

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log29

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC, II Marie HÁJKOVÁ, Praha

This paper is a direct continuation of our [6]. The knowledge of [6] is presupposed. Similarly as in [6], in the whole paper $\mathcal{A} = \langle A, K \rangle$ denotes a fixed axiomatic theory with the following properties:

- (1) A is a primitive recursive set,
- (2) \mathcal{A} is consistent,
- (3) $\mathcal{P} \subseteq \mathcal{A}$ (\mathcal{P} is the Peano's arithmetic).

Numbering of definitions and theorems in this paper begins with 3.1; references like 2.24 or 1.18 refer to definitions and theorems from [6].

III. Reducibility; a non-describability theorem We shall now study the problem of reducibility of elements of [Bin]. We recall the definition:

- 3.1. <u>Definition</u>. An element z of a lattice $\underline{M} = \langle M, \leq, \cap, \cup \rangle$ is irreducible if, for each x, $y \in M$, $x \cup y = z$ implies x = z or y = z.
- 3.2. Theorem. Let $\mathcal A$ be reflexive, let γ , $\beta \in \mathcal B$ and suppose $\gamma <_{\mathcal A} \beta$. Then there is a

AMS, Primary 02D99 Secondary -

Ref.Z. 2.664

$$\sigma' \in Bin$$
 such that
$$(*) \begin{cases} \sigma' <_{\mathcal{A}} \beta \\ [\gamma] \cup [\sigma] = [\beta] \end{cases}$$

The main idea of the proof: Let $\alpha' \in Bin$ such that $\alpha' <_A \gamma'$. Put

$$\sigma''(x) = \sigma c'(x) \vee F_{m_K}^{(K)}(x) \wedge$$

Evidently, $\sigma'' \leq_{\mathcal{A}} \beta$ and $[\gamma] \cup [\sigma'] = [\beta]$. But it is not clear whether $\sigma'' \ngeq_{\mathcal{A}} \beta$. So we modify the definition of σ'' and find a σ'' satisfying (*) in the form

$$\operatorname{cc}(x) \vee \operatorname{Fim}_{K}^{(M)}(x) \wedge \bigvee_{y < x} \left[\operatorname{Pi} f_{3}(\overline{\eta}_{1}, y) \wedge \bigwedge_{x < y} \sim \operatorname{Pi} f_{y}(\overline{\eta}_{2}, x) \right].$$

The following lemma gives a necessary and sufficient condition for the existence of a $\sigma \in Bin$ with required properties (*).

3.3. Lemma. Let β , $\gamma \in Bin$ and let $\gamma \subset_{\mathcal{A}} \beta$. There exists a $\sigma \in Bin$ satisfying (*) if and only if there exist a formula $\infty \in Bin$ and a formula $\psi(\psi)$ which is a PR-formula in \mathcal{P} with exactly one free variable ψ such that

$$(1) \quad \vdash_{\mathcal{A}} (\sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\mathcal{T}}) \rightarrow \bigvee_{\mathcal{Y}} \psi \left(\gamma \right) \ ,$$

(2)
$$H_A (\sim Con_B \wedge Con_{\infty}) \rightarrow \bigvee_{y} \psi(y)$$
.

<u>Proof</u> of Lemma 3.3. Let $\sigma \in Bin$ satisfy the conditions (*). It suffices to put $[\infty] = [\gamma] \cap [\sigma]$

and $\psi(y) = \Pr f(0 \otimes 1, y)$.

Conversely, let $\psi(y)$ and $\alpha \in Bin$ satisfy the conditions (1) and (2). Put

$$\sigma(x) = \sigma(x) \vee \operatorname{Fim}_{K}^{(M)}(x) \wedge \bigvee_{y_1, y_2 < x} (\psi(y_1) \wedge \operatorname{Pirf}_{B}(\overline{0 \approx 1}, y_2)).$$

By (1) and the definition of σ , we have $\vdash_{\mathcal{A}} Con_{\beta} \leftrightarrow (Con_{\gamma} \land Con_{\sigma})$, i.e. $[\gamma] \cup [\sigma] = [\beta]$. By (2) and the definition of σ , we have $\vdash_{\mathcal{A}} Con_{\sigma} \rightarrow Con_{\beta}$, i.e. $\sigma <_{\mathcal{A}} \beta$.

Proof of Theorem 3.2. By 2.11, we can assume $\longmapsto_{\mathcal{A}} \bigwedge_{x} (\gamma^{\mu}(x) \longrightarrow \beta(x)) . \text{ Using the diagonal construction 1.9 and Lemma 1.1 determine } \eta \text{ such that}$

(1) $\vdash_{\mathfrak{P}} \eta \leftrightarrow \bigwedge_{\mathfrak{P}} (\operatorname{Pr} f_{\mathfrak{p}}(\overline{\eta}, \mathfrak{P}) \to \bigvee_{\mathfrak{X} \in \mathfrak{P}} \operatorname{Pr} f_{\mathfrak{p}}(\overline{\eta}, \mathfrak{X}))$. We shall prove

Let $\vdash_{\mathcal{A}} \eta$ and let d be a proof of η in \mathcal{A} . Then $\vdash_{\mathcal{A}} \underset{\varkappa < \overline{d}}{\searrow} \Pr_{\beta}(\overline{\sim \eta}, \varkappa)$, and therefore, by Lemma 3.1 [1], $\vdash_{\mathcal{A}} \sim \eta$, because β bi-numerates A. It is a contradiction and so we obtain $\vdash_{\mathcal{A}} \eta$. Put

(3) $\psi(y) = \Pr_{\mathcal{F}}(\overline{\gamma}, y) \wedge \bigwedge_{x < y} \sim \Pr_{\mathcal{F}}(\overline{\eta}, x)$. Evidently, $\psi(y)$ is a PR-formula in \mathcal{F} and $\Pr_{\mathcal{F}}(\psi) = \{y\}$. We shall prove

(4)
$$\longmapsto_{\mathcal{A}} \sim \eta \rightarrow (\sim \text{Con}_{g} \wedge \sim \bigvee_{g} \psi(\eta))$$
.

In \mathcal{A} , suppose $\sim \eta$. Then $\bigvee_{g} [\Pr_{f_{g}}(\overline{\eta}, y) \wedge \bigwedge_{x < y} \sim \Pr_{f_{\beta}}(\overline{\sim \eta}, x)]$ and consequently

$$\sim (\bigvee_{\pmb{y}} [\Pr_{\pmb{\eta}} f_{\pmb{\rho}}(\overline{\sim \eta}, y) \wedge \bigwedge_{\alpha < \pmb{y}} \sim \Pr_{\pmb{\rho}} f_{\pmb{\gamma}}(\overline{\eta}, z)]) \; .$$

The last formula is $\sim \bigvee_{y} \psi(y)$. From the assumption $\sim \eta$ we have $\Pr_{x}(\overline{\eta})$. On the other hand, by 1.7, $\sim \eta$ implies $\Pr_{x}(\overline{\sim \eta})$, because $\sim \eta$ is an RE-formula in $\mathcal P$. Consequently, we obtain $\sim \mathit{Con}_{y}$. We shall now prove

and consequently $\sim \eta$.

(4) and (5) imply

(6)
$$\vdash_{\mathcal{A}} (\sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\gamma}) \rightarrow \bigvee_{\mathcal{Y}} \psi(\mathcal{Y})$$
.

Put E = $A \cup \{ \sim \eta \}$. The theory $\mathscr{L} = \langle E, K \rangle$ is consistent by (2). By (4), we have

(7)
$$\vdash_{\mathbf{g}} \sim \mathsf{Con}_{\mathbf{g}}$$
.

Let $\varepsilon(x)$ be a PR-formula in $\mathcal P$ defined as follows: $\varepsilon(x) = \gamma(x) \vee x \approx \overline{\chi}$. Evidently, $\varepsilon(x)$ bi-numerates E. Using the diagonal construction 1.9, determine φ such that

Put $\alpha(x) = \beta(x) \wedge \bigwedge_{x \in X} (\Pr_{\varepsilon}(\overline{\varphi}, x) \to \sim Con_{\beta \upharpoonright x})$. Evidently, $\alpha \in Bin$. Analogously as in the proof of 7.4 [1], one can prove

$$(9) \qquad \qquad \vdash_{\mathcal{A}} \sim \varphi \longrightarrow \mathcal{C}on_{\mathcal{C}} \quad ;$$

(7), (8) and (9) give

(10) and (4) give

$$(11) \qquad \qquad \vdash _{\mathcal{A}} (\sim \operatorname{Con}_{\mathcal{B}} \wedge \operatorname{Con}_{\mathbf{c}}) \longrightarrow \bigvee_{\mathcal{U}} \psi (y).$$

(11) and (6) show that the conditions of Lemma 3.3 are satisfiable.

