

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

12,2 (1971)

MEDIAN GRAPHS

Ladislav NEBESKÝ, Praha

In this paper a special kind of undirected graphs will be discussed. There exists the connection of those graphs with certain abstract algebras introduced in [4].

Let G = (V, E) be a finite connected undirected graph without loops and multiple edges. Let us denote the distance in G by d, We shall say that a vertex t is a median of vertices u, v and v if it holds:

$$d(u, w) = d(u, t) + d(w, t),$$

$$d(w, w) = d(w, t) + d(w, t),$$

$$d(u, w) = d(u, t) + d(w, t).$$

<u>Proposition 1.</u> Let $\{p, q\} \in E$ and $v \in V$. Then the vertices p, q and v have at most one median. If they have a median, then it is either p or q.

<u>Proposition 2.</u> Let $\{p, q\} \in E$ and $v \in V$. Then the vertices have a median if and only if

We shall say that G is a median graph if every three its vertices have just one median. In the following we shall assume that G is a median graph. We shall denote by M(u, v, w) the median of the vertices u, v and w.

AMS, Primary 05099 Secondary -

Ref.Z. 8.83

Proposition 3. Let u, v, $w \in V$. Then

- (1) M(u, u, v) = u,
- (2) M(v, u, w) = M(u, v, w) = M(u, w, v).

It follows from Section 7.1 in [2] (see Problem 1 and Theorem 7.1.1)

Proposition 4. G has no circuit of an odd length.

Lemma 1. Let $p, q \in V$, $p \neq q$. A necessary and sufficient condition that $\{p, q\}$ be an edge is that M(p, q, v) be either p or q for any vertex v.

Proof. The necessity follows from Proposition 1.

The sufficiency. If $\{n, q\}$ is not an edge, then there exists a vertex v, $n \neq v \neq q$ such that d(n,q)=d(n,v)+d(q,v). Without loss of generality let us assume that M(n,q,v)=n. Then d(q,v)=d(q,n)+d(n,v)=2d(n,v)+d(q,v); thus d(n,v)=0, which is a contradiction. The lemma is proved.

Let $\{p, q\} \in E$; we shall denote: $Y_{p,q} = \{u \in Y \mid d(p,u) < d(q,u)\},$

$$\begin{split} \mathbf{E}_{p,Q} &= \{\text{i}\, u, v\} \in \mathbf{E} \mid \text{either } u \in V_{p,Q} \,, \ v \in V_{Q,P} \quad \text{or} \\ u &\in V_{Q,R} \,, \ v \in V_{p,Q} \,\} \,, \quad A_{p,Q} &= \{u \in V_{p,Q} \mid \text{there} \\ \text{exists} \quad v \in V_{Q,R} \quad \text{such that} \ \{u,v\} \in \mathbf{E}_{p,Q} \,\} \,. \end{split}$$

<u>Proposition 5.</u> Let $\{p,q\} \in E$ and $\{u,v\} \in E_{p,q}$, $u \in Y_{p,q}$. Then

d(p, w) = d(q, v) = d(p, v) - 1 = d(q, w) - 1.

Lemma 2. Let $\{n, q\} \in \mathbb{E}$ and $\{u_0, u_1\}, ..., \{u_{n-1}, u_n\}$,

m>1, be an arc in G such that $d(u_0,u_m)=m$ and u_0 , $u_m\in V_{n,q}$. Then $u_1,\ldots,u_{n-1}\in V_{n,q}$.

<u>Proof.</u> Let us assume that $u_1 \in V_{Q,n}$; then $\{u_0,u_1\} \in E_{p,Q}$. There exists k, $1 \le k \le m$ such that $u_1,\ldots,u_k \in V_{Q,n}$, $u_{k+1} \in V_{p,Q}$ and $\{u_k,u_{k+1}\} \in E_{p,Q}$. As $d(u_1,u_k) = k-1$, then from Proposition 5 it follows that $d(u_0,u_{k+1}) = k-1$, which is a contradiction. Thus $u_1 \in V_{p,Q}$ (Proposition 4); by the induction we also get that $u_2,\ldots,u_{m-1} \in V_{p,Q}$.

<u>Proposition 6.</u> Let $\{p, q\} \in E$, $\mu, \nu \in V_p$, q and $\nu \in V$. Then

 $M(u, v, w) \in V_{p,q}$.

Theorem 1. The set $\{E_{p,q} \mid \{p,q\} \in E \}$ is a disjoint partition of E.

Proof. Let $\{p,q\},\{u,v\},\{x,y\}\in E$. It is obvious that $\{p,q\}\in E_{p,q}$ and if $\{u,v\}\in E_{x,y}$ then $\{x,y\}\in E_{u,v}$. We shall assume that $\{u,v\},\{x,y\}\in E_{p,q},\{u,v\}\notin E_{x,y}$ and that for every $\{u',v'\}\in E_{p,q}$, such that $\min\{d(u',p),d(v',p)\}<$ $<\min\{d(u,p),d(v,p)\}$ it holds that $\{u',v'\}\in E_{x,y}$.

