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MEDIAN GRAPHS

Ladislav NEBESKY, Praha

In this paper a special kind of undirected graphs
will be discussed. There exists the connection of those
graphs with certain abstract algebras introduced in [4].

Let G = (V, E) ©be a finite connected undirected
graph without loops and multiple edges. Let us denote the
distance in G by d , We shall say that a vertex

is a median of vertices « , ~ and w4 if it holds:

dlu,r) = dm,t)+ dr,t),

dw,t)+ dlw,t)

d (v, w)
d (w,w) = dluw,t)+ dw,t) .

Proposition 1. Let { n,q 7 € E and € V . Then
the vertices 4, , g and 2 have at most one median.
If they have a median, then it is either 5+ or ¢ .

Proposition 2. Let {f,q % e E and » € V . Then
the vertices have a median if and only if

ld(p,ar) = d(g,v)l =1,

We shall say that G is a median graph if every three
its vertices have just one median. In the following we shall
assume- that G is a median graph. We shall denote by

M (w,w, w) the median of the vertices , and v,
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Proposition 3. Let «,~, w € V . Then

1) Mw,w, ») = «,

(2) M(wr, w, w) = M(uw, v, w)= M (w,w, v).

It follows from Section 7.1 in [2] (see Problem 1 and
Theorem 7.1.1)

Propogition 4. G  has no circuit of an odd length.

Lemma 1. Let pn,q9e& V, o %+ g . A necessary and
sufficient condition that { p, Q¥ Dbe an edge is that
MCn,q,v) beeither pn or g for any vertex .

Proof. The necessity follows from Proposition 1.

The sufficiency. If {f, ¢ ¥} is not an edge, then
there exists a vertex v, n + + + Q, ~ such that
dln,g)=d(p,r») +d(q,r). Without loss of generali-
ty let us assume that Min,qg,») = n , Then
dlg,w)=d(g,pl+d(p,») = 24 (p,v) +d(g,v);
thus d (p,a) = 0 , which is a contradiction. The lemma
is proved.

Let fn,93% € E ; we shall denote:
Voo=fweVldpu)<dig,w? ,

™me
Epg=1tu,vie k| either w6 Vo, ve Bon or
weY’:’ﬁ, ve‘fn'z}, A”,g’=fu,eyﬂ_'gl there
exists v e V, . such that {w,wfe E, F .
Proposition 5. Let {pn,g? e E and {w,n~ ¥ €
€ Emg_’ @ € %,‘g . Then

dift, )= dig,v»)= difp,v)-1= alg,w)-1.

Lemmag 2. Let {rfb,q‘i e B and {%,‘“‘4’}'"7{“4-4: “én.} 2
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m >4, beanarcin G such that d(«,,«,)=m

and &, , iy & YV, 0 . Then Ly,.., i, , € Y,

e °
Proof. Let us assume that u«, & Vim’ 5 then
fu, u,t 6 Ep,qg - There exists & , 14 k < m such
that w, .o, i 6V, 0, ap,, & Vo, o and

(g, g3 6 By o o As d Cuy, ip) = k-1,

then from Proposition 5 it follows that d(«,, &g ,.,) = _
= & - 1, which is a contradiction. Thus «, & V, o
(Proposition 4);by the induction we also get that Ly yeee

iy Mo g & V:ﬂ_’% .

Proposition 6. Let {fn,g93eE, u,vve 1;,’% and w'e
€ V . Then

MCu,w,ar) eV o -

Theorem 1. The set {E, I{n,g e E} is a
disjoint partition of E .

Proof. Let i{n,qg i, {u,r»3, {x,4r e E . It is
obvious that {f,gle E, , and if fu,» %« Ex,,’_

then {x,y3 e E, ., . We shall assume that {fu,n} ,

{x,y}e Ep,g » Tu, v} ¢ 1’.,",,_ and that for every
{w,v’} e B, o such that mim {d (&, n),d (v, p)i <
< mim {d(u,p),d(r, n)} it holds that {u’, v’} €
€ Ex.y— .

Without loss of generality let ua assume that

0% d(u,x)< min {d(uw,y),dlv,x) dlv,y)}
and that

dlu,p)=dir,g)=dlu,@)-1= dluv, pn)-1.

There exists a vertex 4z such that {w,Z}e E and

- 319 -



d(Zz,p) = dlu,n) -1 . The d(Z,9)=d(«,p).
Denote 7 = M(&,n, @) . Because & = ¥ =+ 2 ,

then { & ,7+ § € E and d (Z,pn) =ad(?,q) =

=d(Z,9)-1=d(@,pn)-1 ,Tus {Z, #3 e E,o eand

{Z,vr}ekE

X %

If d(Z,x)=d (P, y)= dlz,y)-1=dlF,x)-1,
then d (&, ) = d(u,y) = 2 and w=M(Z,»,y) =7,
which is a contradiction. If d (&, ) = d(#,x) =
=d(Z,x)-1=cd (#,4) =1 then d(#F,x)=d(w,x)z
z 2 and also «w =M (&, v, x) = #F | which
is a contradiction, too.

Remark 1. Figure 1 gives an example of graph which is
not a median graph but for which the precedent theorem al-
8o holds.

From Theorem 1 it follows

Proposition 7. G includes no subgraph which is iso-
morphic with the graph in Figure 2.

& <

Figure 1. Figure 2.