3.4. Corollary. If A is reflexive, then every element of [Bin] is reducible.

Theorem 3.2 enables us to formulate a partial result on the "non-describability" of elements of [Bin]. First we define some notions and prove a lemma.

3.5. <u>Definition</u>. Let $\varphi \in Fm_{K_1}$. φ is said to be a Δ_0 -formula, $\varphi \in \Delta_0$, if it belongs to the least class containing all atomic formulas in K_1 , closed under \wedge and \sim and which contains with every formula φ_1 also $\bigvee_w (w \in w \in v \wedge \varphi_1)$, where u, v, w are distinct variables.

3.6. <u>Definition</u>. Let $\varphi \in Fm_{k_1}$. φ is said to be a Σ_1 -formula, $\varphi \in \Sigma_1$, if either $\varphi \in \Delta_0$ or φ has the form $\bigvee_{k_0} \dots \bigvee_{k_K} \varphi_1$, where $\varphi_1 \in \Delta_0$ and μ_0, \dots, μ_K are distinct variables.

Remark. These definitions are analogous to the Lévy's definitions of Δ_o -formulas and Σ_1 -formulas of the set theory [4].

3.7. Lemma. Let $\underline{M} = \langle M, \leq, \cap, \cup \rangle$ be a lattice, let $g \in \Delta_o$ and $Fv(g) = \{u_o, \dots, u_{k-1}\}$. Suppo-

se a, b \in M and $a \neq b$. Furthermore, let a_0, \ldots, a_{k-1} be elements of M such that $a \neq a_i \neq b$ for $i = 0, \ldots, k-1$. Then $\underline{M} \models \varphi [a_0, \ldots, a_{k-1}]$ if and only if $\langle a, b \rangle \models \varphi [a_0, \ldots, a_{k-1}]$.

Proof by induction on formulas.

- (a) If φ is atomic then the assertion is obvious.
- (b) Let φ have the form $\psi_1 \wedge \psi_2$. For the sake of brevity of notation, suppose $Fv(\psi_1) = Fv(\psi_2) = Fv(\varphi)$. Then

- (c) If φ has the form $\sim \psi$ the induction step is trivial.
- (d) Let φ be $\bigvee_{n} (v_{n} \leq v_{n} \wedge \psi)$. We can suppose $s \geq p$, κ . Suppose $\underline{M} \models \varphi [a_{0}, \ldots, a_{k-1}]$. Then there is an $e \in M$ such that $a \leq a_{n} \leq e \leq a_{n} \leq k$ and $\underline{M} \models \psi [a_{0}, \ldots, a_{k-1}, e]$. By the induction hypothesis, $\langle a_{i}, k \rangle \models \psi [a_{0}, \ldots, a_{k-1}, e]$ and consequently $\langle a_{i}, k \rangle \models \bigvee_{n} (v_{n} \leq v_{n} \leq v_{n} \wedge \psi)[a_{0}, \ldots, a_{k-1}]$. The converse implication is proved analogously.
- 3.8. <u>Definition</u>. Let $\underline{M} = \langle M, \leq, \cap, \cup \rangle$ be a lattice and let $\langle a_0, \ldots, a_{k-1} \rangle \in M^k$. The k-tuple $\langle a_0, \ldots, a_{k-1} \rangle$ is said to be Σ_A -definable

in M if there is a Σ_1 -formula φ such that $\langle a_o, \ldots, a_{k-1} \rangle$ is the unique k -tuple satisfying φ in M .

3.9. Theorem on Σ_{i} -non-definability. Let A be reflexive. Then no k -tuple of elements of $\lfloor \underline{Bin} \rfloor$ is Σ_{i} -definable in $\lfloor \underline{Bin} \rfloor$. Moreover, if $\varphi \in \Sigma_{i}$, $Fv(\varphi) = \{u_{0}, \dots, u_{k-1}\}, [\infty_{0}], \dots, [\infty_{k-1}] \in [\underline{Bin}] \text{ and if } [\underline{Bin}] \models \varphi[[\infty_{0}], \dots, [\infty_{k-1}]], \text{ then there are } [\infty_{0}'], \dots, [\infty_{k-1}'] \neq [\infty_{i}'] \text{ for all } i, j = 0, \dots, k-1 \text{ and } [\underline{Bin}] \models \varphi[[\infty_{0}'], \dots, [\infty_{k-1}']].$

<u>Proof.</u> Let φ be a Σ_1 -formula and let $\lfloor \underline{Bin} \rfloor \models$ $\models \varphi [[\alpha_0], ..., [\alpha_{k-1}]]$. We can suppose that φ has the form $\bigvee_{v_{k-1}} \dots \bigvee_{v_{k-1}} \psi (v_0, \dots, v_{k-1})$, where $\psi \in \Delta_0$. It follows that there are $[\alpha_{h}^{-1}, \dots, [\alpha_{h-1}^{-1}] \in [Bin]$ such that $[\underline{Bin}] \models \psi[[\alpha_0], ..., [\alpha_{h-1}]]$. Put $[\beta] =$ = $[\alpha_0] \cup \dots \cup [\alpha_{g_{n-1}}]$ and let $[\gamma] <_{\beta} [\beta]$, $[\gamma] \leq_{\beta}$ $\leq_{\mathcal{R}} [\alpha_0] \cap \dots \cap [\alpha_{k-1}]$ (cf. 2.6). By Theorem 3.2, there is a $[\sigma] <_{\mathcal{A}} [\beta]$ such that $[\gamma] \cup [\sigma] = [\beta]$. Put $[\varepsilon] = [\gamma] \cap [\sigma]$. By 1.19 there exists an isomorphism f of $\langle [\gamma], [\beta] \rangle$ and $\langle [\epsilon], [\sigma] \rangle$. By Theorem 3.7 we have $\langle [\gamma]; [\beta] \rangle \models \psi [[\alpha_0], ...$..., $[\alpha_{h-1}]$, and putting $[\alpha_i^*] = f([\alpha_i])$ (i = 0, ..., h-1) we obtain $\langle [\varepsilon], [\sigma] \rangle \models \psi[[\alpha'_{\sigma}], ..., [\alpha'_{h-1}]]$ by Theorem 1.20. Using again Theorem 3.7 we have [Bin] |= $\models \psi[(\alpha', 1, ..., [\alpha', 1]], \text{ which implies } [\underline{Bin}] \models$ $= \varphi[(\alpha'_{\rho}], ..., (\alpha'_{k-1}]]$. Since the intervals

 $\langle [\gamma]; [\beta] \rangle$ and $\langle [\epsilon]; [\sigma] \rangle$ are disjoint we have $[\alpha_i] \neq [\alpha_i']$ for $i, j = 0, ..., \Re -1$.

3.10. Remark. It can be easily seen from the proof that we can obtain an infinite sequence of distinct k-tuples of elements of [Bin] satisfying φ .

IV. Relative complements in the lattice of bi-numerations of arithmetic

In this section we are going to study the problem of existence of relative complements in the lattice [Bin]. Roughly speaking, we show that in every non-trivial interval there are many elements having relative complement (w.r.t. this interval) and many elements having no relative complement (w.r.t. this interval).

We recall the definition.

- 4.1. <u>Definition</u>. Let $\underline{M} = \langle M, \neq, \cap, U \rangle$ be a lattice and let α , ℓ , c, $d \in M$. Suppose $\alpha \in \ell$. Then d is said to be a relative complement to c with respect to α , ℓ if $c \cap d = \alpha$ and $c \cup d = \ell$.
- 4.2. <u>Definition</u>. Let $\underline{M} = \langle M, \leq, \cap, \cup \rangle$ be a lattice, a, ℓ , $c \in M$ and suppose $a \leq \ell$. Then c is said to be complementable w.r.t. a, ℓ if there exists a $d \in M$ which is a relative complement w.r.t. a, ℓ .

The following lemma can be easily proved from the axioms of the lattice theory.