Without loss of generality let us assume that $0 \le d(u, x) < min\{d(u, y), d(v, x), d(v, y)\}$ and that

d(u,p) = d(v,q) = d(u,q) - 1 = d(v,p) - 1.There exists a vertex \overline{u} such that $\{u,\overline{u}\}\in E$ and

 $d(\overline{u}, n) = d(u, n) - 1. \quad \text{Thus } d(\overline{u}, q) = d(u, n).$ Denote $\overline{v} = M(\overline{u}, v, q)$. Because $\overline{u} + \overline{v} + v$, then $\{\overline{u}, \overline{v}\} \in E$ and $d(\overline{u}, n) = d(\overline{v}, q) = d(\overline{u}, q) - 1 = d(\overline{v}, n) - 1$. Thus $\{\overline{u}, \overline{v}\} \in E_{n,q}$ and $\{\overline{u}, \overline{v}\} \in E_{x,q}$.

If $d(\overline{u}, x) = d(\overline{v}, y) = d(\overline{u}, y) - 1 = d(\overline{v}, x) - 1$, then $d(\overline{v}, y) = d(u, y) \ge 2$ and $u = M(\overline{u}, v, y) = \overline{v}$, which is a contradiction. If $d(\overline{u}, y) = d(\overline{v}, x) =$ $= d(\overline{u}, x) - 1 = d(\overline{v}, y) - 1$ then $d(\overline{v}, x) = d(u, x) \ge$ ≥ 2 and also $u = M(\overline{u}, v, x) = \overline{v}$, which is a contradiction, too.

<u>Remark 1.</u> Figure 1 gives an example of graph which is not a median graph but for which the precedent theorem also holds.

From Theorem 1 it follows

<u>Proposition 7.</u> G includes no subgraph which is isomorphic with the graph in Figure 2.

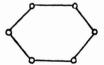


Figure 1.

Figure 2.

Lemma 3. Let $\{n_0, q_0\}$ be an edge, $\{n_0, n_1\},...$..., $\{n_{n-1}, n_n\}$ be an arc in G such that $d(n_0, n_n) = m \ge 1$ and $n_n \in A_{n_0, q_0}$. Then $n_1, n_2,...$..., $n_{n-1} \in A_{n_0, q_0}$.

<u>Proof.</u> The case where m=1 is obvious. Let n>1 and let for every arc of length m-1 the lemma be proved. If there exists m, $1 \le m \le m$, such that $p_m \in A_{n_0, \, Q_0}$, then the lemma is proved. Now, we shall assume that for every m, $1 \le m \le m$, it holds that $p_m \notin A_{p_0, \, Q_0}$. This means that $p_1 \notin A_{p_0, \, Q_0}$. From Lemma 2 it follows that $p_1 \in Q_0$ is an edge and $p_1 \in Q_0$. Then $p_2 \in Q_0$ is $p_3 \in Q_0$. Then $p_4 \in Q_0$ is $p_4 \in Q_0$, $p_6 \in Q_0$. Then $p_4 \in Q_0$ is $p_4 \in Q_0$, $p_6 \in$

Theorem 2. Let $\{p_0, q_0\}$ be an edge and $\{p_0, p_1\}, \dots, \{p_{n-1}, p_m\}$ be an arc in G such that $d(p_0, p_m) = m \ge 1$ and $p_m \in A_{p_0, q_0}$. Then there exists just one arc $\{q_0, q_1\}, \dots, \{q_{m-1}, q_m\}$ such that $\{p_0, q_0\}, \dots, \{p_m, q_m\} \in \mathbb{F}_{p_0, q_0}$.

<u>Proof.</u> From Lemma 3 it follows that $p_1 \in A_{p_0, q_0}$. There exists $q_1 \in V_{q_0, p_0}$ such that $\{p_1, q_1\} \in E_{p_0, q_0}$. Thus $q_1 \in A_{q_0, p_0}$ and $\{q_0, q_1\} \in E$. The uniqueness of the vertex q_1 follows from Proposition 7. By Theorem 1 we have $E_{p_1, q_1} = E_{p_0, q_0}$. This means that $p_n \in A_{p_1, q_1}$. The continuation of the proof is easy.

<u>Proposition 8.</u> If some vertex of G lies on a circuit then it lies on a circuit of length 4.

Lemma 4. Let $\{p, q\}$ be an edge, x, $y \in V_{p,q}$. Then M(p, x, y) = M(q, x, y). <u>Proof.</u> From Proposition 6 it follows that $M(q, x, y) \in Y_{p,q}$. If d(q, M(q, x, y)) = m > 0 and if $\{u_0, u_1\}, \ldots, \{u_{m-1}, u_m\}$ is any arc connecting q and M(q, x, y), then $u_1 = p$. From this fact we easily get that M(p, x, y) = M(q, x, y).

Lemma 5. Let $\{p, q\}$ be an edge, $x \in V_{n,q}$, $y \in V_{2,n}$. Then $M(p,x,y) \in A_{p,q}$.

