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SOME RESULTS ON GEOMETRICAL APPROACH TO LINEAR DIFFERENTIAL
EQUATIONS OF THE n-TH ORDER

F. NEUMAN, Brno

(Preliminary communication)

Let n (£) = (g, (t),..., Ay Ct)) € B, (m 2 1) for
tel, lop ()l = V,§1 yt(t) jlet S, =fceBy; lel=1t
be the unit sphere in Em_ . Denote by 1 (:_t(-t:)) =
=qgt)/l g Ct)].For n e C*I), 241, j% &, put
APy (B)/dtP = (P (6)/dt%,.., dPy, (8)/dtd).
Lt x:1—J,xeC'(I), dx(t)/dt & 0 for
all t € I . Then define T 4 =z ,where =z, (x(t)) =
= n4;(t) forall tel, 4=4,...,m . Denote by
(4,,..., 4, 1 the determinant whose i-th column is «; .
Let W, (g (4)) = Lo (t),day (£)/dt, .., d™g@)/dt*"]
for y o8 C™IN. It yoe C'D), v Ay,

ldar(t)/dtl = O forall tel , t,el,
+

bt s S ldy(6)/del-de), »: 1+, Turt)=uls),
(]

then |dw (»)/dsl=1,Denote the T, by Yo, b,
Obviously w (4) = Ta b, T (g (t)) e Spoyq and

dw(n)/dre S, , torall neJ,06J and

Secondary
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@ C0) = :'t“o’/'ftfto“ + Also  ar (4 C(t)) =
= wwr(fCt) . n(t)) for every £ > O and

“B,.’%z(t) = Ty, ect,) Lo X(t) .

It fet™' (1), g4 eC™'(1I) , then
W, (£Ct) . Et(t)) = £ (t) .W”(ft(t)),for £ 40,
Wm'(‘g.(t))¢ 0 ire W, (£(t)) . &(t))#O on I.
For x € C™7(I),dx(t)/dt #0 on I we have

W,,b(!(t)) = (—g%)—)ﬁ%ﬁ. W, (T g (£))
and again Wm‘(!(t)) £ 0 on I iff
WWCT,IC'H)-i-O on J .

Suppose 4 e C™(I) , Walyp(t) % 0 onI.

Then w« (») = Th,t, T (/_lt (t)), » € J , eatisfies
(':d./d./a,,g_,z&,,):

sy (H) = 4, (5)

’

&, (B) =~ (») + mz(b)&a(/a)
(1) 4y(w)= - 5, (Pda, (5) + ()4, ()

Yy (D)= —C (B4 o(A) +05 () ()

&, (A)= - (Pl (5),
where lu. ()l =1 for 4 = fyeeiym , a4, . sy =0

for 4 % 4, 0< ., (») e em-i (J) (generalized
Frenet formula). Constant vectors ., (0), 4 =1,...,m,

can be determined from o*-! 3 0)/dt*-1 or
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Conversely, there exists the unique solution 4, ...
cory Moy of (1) which satisfies the initial conditions de-
termined by & and ita (m -1) derivatives at 0 ,

and «,(») = 4 (») for all » € J . DMoreover

W, Cyp (£)) = lag CE)I™ W, (o (g (£)) =

t) ﬁg_ﬂ
m Y
= oy (£ ldw /dtl W us),

. 3

W, (a (6 = o 2(n) o o () v Gy (A Cithyyeny thy, ]
Hence for arbitrary 0 < «; € C*™*(J) , 4= 2,..., m-1,
arbitrary conditions on 4, , ..., &4, at (0 such that

(kg ooy tlenl, o ® 0, ts J— I, dta)/dsr >0
on J, tec™y), fec™ (1), £>0 on I,

we have W, (f(t). w (A (t))) = 0 on I .

Let C be a non-singular m X m matrix, ( g %)
the centroaffine transform of '_'i’(t)7 t el . Suppose
:nteC""(I) and Wy (5 (t))# Q0 on I .If «(s) =
=Ty, o (y Ct)) , then ap (t)m | 4 CE)] .1 (A (E)) and
CapCt) = lgp(t)l. Car(n(t)).Since Cat, Cay,..., Cihy,
(for arbitrary non-singular C ) is the general form of
solutions of (1), all centroaffine transforms of 4 t)
are of the form |lg ()| . 2 (HCt)) , where » is
the first vector of any solution ar , ..., &7, of (1)
such that [ &, ..., 2, ] % 0 .

Let o4 € C™C1) , W, (g (tN % 0 on I and (1)
be the corresponding system on J . If z € C™(I’) ,

and x (x) & £(t) . C gy (t) on 1 for any
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non-singular matrix C, fe C™(I), £ > 0 on I,
xt 1= 1", xe C™(1), dx(t)/dt > 0 on I,
then Ta, ar (z(x)) doce= not satisfy (1) on J for
any x, ¢ I' .

Let m be fixed. By Y denote the set of all trip-
les (%, t,, 1), vhere I c R, y e ™1y, t, eI,

W (y(t) % 0 on I,For (g, t,, 1) &Y  define
the ;pping M= ((r, t, 1) H—& Kpyovey Kop g3 ),
where «; are the corresponding functions in (1) defined
on J. Let ECY) be such a decomposition of Y that
(z, x,, I’) and (!,to,I) belong to the same
class of ECY) iff z (x(t)) = f(t) , C%Ct) on I
for a non-singular C,fe C™ (1), >0 on I,
X:I—=>1" xeC™(1), dx(t)/dt >0 on 1
and Xx (*a) = X, . Denote by == the corresponding
equivalence.

Theorem 1. If (m,t,, 1) #F (z, X,, 1’) , then
My ,t,,1) + M(z, x,, L")

Now, consider a differential equation

(2) L, (y)s 4’,“"4- a,‘(t)g.‘“"zr... +a,(thy =0 onl.