4.3. Lemma. Let $\underline{M} = \langle M, \leq, \cap, U \rangle$ be a lattice, $a, lr, c, d, d' \in M$ and suppose $a \leq lr$. Then

- (i) c is a relative complement to d w.r.t. a,
 & if and only if d is a relative complement to
 c w.r.t. a, &;
- (ii) if c is complementible w.r.t. a, k, then $a \le c \le k$;
- (iii) if \underline{M} is distributive and d, d? are relative complements to c w.r.t. a, b, then d = d.
- 4,4. Lemma. Let $\underline{M} = \langle M, \leq, \cap, \cup \rangle$ be a distributive lattice, α , α , ν , ν , γ , $c \in M$ and suppose $\alpha \leq \alpha_1 < c < \nu \leq \nu$. Then
- (i) if c is complementible w.r.t. a , b , then c is complementible w.r.t. a_4 , b_4 ;
- (ii) if c is complementible w.r.t. a_1 , k_1 and both a_4 and k_1 are complementible w.r.t. a, k, then c is complementible w.r.t. a, k;
- (iii) if a_q and b_q be complementible w.r.t. a, b, then both $a_q \cup b_q$ and $a_q \cap b_q$ are complementible w.r.t. a, b.
- <u>Proof.</u> (i) Let d be the relative complement to c w.r.t. a, ℓ r. Put $d'=(d \cap \ell_1) \cup a_1$. By elementary calculation, $d' \cap c = a_1$ and $d' \cup c = \ell_1$.
- (ii) Let d' be the relative complement to c w.r.t. a_1 , b_1 , let d_1 be the relative complement to a_1 w.r.t. a, b' and let d_2 be the relative complement to b_1 w.r.t. a, b'. Put $d = (d_2 \cup d') \cap d_1$. By elementary calculation, $d \cup c = b'$ and $d \cap c = a$.

- (iii) Let c_4 , d_4 be the relative complements to a_4 , b_4 respectively w.r.t. a, b. It can be easily shown that $c_4 \cap d_4$ is the relative complement to $a_4 \cup b_4$ w.r.t. a, b and that $c_4 \cup d_4$ is the relative complement to $a_4 \cap b_4$ w.r.t. a, b.
- 4.5. Lemma. Let α , β , γ , $\sigma \in Bin$ and suppose $\alpha \leftarrow_{\mathcal{A}} \gamma$, $\sigma \leftarrow_{\mathcal{A}} \beta$. Then
 - (i) $[\gamma] \cup [\sigma] = [\beta]$ if and only if $\vdash_{\mathcal{R}} \sim Con_{\beta} \wedge Con_{\gamma} \rightarrow \sim Con_{\sigma} ;$
 - (ii) $[\gamma] \cap [\sigma] = [\infty]$ if and only if $\vdash_{\mathcal{R}} \sim \mathsf{Con}_{\sigma} \wedge \mathsf{Con}_{\sigma} \rightarrow \mathsf{Con}_{\sigma}$;
- (iii) [d] is a relative complement to [y] w.r.t. $[\alpha], [\beta] \quad \text{if and only if } \vdash_{\mathcal{R}} (\sim Con_{\beta} \wedge Con_{\alpha}) \rightarrow \\ \rightarrow (Con_{\gamma} \leftrightarrow \sim Con_{\alpha}) \ .$

The lemma follows from Corollaries 2.20 and 2.22.

- 4.6. Lemma. Let α , β , $\gamma \in Bin$ and suppose $\alpha \in_A \gamma \in_A \beta$. Then $[\gamma]$ is complementible w.r.t. $[\alpha]$, $[\beta]$ if and only if there exists a formula $\varphi(\gamma)$ which is a PR-formula in $\mathcal P$ with exactly one free variable γ and such that
- $(1) \; \longmapsto_{\mathsf{A}} (\sim \mathsf{Con}_{\mathsf{B}} \wedge \; \mathsf{Con}_{\mathsf{ac}}) \to (\; \mathsf{Con}_{\mathsf{gr}} \; \longleftrightarrow \; \bigvee_{\mathsf{y}} \; \varphi \; (\; \mathsf{y})) \; .$

<u>Proof.</u> (i) Let $[\sigma]$ be the relative complement to $[\gamma]$ w.r.t. $[\infty]$, $[\beta]$. Put $\phi(\psi) = \Pr_{\sigma} f_{\sigma}(0 \otimes 1, \psi)$. Evidently, $\phi(\psi)$ is a PR-formula in $\mathcal P$ and $Fv(\phi) = \{\psi\}$. (1) follows from Lemma 4.5 (iii).

(ii) Let $\varphi(y)$ be a PR-formula in \mathcal{P} ,

For $(\varphi) = \{ \psi \}$ and suppose (1). Put

$$\sigma'(x) = \alpha(x) \vee \operatorname{Fm}_{K}^{(k)}(x) \wedge \\ \wedge \bigvee_{\gamma_{11}, \gamma_{12} < x} (\varphi(\gamma_{1}) \wedge \operatorname{Pr}_{f_{3}}(\overline{0 \otimes 1}, \gamma_{2})).$$

Evidently, $\sigma \in \operatorname{Bin}$, $\infty \leq_{\mathcal{A}} \sigma \leq_{\mathcal{A}} \beta$ and $\leftarrow_{\mathcal{A}} (\sim \operatorname{Con}_{\beta} \wedge \operatorname{Con}_{\infty}) \longrightarrow (\sim \operatorname{Con}_{\sigma} \longleftrightarrow \bigvee_{i} \varphi(v_{i}))$.

Therefore, by Lemma 4.5 (iii), $[\mathcal{S}]$ is the relative complement to $[\mathcal{S}]$ w.r.t. $[\alpha]$, $[\beta]$.

4.7. Theorem. Let α , β , $\gamma \in Bin$ and suppose $\alpha \leq_R \gamma \leq_R \beta$. Then

(i) if $[\gamma]$ is somplementible w.r.t. $[\alpha]$, $[\beta]$ then there exists an $m \in \omega$ such that

(1)
$$\vdash_{\mathcal{A}} (\sim Con_{\mathcal{A}} \wedge Con_{\mathcal{A}}) \rightarrow Pr_{(\mathcal{A}h_{\mathcal{A}})} (\overline{Con_{\mathcal{A}}} \rightarrow Con_{\mathcal{A}});$$

(ii) if $\mathcal A$ is reflexive and (1) holds then $[\gamma]$ is complementible w.r.t. $[\infty]$, $[\beta]$; in fact, if we put

$$o''(x) = oc(x) \vee F_{i}m_{K}^{(il)}(x) \wedge$$

$$\wedge \bigvee_{\mathbf{y}_1,\mathbf{y}_2<\mathbf{x}} (\Pr_{\mathsf{F}_{\mathsf{A}}} f_{\mathsf{EA}} \bigcap_{m_1} (\overline{\mathsf{Con}_{\mathbf{x}} \to \mathsf{Con}_{\mathbf{y}}},\mathbf{y}) \wedge \Pr_{\mathsf{F}_{\mathsf{A}}} f_{\mathsf{B}} (\overline{\mathbf{0} \times \mathbf{1}},\,\mathbf{y}_2)) \ ,$$

then [σ] is the relative complement to [γ] w.r.t. [∞], [β].

Proof. (i) Let $[\gamma]$ be complementible w.r.t. $[\infty]$, $[\beta]$. By Lemma 4.6, there exists a formula $\varphi(y)$ with exactly one free variable y such that $\psi(y)$ is an RE-formula in $\mathcal F$ and

Therefore, there exists an $m_i \in \omega$ such that

$$(3) \vdash_{\mathcal{P}} \Pr_{[\mathcal{A} \upharpoonright m_{\xi}]}((\overline{\sim \mathsf{Con}_{\beta} \land \mathsf{Con}_{\alpha}}) \to (\mathsf{Con}_{\gamma} \leftrightarrow \bigvee_{y} \varphi(y))).$$

Let ψ be an RE-formula such that

$$(4) \qquad \qquad \vdash_{\mathfrak{P}} \psi \leftrightarrow \bigvee_{\mathfrak{P}} \varphi(\gamma_{\mathfrak{P}}) .$$

Evidently, we can suppose $~\psi \in {\rm St}_{K_0}$. Therefore, there exists an $m_2 \in \omega$ such that

(5)
$$\vdash_{\mathcal{P}} \mathbb{P}_{(A \upharpoonright m_2)} (\overrightarrow{v} \leftrightarrow \bigvee_{\mathcal{F}} \varphi(y)).$$

By Lemma 3.9 [1] and Corollary 5.5 [1], we have

$$(6) \qquad \qquad \vdash_{\mathcal{P}} \psi \to \Pr_{[a]}(\overline{\psi}) .$$

Hence, by (4), (5), (6) there exists an $m_3 \in \omega$ such that

(7)
$$\vdash_{\mathcal{P}} \bigvee_{\mathcal{P}} \varphi(y) \rightarrow \Pr_{[\mathcal{A} \upharpoonright m_{\alpha}]} (\overline{\bigvee_{\mathcal{P}} \varphi(y)})$$
.