Lemms 3. Let {n,, g, } be an edge, {n,, n, %,...
oy iy y) ¥y} . be anarc in G such that d(fp,,fn,)=

=m=1 and p, € 4‘\”“5‘° . Then ., f,,...
iy Ay € Am,” .
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Progf. The case where m = 1 is obvious. Let
ne > 1 and let for every arc of length m — 1  the
lemma be proved. If there exists m, 1 £ m < m ,
such that f,, € A, o , then the lemma is proved.
Now, we shall assume that for every m , 1 &€ m < m,
it holds that f,, ¢ A, o, - This means that
o ¢ A‘f‘v)ip . From Lemma 2 it follows that g, €
e V,

Mo1%0 *
an edge and ¢ « Vg,,ﬂ, . Then d(f,,q) =d(g,,q)=

Let g be a vertex such that {f,, @} be

= m = 2 ,Obviously the vertices ¢, , f3,, @ have
no median, which is a contradiction.

Theorem 2. Let {p,, g, 3 be an edge and

the, b, s Supys i ¥ be an arc in G  such
that d(p,,n,0)=m = 1 and f, € Ap o -
Then there exists just one arc -{Qa,g,, ¥, onvg {Qn-n im,}

such that € p,, g, 5,..., i1y, qnt € Equ o -

Proof. From Lemma 3 it follows that f, € .A‘ﬂ‘”2° i
There exista ¢, € Vz,,m such that {f,, g, } €

GE%,Q,‘ Thus q_"eA, and (Qu‘i.‘} e £ .

o1 fVo
The uniqueness of the ve:tex 24 follows from Proposi-
tion 7. By Theorem 1 we have E”"g“ = Eﬁnio .
This means that f, € A, . . The continuation
of the proof is easy.

Proposition 8. If some vertex of G 1lies on a cir-
cuit then it lies on a circuit of length 4.

lemma 4. Let {f1, ¢ 3 be an edge, x, 4 € V,ﬂ,g .

Then M({L,x,/y,) = M(Q,x,ry,) .
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Proof. From Proposition 6 it follows that
Mg, x, 4) €V, o . IfdlgMig,x,y))=m>0
and if (w,,u b, ..., g ,, 4y ? is any
arc connecting g and M (g, x,q ), then «& = f .
From this fact we easily get that M (nn, x, p) =
=M(g,x, ) .

Leuma 5. Let {pn, g } be an edge, x € V, . ,
Yy e Vg’ﬁ +Then Mln,x,y)e€ Apg -

Proof. Obviously M(f,x,4) € sz . lat
din,y)=m and {n,anl, ..., (o, _,, o} be any
arc connecting s and 4 . Then there exists < and 4
such that 0 £ 4 £ 4 < m and ¥ = M(n,x,n) ,
4""_ e Aﬂ,%’ 1’;‘0'4
= j ; from Lemma 3 it follows that ¢ e A

€ Ag’ﬂ . This means that d(p, vy ) =

7,2 °
Leuma 6. Let {pn,q be an edge, X € sz 5

4 e Vg,ﬁ . Then
IMn,x,yg)M(g,x,4) € Epg -

Proof. Denote M (p,x,a) by « . There exists
~ eV such that {u,n~t e E, . Obviously

d(x,n)md(x,u)+1,d(y,»)=d(y,u)-1 and
d(g,n#) =d(n,«).Thue v = M(g,x,3) .

Theorem 3. Let &, »,w, X, 4 € V . Then
3) MM(u,w, ), x, )= MM(un,x,y),r,

MCar, x, ) .

Proof. Let a, w, X, 4 be 2ixed. The case where
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“ o= aw is obvious. Now, let us assume that for some
vertex 4 such that {«,& 3 e E , the theorem is

proved. Denote MCu, w, w) by n, M(Z, v, w)
by £, MCu,x,q) by », M(iz,x,y) byr
and M (w,x,n) by t . This means that

M(p,x,nq)=M(%,a,t) . Ve shall prave that

M(p,x,ng) = M(r,a, t). Without loss of genera-
lity let us assume that w € V“'a ’

I) Let w & Y'“,‘-; . Then from Lemma 4 it follows
that o = £ . If either x, 4 € V, = or x, e Vg .,
then 7 = & and (3) holds. Now, without loss of gene-

rality let us assume that x € V“,; and 4 e VE’“ .

Then from Lemma 6 it follows that {n,Zie E, ; . Be-

cause t € V, - and » e V,

e *hen M(x, n, t) =

)L
=M(E,n,t) and (3) holds.
II) Let wr € Vg , . Then {pn,RieE, 5 .1f

either x, gy e V, 5 ©oF x,4y € VE,«, ,then x = %

and M(p,x,y) =M(FR, x, ) ; thus (3) holds. Now,
without loss of generality let us assume that x e V“,‘z

endy.cVa,“ . Then teVa,“_ and {~, X % € E

From Theorem 1 it follows that {M (n, x, ) ,

n, &

M(p,x,y)t e E, 7z endiM(x,n;t) M(R,0tlie Ewa

As M(R,x,y) = M(Z,n,t) , then (3) holds.

In [4] so called simple graphic algebras were intro-
duced. They are the abstratt algebras with one ternary o-
peration fulfilling (1), (2) and (3). By a little adapta-
tion of results in {4] (i.e. by the substitution of graphs
with a loop at every vertex by graphs without loops), we
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easily get that there exists a one-to-one correspondence

betweem the notion of median graph and the notion of fi-

nite simple graphic algebra. The way of reconstruction of
the median graph from a finite simple graphic algebra is

given by Lemme 1 in the present paper.

From this result it follows that the(undirected)
graph of any finite distributive lattice is a median graph;
cf. the notion of median operation on distributive latti-
ces in [1]. Similarly, every (finite) tree is a median
graph; cf. the intersection vertex operation on the trees
in [31.

Figure 3.

An example of median graph which is neither the graph

of any lattice nor a tree is given in Figure 3.
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