Let t, e I, o (t) = (g4, (t),..., 4, (t)) be m linearly
independent solutions of (2) on 1,(ay € C™(I), Wy Gy (D) # 0
on I ). Since "‘ﬁt (det C # 0) is the general form of m
linearly independent solutions of (2), we may aseign a fi-
xed class (L,,; y £, 1) 2 Cy (1) of the decom-
position ECY) to L, on I, t, e I.
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A différential equation 1, () on I(Ct, e I) is
said to be transformable into L% (=) onI’'(x, e I’)
if there exist functions x and f such that x: ] —

+ I, x(t,) = x,, xe C™(1),dx(t)/dt >0 on I,

fe C¥(I), >0 on 1, and for every solution 4
of L, (g) on I, the function =z = (x > f(t).g(t),
X = x(t)) , is a solutionof LX (x) on I

If Ww(ﬂ. (t))+ 0 , then W, (f(t) . ff(t” + 0 and
2 (x) = (2 (x),..., Z, (X)), z;,(x) =F(t). g, Ct),

are m linearly independent solutions of I.:‘_ (z) on
I'. Hence $ (L, ,t,,I)=d(LE,x,, I’) .
Conversely, if the last relation is satisfied, then L, (4)
on I for t, € I cen be transformed into L* (z) on
I for x, ¢ I’ .

A solution 4 of (2) on 1= (a,&), & & o , is
oscillatory (for t — & ), if it has infinitely many ze-
roson [t , &), t e 1.

L, (4) is a non-oscillatory equation on I = (a, %)
(for ¢t —» & ), if no non-trivial solution of it is osci-

llatory (for t — & ).

I.M_ (4’,) is disconjugate on 1 , if no non-trivial
solution has more than (m -1) geros (including multiplici-
ty).

Letd € I, » a positive integer, 4 be a solution
of L, (y) such that 4 (d;)= 0 ford=d, £ d 6, &
g & d, . Then 7 (d) -b;_.f{d. 3 is cal-

led the 9 - th conjugate point of o (see [1]).

+m-q YV4+Em-~q
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m
For ¢ = 0, let He)=,Z ¢, §;, = 0 be the
hyperplane in E, . Hyperplanes H(g,), d=4,..,R(€m)
will be called independent iff the rank of the matrix
(Ciyieer) S ) 18 & .

Theorem 2. Let & (s)e $ (L, ,t,,1),»6J=(a’, &),

I = (a,4). There exiasts a correspondence between the
solutions of I, (4) and all hyperplanes such that to
linearly independent solutions Lo and 4, there corres-
pond independent hyperplanes H"h and H“V‘,, . Moreover,
there exists a 1-1 mapping »: I — J such that if t,
is a % -multiple zero of a solution a4 of I (4y) ,h then
4 and }{,’, have the contact of the (. -1)-th order at
w (n(t, ).

Note. The mapping 4 and the correspondence between
solutions of L, and hyperplanes in E, can be construc-
ted in the following way: Let gy be formed by m linear-
1y independent solutions of I, . Since x(»)e (L, t,,1),

s e J , we have
(3) Amg ()= lAg (5) . (nlt), tel,

for a (fixed) non-singular ﬁatrix A . Then the mapping 4
is given in (3), and to every solution cny (%) =9_’A¢-1t(t)

(g =(cy,.00yc, )% 0 and hence c* & 0 ) we assign

the hyperplane H (¢ *) and conversely.

?
Corollary 1. %, (a4 ) is non-oscillatory iff no
hyperplane intersects 4 (4) infinitely many times for

AelO, ).

Corollary 2. L, (%) has & linearly indepen-
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dent ostillatory solutions and every other linearly inde-
pendent on them is non-oscillatory iff there exist just 4
independent hyperplanes, every of which intersects 4 (4)
infinitely many times for » e L0, &7) .

Corollary 3. L, (a4 ) is disconjugate on 1 iff
no hyperplane intersects « at more than m -1 points
on J , including multiplicity.

Corollary 4. L, (4) has a non-vanishing solution
on I iff there exists a hyperplane which does not inter-
sect 4 (») on J

The oscillatory properties of solutions of L ()
are simply recognizable from the behaviour of curves «
on S _, and some known results are easy to derive,
e.g.,

(Sansone 1948,[31): There exists an equation L,(y) on
La, ), every solution of which is oscillatory. For
construction of such L3 (n4) only a curve « ,

(e, u’, £”1 4 0, on S, is sufficient to be conside-
red, which is intersected infinitely many times by every
plane ¢, § + c,_ﬁz + ""aga = 0.

Also a construction of L, () having a non-tri-
vial oscillatory solution and every linearly independent on
it being non-oscillatory is rather easy.

A constructive characterization of all conjugate points
for general I.,g (o) , as required in [1],p.450, is given by
the behaviour of curves on Sz + Hence Theorems 2.9, 2.10,
Lemmas 2.15, 2.16 in [1], Theorems 4.1, 4.2, 4.7, 4.8 in

{51 and others are obvious.
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The known examples suggest the affirmative answer
(L21,[4]1) to the unsolved problem ([11,p.450): If L, (y)
is oscillatory on [ o, c0) , then, is its adjoint equation
also oscillatory? However, using the above considerations
it can be shown that

Theorem 3}. There exists an oscillatory equation

st‘ﬁ*7 such that its adjoint equation is non-oscillatory.

The described geometrical approach mekes it possible
to see the whole situation and not only to consider the se-
perate examples as motivation for possible form of theo-
rems. And oscillatory properties of solutions can be stu-
died for all equivalent differential equations without res-

pect to any change of dependent or independent variables.
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Beskoslovenako

(Oblatum 18.12.1970)
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