 $\sim \mathit{Con}_{\beta}$ is an RE-formula in $\mathcal P$. We can prove that there exists $m_{+}\in\omega$ such that

(8)
$$\vdash_{\mathcal{P}} \sim Con_{\beta} \rightarrow \Pr_{[\mathcal{A} \land m_{4}]} (\overline{\sim Con_{\beta}})$$

analogously as (7).

Taking $m = max (m_1, m_3, m_4)$ we have: $\vdash_{\mathcal{A}} (\sim Con_3 \wedge Con_3) \rightarrow \bigvee_{\mathcal{A}} \varphi(\mathcal{A})$ (by (2) and the assumption $\alpha \leq_{\mathcal{A}} \gamma$),

$$\vdash_{\mathcal{A}} (\sim \mathsf{Con}_{\mathcal{B}} \wedge \mathsf{Con}_{\mathcal{G}}) \to \mathsf{Pr}_{\mathsf{LAN}_{\mathsf{m}}}(\overline{\bigvee_{\mathsf{y}} \varphi(y)}) \qquad (\mathsf{by}\ (7)),$$

$$\vdash_{\mathcal{A}} (\sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\mathcal{F}}) \rightarrow \mathsf{Pir}_{[\mathcal{A} \mid \mathsf{hn}]} (\overline{\sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\mathcal{F}} + \mathsf{Con}_{\mathcal{F}})} (\mathsf{by} \ (2)),$$

$$\vdash_{\mathcal{A}} (\sim Con_{\mathcal{P}} \wedge Con_{\mathcal{P}}) \rightarrow P_{\mathcal{L}_{\mathcal{A}} \cap m_{\mathcal{P}}} (\overline{Con_{\mathcal{C}} \rightarrow Con_{\mathcal{P}}})$$
 (by (8)).

- (ii) Let $\mathcal A$ be reflexive and let $\mathcal O$ be as indicated. Suppose that (1) holds. Evidently, $\mathcal O$ \in $\mathcal B$ in and $\vdash_{\mathcal A} (\sim \mathit{Con}_{\mathcal O} \wedge \mathit{Con}_{\mathcal O}) \to \sim \mathit{Con}_{\mathcal O}$. It follows from Lemma 4.5 that it suffices to show that
- $(9) \ \ \vdash_{\mathcal{A}} (\sim \mathsf{Con}_{\mathcal{X}} \wedge \mathsf{Con}_{\mathcal{X}}) \to \sim \mathsf{Pir}_{\mathsf{CR} \, \mathsf{Pm}, \mathsf{I}} \left(\overline{\mathsf{Con}_{\mathcal{X}}} \to \mathsf{Con}_{\mathcal{X}} \right).$

If $\alpha =_{\mathcal{A}} \gamma$, then (9) is evident. Suppose $\alpha <_{\mathcal{A}} \gamma$. Then $\mathcal{A} + \{ \sim Con_{\gamma} \land Con_{\alpha} \}$ is consistent and, by 5.8 (ii) [1], reflexive. Therefore $\longmapsto_{\mathcal{A}} \sim Con_{\gamma} \land \land \land Con_{\alpha} \rightarrow Con_{\Gamma(\mathcal{A} + \{ \sim Con_{\gamma} \land Con_{\alpha} \}) \land m} \}$ for each $m \in \mathcal{A}$. In particular, putting $n' = max(n, \sim Con_{\gamma} \land Con_{\alpha})$, we have $\longmapsto_{\mathcal{A}} (\sim Con_{\gamma} \land Con_{\alpha}) \rightarrow Con_{\Gamma(\mathcal{A} + \{ \sim Con_{\gamma} \land Con_{\alpha} \}) \land m'}]$, i.e.

- $(10) \qquad \longmapsto_{\mathcal{A}} (\sim \mathit{Con}_{g} \wedge \mathit{Con}_{gc}) \rightarrow \sim \mathit{P}_{\mathcal{K}_{[\mathcal{A} \upharpoonright m']}}(\overline{\mathit{Con}_{gc} \rightarrow \mathit{Con}_{gc}}).$ Evidently,
- (11) $\longleftarrow_{\mathcal{D}} \sim \Pr_{[\mathcal{A} \upharpoonright m]}(\overline{Con} \to \overline{Con}_{g}) \to \sim \Pr_{[\mathcal{A} \upharpoonright m]}(\overline{Con} \to \overline{Con}_{g}).$ (10) and (11) show that (9) holds.
- 4.8. Corollary. Let α , β , γ , σ \in Bin and suppose $\alpha \leq_{\mathcal{A}} \beta$.
- (i) If $[\sigma]$ is the relative complement to $[\gamma]$ w.r.t. $[\alpha]$, $[\beta]$, then there exists an $n \in \omega$ such that
- (1) $\gamma =_{\mathcal{A}} \alpha(x) \vee \operatorname{F,m}_{K}^{(\mathcal{M})}(x) \wedge \bigvee_{y_{1}, y_{2} < x} (\operatorname{P,r} f_{IA})_{m_{1}} (\overline{\operatorname{Con}_{\alpha}} \rightarrow \overline{\operatorname{Con}_{\sigma}}, y_{1}) \wedge \operatorname{P,r} f_{R} (\overline{0 \otimes 1}, y_{2}))$,
- (2) $\delta =_{\mathcal{A}} \propto (x) \vee F_{\mathcal{M}_{K}}^{(M)}(x) \wedge_{y_{4}, y_{2} < x} \vee (P_{\mathcal{H}} f_{\mathcal{R} \mid m_{J}} (Con_{x} \rightarrow Con_{y}, y_{4}) \wedge \\ \wedge P_{\mathcal{H}} f_{B} (0 \approx 1, y_{2}))$

and, moreover,

(3)
$$\vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\alpha}) \rightarrow (P_{\kappa_{[\mathcal{A} \upharpoonright m]}}(\overline{Con_{\alpha}} \rightarrow Con_{g}) \vee P_{\kappa_{[\mathcal{A} \upharpoonright m]}}(\overline{Con_{\alpha}} \rightarrow Con_{g}))$$
;

(ii) if A is reflexive and (1), (2), (3) hold, then [σ] is the relative complement to [γ] w.r.t. [α], [β].

4.9. Theorem. Let α , β , $\xi \in B$ and let $\alpha <_{\mathcal{A}} \beta$. Put $\mathscr{E} = \mathcal{A} + \{ \sim Con_{\mathcal{A}} \land Con_{\alpha} \}$ and $\varepsilon(x) = \{ (x) \lor x \approx \sim \overline{Con_{\beta} \land Con_{\alpha}} \}$. Let γ be defined as follows:

 $\gamma(x) = \alpha(x) \vee \operatorname{Fim}_{K}^{(M)}(x) \wedge \bigvee_{y_1, y_2 \leq x} (\sim R_{\epsilon}(y_1) \wedge \operatorname{Pi}_{f_{\beta}}(0 \approx 1, y_2)).$

Then $[\gamma]$ is complementible w.r.t. $[\alpha]$, $[\beta]$ if and only if

(1)
$$\vdash_{\mathcal{L}} \sim Con_{\varepsilon}$$
, i.e. if and only if

(1)'
$$\vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\alpha}) \rightarrow P_{\mu_{\beta}} (\sim Con_{\alpha})$$
.

<u>Proof.</u> Note that $\gamma \in Bin$, $\propto <_{\mathcal{A}} \gamma <_{\mathcal{A}} \beta$ (cf. Theorem 2.12) and

(2)
$$\vdash_{A} (\sim Con_{B} \wedge Con_{C}) \leftrightarrow (Con_{A} \leftrightarrow \varphi_{E})$$
.