<u>Proof.</u> Obviously $M(n, x, y) \in V_{n, 2}$. Let d(n, y) = m and $\{v_0, v_1\}, \dots, \{v_{m-1}, v_m\}$ be any arc connecting p and y. Then there exists i and j such that $0 \le i \le j \le m$ and $v_i = M(n, x, y)$, $v_j \in A_{n, 2}$, $v_{j+1} \in A_{2, n}$. This means that $d(n, v_j) = j$; from Lemma 3 it follows that $v_i \in A_{n, 2}$.

Lemma 6. Let $\{p, q\}$ be an edge, $x \in V_{n,q}$, $q \in V_{q,n}$. Then

{ M (p, x, y), M (q, x, y)} ∈ En, e.

Proof. Denote M(p, x, y) by u. There exists $v \in V$ such that $\{u, v \} \in E_{p, 2}$. Obviously d(x, v) = d(x, u) + 1, d(y, v) = d(y, u) - 1 and d(q, v) = d(p, u). Thus v = M(q, x, y).

Theorem 3. Let $u, v, w, x, y \in V$. Then

(3) M(M(u, v, w), x, y) = M(M(u, x, y), w, M(w, x, y)).

Proof. Let w, w, x, w be fixed. The case where

w = w is obvious. Now, let us assume that for some vertex \overline{u} such that $\{u,\overline{u}\}\in E$, the theorem is proved. Denote M(u,x,w) by p, $M(\overline{u},x,w)$ by \overline{p} , M(u,x,y) by r, $M(\overline{u},x,y)$ by r and M(w,x,y) by r. This means that $M(\overline{p},x,y)=M(\overline{p},x,t)$. We shall prove that M(p,x,y)=M(p,x,t). Without loss of generality let us assume that $v\in V_{u,\overline{u}}$.

I) Let $w \in V_{u,\overline{u}}$. Then from Lemma 4 it follows that $n=\overline{n}$. If either x, $y \in V_{u,\overline{u}}$ or x, $y \in V_{\overline{u},u}$, then $n=\overline{n}$ and (3) holds. Now, without loss of generality let us assume that $x \in V_{u,\overline{u}}$ and $y \in V_{\overline{u},u}$. Then from Lemma 6 it follows that $\{n,\overline{n}\}\in E_{u,\overline{u}}$. Because $t\in V_{u,\overline{u}}$ and $v\in V_{u,\overline{u}}$ then M(n,v,v)=M(n,v,v)=M(n,v,v) and (3) holds.

II) Let $w \in V_{\overline{w},u}$. Then $\{p,\overline{p}\} \in E_{u,\overline{u}}$. If either $x,y \in V_{u,\overline{u}}$ or $x,y \in V_{\overline{w},u}$, then $\kappa = \overline{\kappa}$ and $M(p,x,y) = M(\overline{p},x,y)$; thus (3) holds. Now, without loss of generality let us assume that $x \in V_{u,\overline{u}}$ and $y \in V_{\overline{w},u}$. Then $t \in V_{\overline{w},u}$ and $\{\kappa,\overline{\kappa}\} \in E_{u,\overline{u}}$. From Theorem 1 it follows that $\{M(p,x,y)\}$, $M(\overline{p},x,y)$? $\in E_{u,\overline{u}}$ and $\{M(r,x,t),M(\overline{r},r,t)\} \in E_{u,\overline{w}}$. As $M(\overline{p},x,y) = M(\overline{r},r,t)$, then (3) holds.

In [4] so called simple graphic algebras were introduced. They are the abstract algebras with one ternary operation fulfilling (1), (2) and (3). By a little adaptation of results in [4] (i.e. by the substitution of graphs with a loop at every vertex by graphs without loops), we

easily get that there exists a one-to-one correspondence between the notion of median graph and the notion of finite simple graphic algebra. The way of reconstruction of the median graph from a finite simple graphic algebra is given by Lemma 1 in the present paper.

From this result it follows that the (undirected) graph of any finite distributive lattice is a median graph; cf. the notion of median operation on distributive lattices in [1]. Similarly, every (finite) tree is a median graph; cf. the intersection vertex operation on the trees in [3].

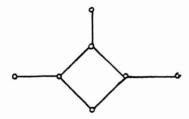


Figure 3.

An example of median graph which is neither the graph of any lattice nor a tree is given in Figure 3.

References

- [1] BIRKHOFF G.: Lattice Theory, Am. Math. Soc. Coll. Publ. Vol. XXV, New York 1948.
- [2] ORE O.: Theory of Graphs, Am. Math. Soc. Coll. Publ. Vol. XXXVIII, Providence 1962.
- [3] NEBESKÝ L.: Algebraic Properties of Trees, Acta Univ.
 Carolinae, Philologica Monographia XXV, Praha
 1969.

[4] NEBESKÍ L.: Graphic algebras, Comment.Math.Univ. Carolinae 11(1970),533-544.

Filosofická fakulta Karlova universita Nám.Krasnoarmějců 2 Praha 1 Československo

(Oblatum 16.7.1970)

