, 0) is a full embedding.

This implies that K is binding by Lemma 3.

Similarly, if $F(0) \in L^0 \times \{1\}$ then there is a full embedding from M into L, which implies that L is

binding.

Proof of Theorem 2. It is evident that a binding category has a rigid object. If (X, Y) is a rigid object of $X \times L$ then X (Y resp.) is a rigid object of X (L resp.).

Proof of Theorem 3. Let Y be a rigid object of L. Then $F: K \longrightarrow K \times L$ defined by

 $F(X) = (X, Y), \quad F(f) = (f, Ld, Y)$

is a full embedding. Therefore $K \times L$ is binding by Lemma 3.

§ 2. In this paragraph we deal with EO-embeddings and maximal categories:

Definition. A functor $F: K \to L$ is called an EO-embedding if F is a one-to-one mapping of $M_K(X,Y)$ onto $M_L(F(X),F(Y))$ for every two objects X,Y of K with $M_K(X,Y) \neq \varphi$.

Next two lemmas are obvious:

Lemma 4. A composition of EO-embeddings is an EO-embedding.

Lemma 5. A full embedding is an EO-embedding.

<u>Definition</u>. A category K is called maximal if every E0-embedding $F\colon K\longrightarrow L$, is a full embedding.

The main result of this paper is

Theorem 5. Every concrete category is a full subcategory of a maximal concrete category.

<u>Proof.</u> Denote by Set(0,1) the following category: objects of Set(0,1) are all sets X such that $0,1 \in X$,

morphisms of Set (0,1) from X into Y are all mappings $f: X \longrightarrow Y$ such that f(0) = 0, f(1) = 1, the composition of morphisms is the composition of mappings.

Let K be a concrete category. Since Set(0,1) is isomorphic to the category of all sets and all their mappings we can suppose, without loss of generality, that K is a subcategory of Set(0,1).

We shall construct a sequence K_0 , K_1 , K_2 ,... of subcategories of Set(0,1) as follows:

1) $K = K_0$.

2) If Kind is defined then

objects of K_i are all objects of K_{i-1} together with all sets $\{(X,Y), X, 0, 4\}$, where X,Y are objects of K_{i-1} ;

if M , N $\,$ are objects of $\,K_{\vec{\star}}\,\,$ then

 $M_{K_{i}}$ (M, N) for $M, N \in K_{i-1}^{o}$, set of all one-to-one morphisms

set of all one-to-one morphisms

f: $M \rightarrow N$ of Set(0, 1)for $M = N \notin K_{i-1}^{\circ}$,

set of all morphisms $f: M \to N$ of Set (0, 1) such that $f(M) \subset$ $\subset \{0, 1\}$ and $f((X, Y)) \neq f(X)$ for $M = \{(X, Y), X, 0, 1\}$, where $X, Y, N \in K_{i-1}^{o}$ and $M_{K_{i-1}}(X, N) = \emptyset$,

set of all morphisms $f: M \rightarrow N$ for

 $M = \{(X,Y), X, 0, 13, \text{ where}$ $X, Y, N \in X_{i-1}^{\circ} \text{ and}$ $M_{K_{i-1}}^{\circ} (X, N) \neq \emptyset,$ \emptyset in the other cases.

The composition of morphisms is the composition of mappings.

It is evident that all K_i are subcategories of Set (0,1) and K_{i-1} is a full subcategory of K_i for every natural i.

Denote the union of the categories K_0 , K_4 , ... by L. L. is a subcategory of Set (0, 4) and K is a full subcategory of L.

We shall prove that L is a maximal category: Let $F:L\to M$ be an EO-embedding. Let X,Y be objects of L such that $M_L(X,Y)=\emptyset+M_M(F(X),F(Y))$.

There is a natural m such that $X, Y \in X_m^o$.

Let f be a morphism of M from F(X) into F(Y). A mapping $g: \{(X,Y), X,0,1\} \to X$ defined by g((X,Y)) = g(X) = g(0) = 0, g(1) = 1 is a morphism of X_{m+1} . Since there is a morphism of X_{m+1} from $\{(X,Y), X,0,1\}$ into Y there is a morphism $h: \{(X,Y), X,0,1\} \to Y$ of X_{m+1} such that F(h) = f(g).

Let m, m be morphisms of K_{m+1} from f(X,Y), X, Q, A; into itself defined by

m((X,Y)) = m(X) = (X,Y), m(X) = m((X,Y)) = X.

Then it is qm = qm, and hm + hm and the following inequality holds:

 $\Gamma(hm) + \Gamma(hm) = \Gamma(h)\Gamma(m) = f\Gamma(q)\Gamma(m) =$

= fF(qn) = fF(qm) = fF(q)F(m) = F(h)F(m) = F(hm). This is a contradiction. Therefore F is a full embedding. Thus we have proved that L is a maximal category.

As a corollary to the theorem 5, to Lemma 3 and to the existence of binding category we have

Theorem 6. There is a maximal binding category.

§ 3. The proof of Theorem 4 is based upon the next lemma:

Lemma 6. Let K be a category and L be a thin category. Then there is an EO-embedding from $K \times L$ into K.

<u>Proof.</u> A functor $F: K \times L \longrightarrow K$ defined by F((X,Y)) = X, F((f,q)) = f is an EO-embedding, because if (X,Y), (u,V) are objects of $K \times L$ then either $M_L(Y,Y) = \emptyset$ and $M_{K \times L}((X,Y), (u,V)) = \emptyset$ or $M_L(Y,V)$ is a one-point set and F is a one-to-one correspondence between $M_{K \times L}((X,Y), (u,V)) = M_K(X,u) \times M_L(Y,Y)$ and $M_K(X,u)$.

Proof of Theorem 4. Let M be a maximal binding category. Since $K \times L$ is a binding category, there is a full embedding $F: M \longrightarrow K \times L$. If $G: K \times L \longrightarrow K$ is an EO-embedding then $GF: M \longrightarrow K$ is an EO-embedding. Since M is maximal, GF is a full embedding. Therefore K is a binding category.

References

[1] V. TRNKOVÁ: Universal categories, Comment.Math.Univ. Carolinae 7(1966),143-206. Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 29.10.1970)