(i) Let [γ] be complementible w.r.t. [∞], [β]. By Theorem 4.7, there exists an $m \in \omega$ such that

(3)
$$\vdash_{\mathcal{A}} (\sim Con_{\mathfrak{p}} \wedge Con_{\mathfrak{p}}) \to Pr_{[\mathcal{A} \land m]} (\overline{Con_{\infty} \to Con_{\mathfrak{p}}})$$
.

Hence

$$(4) \vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\gamma}) \rightarrow P_{\mathcal{I}_{\mathcal{A}} \wedge m_{\beta}} (\sim \overline{Con_{\beta} \wedge Con_{\alpha}}) \rightarrow Con_{\gamma}).$$

$$(2) \text{ gives}$$

$$(5) \qquad \qquad \vdash_{\mathfrak{P}} \operatorname{Pr}_{\boldsymbol{e}} \left(\overline{\operatorname{Con}_{\boldsymbol{x}} \leftrightarrow \boldsymbol{\varphi}_{\boldsymbol{e}}} \right) .$$

(4) and (5) show that $\longmapsto_{\mathcal{A}} (\sim \textit{Con}_{\beta} \wedge \textit{Con}_{\gamma}) \rightarrow p_{n_{\mathcal{E}}}(\overline{\rho}_{\mathcal{E}})$ and therefore

$$(6) \qquad \vdash_{\mathcal{A}} (\sim Con_{\mathcal{B}} \wedge Con_{\mathcal{P}}) \rightarrow \sim Con_{\mathcal{E}}.$$

By (2), $\vdash_{\mathcal{A}} (\sim Con_{\gamma} \wedge Con_{\infty}) \rightarrow \sim \wp_{\epsilon}$. Hence

(7)
$$\vdash_{\mathcal{A}} (\sim Con_{\mathcal{T}} \wedge Con_{\mathcal{L}}) \to \sim Con_{\mathcal{E}}.$$

(6) and (7) give $\vdash_{\mathcal{A}} (\sim Con_{\mathcal{A}} \wedge Con_{\alpha}) \rightarrow \sim Con_{\varepsilon}$.

$$\begin{split} \sigma'(x) &= \alpha(x) \vee \operatorname{Fim}_{K}^{(k)}(x) \wedge_{\psi_{1}, \psi_{2} < x} \left[(\operatorname{Pit}_{\varepsilon}(\sqrt{\varphi_{\varepsilon}}, \psi_{1}) \wedge \right. \\ & \wedge_{\chi < \psi_{1}} \sim \operatorname{Pit}_{\varepsilon}(\overline{\varphi_{\varepsilon}}, x)) \wedge \operatorname{Pit}_{\theta}(\overline{0 \times 1}, \psi_{2}) \right]. \end{split}$$

Evidently, $\mathscr{O} \in \operatorname{Bin}$ and $\infty \not =_{\mathcal{A}} \mathscr{O} \not =_{\mathcal{A}} \mathscr{B}$. We have $\vdash_{\mathcal{P}} \sim \operatorname{Con}_{\xi} \to [\wp_{\xi} \leftrightarrow \bigvee_{\chi} (\operatorname{Pr}_{\xi} (\overline{\sim \wp_{\xi}}, \gamma_{\xi}) \land)]$

$$\wedge_{\alpha < \gamma_{\epsilon}} \sim \Pr_{\epsilon} \left(\overline{\rho}_{\epsilon}, \alpha \right) \right]$$

and it follows that $\vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\infty}) \rightarrow (Con_{\gamma} \leftrightarrow \sim Con_{\sigma})$. Hence, by Lemma 4.5, [7] is complementible w.r.t. [∞], [β].

4.10. Corollary. Let α , β , γ_1 , $\gamma_2 \in Bin$ and let $\alpha \in_A \gamma_1 <_A \gamma_2 \in_A \beta$. Suppose that both $[\gamma_1]$ and $[\gamma_2]$ are complementable w.r.t. $[\alpha]$, $[\beta]$. Then there exists a $\gamma \in Bin$ such that

- (i) $\gamma_1 <_A \gamma <_A \gamma_2$ and
- (ii) [γ] is complementible w.r.t. [∝], [β].

<u>Proof.</u> It suffices to take γ from Theorem 4.9, where we replace ∞ by γ_1 , β by γ_2 and \S by γ_2 . The assertion follows from Lemma 4.4.

- 4.11. Corollary. Let α , $\beta \in Bin$, $\alpha <_{\mathcal{A}} \beta$. Denote by Comp (α, β) the set of all $[\gamma]$ such that
 - (i) $\alpha \leq_{\mathcal{A}} \gamma \leq_{\mathcal{A}} \beta$.
- (ii) [γ] is complementible w.r.t. [α], [β]. Then the structure $\langle Comp(\alpha, \beta), \leq_{\mathcal{A}}, \cap, \cup \rangle$ is an atomless (denumerable) Boolean algebra. (Note that it is known that all such algebras are isomorphic.)

We shall now be interested in non-complementible elements.

- 4.12. Theorem. Let $\mathcal A$ be reflexive, α , $\beta \in Bin$ and suppose $\alpha <_{\mathcal A} \beta$. Then there exists a $\gamma \in Bin$ such that
 - (i) & <A & <A B,
- (ii) [γ] is non-complementible w.r.t. [α 1, [β 1].

 Proof. Let $E = A \cup \{ \sim Con_{\beta} \land Con_{\alpha} \}$, put $\mathcal{E}_{1}(x) = \alpha(x) \lor x \approx \overline{\sim Con_{\beta} \land Con_{\alpha}}$ and let $\mathcal{E} = \langle E, K \rangle$. Evidently, \mathcal{E} is consistent and reflexive (cf. Theorem 5.8 [1]) and $\mathcal{E}_{1}(x)$ is a PR-formula in \mathcal{F} bi-numerating E. Using the diagonal construction 5.1 [11, determine a φ such that

$$\vdash_{\mathbf{f}_{\mathbf{f}}} \mathbf{\phi} \leftrightarrow \bigwedge_{\mathbf{z}} \left(\Pr_{\mathbf{f}_{\mathbf{f}_{\mathbf{f}}}} \left(\overline{\mathbf{p}}, \mathbf{z} \right) \rightarrow \sim \mathsf{Con}_{\mathbf{f}_{\mathbf{f}} \upharpoonright \mathbf{z}} \right) \, .$$

Suppose $\vdash_{\mathcal{Z}} \mathcal{P}$. Then for some m, we would have $\vdash_{\mathcal{Z}} \sim Con_{\mathcal{E}_1 \cap \overline{m}}$, which would make \mathcal{Z} inconsistent. Hence

Define ξ, ε, γ as follows:

$$\underline{\xi}(x) = \alpha(x) \wedge \bigwedge_{y < x} \sim \Pr_{\varepsilon_1} (\bar{\varphi}, y)$$

$$\varepsilon(x) = \xi(x) \vee x \approx \overline{-\operatorname{Con}_{\beta} \wedge \operatorname{Con}_{\alpha}}$$

$$\gamma(x) = \infty(x) \vee F_{\kappa}m_{\kappa}^{(k)}(x) \wedge \bigvee_{\mathbf{x}_{1},\mathbf{y}_{2} < x} \sim R_{\epsilon}(\mathbf{y}_{1}) \wedge P_{\kappa}f_{n}(\overline{0 \approx 1}, \mathbf{y}_{2}).$$

Evidently, \S , $\gamma \in Bin$ and $\alpha <_{\mathcal{A}} \gamma <_{\mathcal{A}} \beta$. We shall show

- (2) $H_{e} \sim Con_{\xi \vee x} \approx \sqrt{Con_{\beta} \wedge Con_{e}}$, i.e. $H_{e} \sim Con_{\epsilon}$. Evidently,
- (3) $\longmapsto_{\overline{p}} \sim \varphi \rightarrow \bigvee_{z} [P_{x} f_{\underline{e}_{q}}(\overline{\varphi}, z) \wedge Con_{\underline{e}_{q}} \wedge \wedge \wedge \wedge \wedge P_{x} f_{\underline{e}_{q}}(\overline{\varphi}, z)]$,

since $\vdash_{\mathcal{P}} Con_{\mathcal{E}_1 \cap \mathcal{Z}} \wedge y < x \rightarrow Con_{\mathcal{E}_1 \cap \mathcal{Y}}$. By (1), $\vdash_{\mathcal{P}} P_{\mathcal{K}} f_{\mathcal{E}_1}(\overline{\varphi}, x) \rightarrow x > \overline{m}$ for every $m \in \omega$, and therefore

$$(4) \longmapsto_{\mathcal{P}} \sim \mathcal{P} \rightarrow \bigvee_{\mathcal{Z}} \left[Con_{\alpha \land \alpha \lor \alpha \lor \alpha} \sim \overline{con_{\beta} \land Con_{\alpha}} \land \\ \land \bigwedge_{\mathcal{X}} (\S(x) \longleftrightarrow \alpha(x) \land x \leq \alpha) \right],$$

which immediately gives

$$(5) \qquad \qquad \vdash_{\mathcal{P}} \sim \varphi \rightarrow \mathsf{Con}_{\varsigma \vee \times} \approx \frac{}{\sim \mathsf{Con}_{\mathsf{p}} \wedge \mathsf{Con}_{\mathsf{q}}} \ .$$

- (2) follows from (1) and (5). Non-complementibility
 [γ] w.r.t. [α], [β] follows from (2) and Theorem
 4.9.
- 4.13. Corollary. Let \mathcal{A} be reflexive, α , $\beta \in Bin$ and suppose $\alpha <_{\mathcal{A}} \beta$; in this corollary "non-complemen-

tible" means "non-complementible w.r.t. [\alpha 1, [\beta] ".

- (i) Non-complementible elements are dense in $\langle [\alpha]; [\beta] \rangle$; i.e., for every \mathcal{E} , \mathcal{E} \mathcal{E} such that $\alpha \in_{\mathcal{A}} \mathcal{E} \subset_{\mathcal{A}} \mathcal{E} \subset_{\mathcal{A}} \mathcal{E}$ there is a non-complementible $[\gamma]$ such that $\mathcal{E} \subset_{\mathcal{A}} \mathcal{F} \subset_{\mathcal{A}} \mathcal{F}$.
- (ii) Non-complementible elements are not closed w.r.t. the operations \cup , \cap ; in fact, for every $\gamma \in Bin$ such that $\alpha <_A \gamma \leq_A \beta$ there are δ , $\alpha >_A \alpha$ such that $[\sigma] \cup [\alpha] = [\gamma]$ and $[\delta]$, $[\alpha]$ are non-complementible. Similarly, for every $\delta \in Bin$ such that $\alpha \leq_A \delta <_A \beta$ there are δ , $\alpha <_A \beta$ such that $[\sigma] \cap [\alpha] = [\delta]$ and $[\delta]$, $[\alpha]$ are non-complementible.

(Consequently, the interval $\langle [\infty 1; [\beta 1] \rangle$ is generated by its non-complementable elements.)

Proof. (i) follows from Theorem 4.12 and Lemma 4.4 (i). (ii) Let $\alpha <_{\mathcal{A}} \gamma \in_{\mathcal{A}} \beta$. By Corollary 4.10 there are \mathscr{C}_1 , $\mathscr{C}_1 \in \mathcal{Bin}$ such that $\alpha <_{\mathcal{A}} \mathscr{C}_1$, $\mathscr{C}_1 <_{\mathcal{A}} \gamma \in \mathcal{Bin}$ such that $\alpha <_{\mathcal{A}} \mathscr{C}_1$, $\mathscr{C}_1 <_{\mathcal{A}} \gamma \in \mathcal{C}_1$ and $[\mathscr{C}_1] \cup [\mathscr{C}_1] = [\gamma]$. It follows from the part (i) of this corollary that we can define non-complementible $\mathscr{C}_1 \sim \mathcal{C}_1 \subset \mathcal{$

The following theorem shows that the dual theorem to Theorem 3.2 does not hold.

4.14. Theorem. Let A be ω -consistent and let $\infty \in Bin$. Then there exists a $\gamma \in Bin$ such that (i) $\infty <_A \gamma$,

(ii) [γ] is non-complementable w.r.t. [α], [β] for any $\beta >_{\mathcal{A}} \gamma$; in other words

(iii) there is no $\delta >_{\mathcal{A}} \alpha$ for which [γ] \cap \cap [δ] = [α].

<u>Proof.</u> Note that the proof will only be a deeper analysis (formalization) of the proof of 7.5 [1].

Let $\mathcal{D} = \mathcal{A} + \{ \sim P_{n_{\alpha}} (\overline{\sim Con_{\alpha}}) \}$. To show that \mathcal{D} is consistent, we shall show that $H_{A} = P_{n_{\alpha}} (\overline{\sim Con_{\alpha}})$.

Let $\vdash_{\mathcal{A}} \operatorname{Pr}_{\alpha} (\overline{\sim \operatorname{Con}_{\alpha}})$, f.e. $\vdash_{\mathcal{A}} \bigvee_{\mathcal{P}} \operatorname{Pr}_{\alpha} (\overline{\sim \operatorname{Con}_{\alpha}}, y)$. It follows from ω -consistency of \mathcal{A} that there exists an $m \in \omega$ such that $\vdash_{\mathcal{A}} \sim \operatorname{Pr}_{\alpha} (\overline{\sim \operatorname{Con}_{\alpha}}, \overline{m})$. The formula $\operatorname{Pr}_{\alpha} (\overline{\sim \operatorname{Con}_{\alpha}}, \overline{m})$ is a PR-formula in \mathcal{P} , and therefore decidable. Consequently, there exists an $m \in \omega$ such that $\vdash_{\mathcal{A}} \operatorname{Pr}_{\alpha} f_{\alpha} (\overline{\sim \operatorname{Con}_{\alpha}}, \overline{m})$. Hence $\vdash_{\mathcal{A}} \sim \operatorname{Con}_{\alpha}$, since $\operatorname{Pr}_{\alpha} f_{\alpha}$ bi-numerates $\operatorname{Pr}_{\alpha} f_{\alpha}$. On the other hand, $\vdash_{\mathcal{A}} \sim \operatorname{Con}_{\alpha}$, since \mathcal{A} is ω -

Put $f(x) = \alpha(x) \vee x \approx \overline{Con_{\alpha}}$. Evidently,

(1) $\longmapsto_{\mathfrak{D}} Con_{\xi}$, i.e. $\longmapsto_{\mathfrak{D}} Con_{\alpha \vee x} \approx \overline{Con_{\alpha}}$.

Using the diagonal construction 5.1 [1], we can construct a $\nu_{\xi} \in Fm_{K_0}$ such that $\longmapsto_{\mathfrak{G}} \nu_{\xi} \leftrightarrow \sim \bigvee_{\mathfrak{F}} \Pr_{\mathfrak{F}} f_{\xi}(\overline{\nu_{\xi}})$. It follows from 5.6 [1] that

$$(2) \qquad \qquad \vdash_{\mathcal{A}} \nu_{\xi} \to \mathit{Con}_{\xi} .$$

consistent. Hence, HA Pra (~ Cona).

Hence, by (1), we have

$$(3) \qquad \qquad \vdash_{\mathfrak{D}} \nu_{\xi} \ , \qquad \text{i.e.} \ \vdash_{\mathfrak{D}} \sim \Pr_{\varepsilon} \left(\overline{\nu_{\varepsilon}} \right) \ .$$

Put

 $\gamma(x) = \alpha(x) \vee \operatorname{Fm}_{K}^{(M)}(x) \wedge \bigvee_{y \in x} \operatorname{Pr} f_{\xi}(\overline{\nu_{\xi}}, y).$ Evidently, $\gamma \in \operatorname{Bin}$ and

$$(4) \qquad \qquad \vdash_{\mathcal{P}} \mathsf{Con}_{\mathcal{T}} \to \nu_{\xi} \ .$$

Hence there exists an $m_o \in \omega$ such that for every $m \ge m_o$

$$(5) \qquad \qquad \vdash_{\mathcal{P}} P_{\mathcal{N}_{\{\mathcal{A},\{m\}\}}} (\overline{Con_x \to v_{\varepsilon}}) .$$

Since $\vdash_{\mathcal{P}} P_{\mathcal{I}_{\mathcal{R} \cap m}} (\overline{Con_{\alpha} \to \nu_{\xi}}) \to P_{\mathcal{I}_{\mathcal{E}}} (\overline{\nu_{\xi}})$, we have, by (1),

(6)
$$\vdash_{\mathcal{D}} \sim \Pr_{[\mathcal{A} \upharpoonright m]} (\overline{Con_{\alpha} \to \nu_{\xi}})$$
 for every $m \in \omega$.

(5) and (6) give

Let $\beta >_{\mathcal{A}} \gamma$ and let $[\gamma]$ be complementible w.r.t. $[\alpha]$, $[\beta]$. By Theorem 4.7, there exists an $m \in \omega$ such that

(8)
$$\vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\sigma}) \rightarrow \Pr_{[\mathcal{A} \wedge m]} (\overline{Con_{\alpha}} \rightarrow Con_{\sigma})$$
.

Hence, by (7) and (8), we have

(9)
$$\vdash_{\mathcal{A}} (\sim Con_{\mathcal{B}} \wedge Con_{\mathcal{T}}) \rightarrow Px_{\infty} (\overline{\sim Con_{\infty}})$$
.

On the other hand, $\vdash_{\mathcal{A}} Pr_{\infty} (\overline{\sim Con_{\infty}}) \rightarrow \sim Con_{\mathfrak{g}}$

and therefore, by (2) and (4),

$$(10) \qquad \qquad \vdash_{\mathcal{A}} \mathbb{P}_{n_{\mathrm{ac}}} \left(\overline{\sim \mathsf{Con}_{\mathrm{ac}}} \right) \to \sim \mathsf{Con}_{\mathrm{ac}} \ .$$

But (9) and (10) show that $\vdash_{\mathcal{A}} \sim \mathit{Con}_{\mathcal{F}} \rightarrow \sim \mathit{Con}_{\mathcal{F}}$, which is a contradiction with the assumption $\mathcal{F} <_{\mathcal{A}} \beta$.

4.15. Theorem. Let \mathcal{A} be reflexive, α , β , γ , δ , $\tau \in \operatorname{Bin}$ and $\alpha \leq_{\mathcal{A}} \tau <_{\mathcal{A}} \delta \leq_{\mathcal{A}} \delta \leq_{\mathcal{A}} \beta$. Suppose that $\lceil \gamma \rceil$ is not complementable w.r.t. $\lceil \alpha \rceil$, $\lceil \beta \rceil$. Then there exist γ_1 , $\gamma_2 \in \operatorname{Bin}$ such that

(i)
$$\kappa \leq_A \gamma_1 <_A \gamma <_A \gamma_2 \leq_A \delta$$
,

(ii) if $\gamma_1 \leq_A \gamma' \leq_A \gamma_2$, then $[\gamma']$ is not complementable w.r.t. $[\alpha]$, $[\beta]$.

Proof. Let

$$\begin{split} \mathbf{E}_{4} &= \mathbf{A} \cup \{ \sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\gamma} \}, \ \mathbf{E}_{2} &= \mathbf{A} \cup \{ \sim \mathsf{Con}_{\gamma} \wedge \mathsf{A} \}, \\ &\wedge \mathsf{Con}_{\alpha} \}, \ \mathbf{E}_{4} (\mathbf{x}) = \alpha (\mathbf{x}) \vee \mathbf{x} \approx \overline{\sim \mathsf{Con}_{\beta} \wedge \mathsf{Con}_{\gamma}}, \\ \mathbf{E}_{2} (\mathbf{x}) &= \alpha (\mathbf{x}) \vee \mathbf{x} \approx \overline{\sim \mathsf{Con}_{\gamma} \wedge \mathsf{Con}_{\gamma}}, \\ \mathbf{E}_{4} &= \mathsf{E}_{4} \in \mathbb{E}_{4}, \\ \mathbf{E}_{5} &= \mathsf{E}_{5} \in \mathbb{E}_{5}, \\ \mathbf{E$$

and $\mathcal{C}_2 = \langle E_2, K \rangle$. Evidently, ε_i bi-numerates E_i : (i = 1, 2) and \mathcal{C}_i : (i = 1, 2) is consistent. Using the diagonal construction 5.1 [1], determine φ such that

$$\begin{array}{c} \longleftarrow_{\mathfrak{G}_{\bullet}} \Phi \leftrightarrow \bigwedge_{\mathfrak{F}_{\bullet}} \mathbb{I} \operatorname{Pr} f_{\mathbb{E}_{1}} \left(\overline{\varphi}, y\right) \vee \operatorname{Pr} f_{\mathbb{E}_{2}} \left(\overline{\varphi}, y\right)) \to \\ \\ \to \sim \operatorname{Con}_{\alpha \vdash y \vee \times \mathbf{z}} \overline{\operatorname{Con}_{\alpha} \wedge \sim \operatorname{Con}_{x}} \ 1 \ . \end{array}$$

Suppose $\vdash_{\mathcal{L}_1} \mathcal{G}$. Then for some m, we would have $\vdash_{\mathcal{L}_1} \sim Con_{\mathcal{A}} \wedge \overline{n} \vee \times \times \overline{Con_{\mathcal{A}} \wedge con_{\mathcal{F}}}, \text{ i.e.}$ $\vdash_{\mathcal{A}} (\sim Con_{\mathcal{F}} \wedge Con_{\mathcal{F}}) \rightarrow \Pr_{\mathcal{L} \wedge rm} (\overline{Con_{\mathcal{A}} \rightarrow Con_{\mathcal{F}}}).$

But [γ] is not complementible w.r.t. [α], [β] and therefore, by Theorem 4.7,

 $H_A (\sim Con_g \wedge Con_g) \rightarrow \Pr_{[A \cap m]} (\overline{Con_{\infty} \rightarrow Con_g})$ Hence we have proved

Suppose $\vdash_{\mathcal{L}_2} \varphi$. Then for some m, we would have $\vdash_{\mathcal{L}_2} \sim Con_{\alpha \land \overline{m} \lor \alpha} \approx \overline{Con_{\alpha \land \alpha} \cdot Con_{\beta}}$. Let $n' = max \ (m \ , Con_{\alpha} \land \sim Con_{\beta})$. Then $\vdash_{\mathcal{L}_2} \sim Con_{\mathcal{L}_2 \upharpoonright m'} \cap m'$. On the other hand, from reflexivity of A, we have $\vdash_{\mathcal{L}_2} Con_{\mathcal{L}_2 \upharpoonright m'} \cap m'$. Hence we have proved

Put $\S'(x) = \infty(x) \wedge_{y < x} (\sim \Pr_{\varepsilon_1} f_{\varepsilon_1}(\overline{\varphi}, y) \wedge \sim \Pr_{\varepsilon_2} f_{\varepsilon_2}(\overline{\varphi}, y))$. Evidently, $\S' \in \text{Bin}$. Analogously as in the proof of Theorem 4.12, we can show

$$(3) \qquad \vdash_{\mathcal{P}} \sim \varphi \rightarrow Con_{\varsigma, \vee \times \approx} \overline{Con_{\alpha} \wedge \sim Con_{\varphi}} \quad ,$$

$$(4) \qquad \vdash_{\mathcal{P}} \sim \mathcal{P} \longrightarrow \bigvee_{\mathcal{Z}} \bigwedge_{\mathcal{X}} (\xi'(x) \leftrightarrow \alpha(x) \land x \neq x).$$

Let $\mu_{1,\alpha}$ be defined w.r.t. the theories $A + \{ \sim \operatorname{Con}_{6} \wedge \operatorname{Con}_{7} \}$, $A + \{ \sim \operatorname{Con}_{6} \wedge \operatorname{Con}_{7} \wedge \sim \varphi \}$ and $A + \{ \sim \operatorname{Con}_{7} \wedge \operatorname{Con}_{7} \wedge \sim \varphi \}$ (cf. Definition 1.16). Further let $\mu_{2,\alpha}$ be defined w.r.t. the theories $A + \{ \sim \operatorname{Con}_{6} \wedge \operatorname{Con}_{7} \wedge \sim \varphi \wedge \mu_{1,\alpha} \}$ and $A + \{ \sim \operatorname{Con}_{7} \wedge \operatorname{Con}_{7} \wedge \sim \varphi \wedge \mu_{1,\alpha} \}$.

Put

(5)
$$\S(x) = \S'(x) \lor$$

$$\bigvee_{y < x} [\sim M_{1,\infty}(y) \land x \approx (\overline{Con_{\infty} \rightarrow Con_{y}}, v_{i}v_{i})] \lor$$

$$\bigvee_{y < x} [\sim M_{2,\infty}(y) \land x \approx (\overline{Con_{\infty} \land Con_{y}}, v_{i}v_{i})],$$

(6)
$$\gamma_1(x) = \varepsilon(x) \vee$$

$$\vee \operatorname{Fm}_{K}^{(M)}(x) \wedge \bigvee_{\gamma_1, \gamma_2 < x} (\operatorname{Pr}_{f_{\widehat{Y}}}(\overline{\operatorname{con}_{\alpha}} \wedge \sim \operatorname{Con}_{\gamma_1}, \gamma_{\gamma_1}) \wedge$$

$$\wedge \operatorname{Pr}_{f_{\widehat{Y}}}(\overline{0 \otimes 1}, \gamma_{\gamma_2})),$$

(7)
$$\gamma_{2}(x) = \gamma(x) \vee \times \text{F,m}_{K}^{(M)}(x) \wedge \bigvee_{y_{1}, y_{2} < x} (\text{P,r } f_{\xi}(\overline{\text{Con}_{\alpha}} \to \text{Con}_{\eta}, y_{1}) \wedge \times \text{P,r } f_{\xi}(\overline{0 \approx 1}, y_{2})).$$

Evidently, \S , γ_1 , $\gamma_2 \in Bin$.

(i) The inequalities $v \leq_{\mathcal{A}} v_1 \leq_{\mathcal{A}} v \leq_{\mathcal{A}} v_2 \leq_{\mathcal{A}} \sigma$ are evident. We have (cf. Theorem 1.18)

(8)
$$H_{\mathcal{A}} \left(\sim \operatorname{Con}_{6} \wedge \operatorname{Con}_{7} \right) \to \mu_{1, \infty} .$$

It is clear that

(9)
$$\vdash_{\sigma} \sim (u_{1,\alpha} \rightarrow P_{\kappa_{\varepsilon}}(\overline{Con_{\alpha} \rightarrow Con_{x}}),$$

$$(10) \qquad \longmapsto_{\mathcal{P}} \sim \mathsf{Con}_{\mathcal{G}} \wedge \mathsf{Ex}_{\mathcal{G}} \left(\overline{\mathsf{Con}_{\mathcal{C}} \to \mathsf{Con}_{\mathcal{G}}} \right) \to \sim \mathsf{Con}_{\mathcal{G}_{\mathcal{D}}} \ .$$

and therefore

(11)
$$\vdash_{\mathcal{P}} (\sim \operatorname{Con}_{6} \wedge \operatorname{Con}_{7_{2}}) \rightarrow (u_{1,\alpha} .$$

(8) and (11) immediately give

(12)
$$\vdash\!\!\!\vdash_{\mathcal{A}} \mathsf{Con}_{\mathcal{T}} \to \mathsf{Con}_{\mathcal{T}_{2}} ,$$

- i.e. we have proved $\gamma <_{\mathcal{A}} \gamma_2$. We have (cf. Theorem 1.18)
- (13) H_A (~ $Con_{\pi} \wedge Con_{\pi} \wedge \sim \varphi \wedge (u_{1,\alpha}) \rightarrow \sim (u_{2,\alpha})$. Evidently, we have
- (14) $\vdash_{\mathfrak{P}} (u_{1,\infty} \wedge (u_{2,\infty}) \rightarrow \bigwedge_{x} (\xi'(x) \leftrightarrow \xi(x))$ and therefore, by 4.4, we have
- $(15) \longmapsto_{\mathcal{D}} (\sim g \wedge (u_{1,\infty} \wedge (u_{2,\infty}) \to \bigvee_{x} \bigwedge_{x} (\S(x) \leftrightarrow \infty(x) \wedge x \leq x).$ We know that
- (16) $\vdash_{\mathcal{A}} \mathsf{Con}_{\mathcal{A}} \to \sim \mathsf{Pr}_{\infty} (\overline{\mathsf{Con}_{\infty}}) ,$ since $\vdash_{\mathcal{A}} \mathsf{Con}_{\mathcal{A}} \to \mathsf{Con}_{\infty} \to \mathsf{Con}_{\infty} \to \mathsf{Con}_{\infty} \to \mathsf{Pr}_{\infty} (\overline{\mathsf{Con}_{\infty}})$ (cf. Theorem 5.6 [1]). (15) and (16) give
- (17) $\longmapsto_{A} (Con_{\mathcal{Z}} \wedge \mu_{1,\alpha} \wedge \mu_{2,\alpha} \wedge \sim \varphi) \rightarrow \sim Pr_{\xi} (\overline{Con_{\alpha}})$ and therefore
- (18) $\vdash_{\mathcal{A}} (Con_{\varepsilon} \wedge (u_{1,\infty} \wedge (u_{2,\infty} \wedge \sim \varphi)) \rightarrow Con_{\mathcal{F}_{\eta}}$ since $\vdash_{\mathcal{D}} \sim \operatorname{Pr}_{\xi} (\overline{Con_{\infty}}) \rightarrow \sim \operatorname{Pr}_{\xi} (\overline{Con_{\infty} \wedge \sim Con_{\mathcal{F}}})$ and $\vdash_{\mathcal{D}} (Con_{\varepsilon} \wedge \sim \operatorname{Pr}_{\xi} (\overline{Con_{\infty} \wedge \sim Con_{\mathcal{F}}})) \rightarrow Con_{\mathcal{F}_{\eta}}$. (13) and

 (18) imply
- $(19) \qquad \qquad \vdash_{\mathcal{A}} Con_{\mathcal{T}_{1}} \rightarrow Con_{\mathcal{T}_{1}} ,$

i.e. we have proved $\gamma_1 <_{\mathcal{A}} \gamma$.

(ii) Let $\gamma_1 \subseteq_A \gamma' \subseteq_A \gamma_2$ and let $[\gamma']$ be complementable w.r.t. $[\alpha]$, $[\beta]$. Then there exists an $m \in \omega$ such that $[-\alpha] \cap (\alpha \cap \beta) \cap (\alpha \cap \beta) \cap (\alpha \cap \beta) \cap (\alpha \cap \beta)$

therefore there exists an $m \in \omega$ such that

(20) $\vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\gamma_{2}}) \rightarrow \Pr_{(\mathcal{A} \land m)} (\overline{Con_{\alpha} \rightarrow Con_{\gamma_{2}}}).$ We shall show that it is impossible.

We have (cf. Theorem 1.18)

- (21) $\vdash \vdash_{\mathcal{A}} (\sim Con_{\beta} \wedge Con_{\gamma} \wedge \sim \varphi \wedge (u_{1,\infty}) \rightarrow (u_{2,\infty})$.

 It is clear that
- (22) $\vdash_{\mathcal{P}} \sim \mu_{2,\alpha} \rightarrow P_{\mathcal{P}_{\varsigma}}(\overline{Con_{\alpha} \wedge \sim Con_{\gamma}})$ and in particular
- (23) $\vdash_{\mathcal{P}} \sim (u_{2,\alpha} \to P_{n_{\widehat{Y}}}(\overline{\sim Con_{\widehat{Y}}}) .$ On the other hand, we have from (22)
- $(24) \vdash_{\mathcal{P}} \sim (u_{2,\alpha} \rightarrow Pr_{\mathfrak{p}} (\overline{Pr_{\mathfrak{p}}} (\overline{Con_{\alpha}} \wedge \sim \overline{Con_{\mathfrak{p}}})) ,$

since $P_{r_{\xi}}(\overline{Con_{\xi}} \wedge \sim Con_{\xi})$ is an RE-formula in \mathcal{P} (cf. 1.7).

(6), (23) and (24) show that

(25)
$$\vdash_{\mathcal{P}} \sim \mu_{2,\alpha} \rightarrow P_{\mathcal{P}_{\xi}} (\overline{\sim Con_{\mathcal{P}_{2}}}) .$$
By (3) and (5),

- (26) $\vdash_{\mathcal{P}} (\sim \varphi \land (u_{1,\alpha}) \rightarrow \sim P_{x_{\xi}} (\overline{Con_{\alpha} \rightarrow Con_{\chi}})$ and therefore
- (27) $\vdash_{\mathcal{P}} (\sim \varphi \land (u_{1,\infty}) \rightarrow \sim \Pr_{\xi} (\sim Con_{\infty}) .$ On the other hand, by (26) and (7)
- (28) $\vdash_{\mathcal{P}} (Con_{\tau} \land \sim \varphi \land (u_{1,\alpha}) \rightarrow Con_{\tau_{2}}$.

 Using (21), (25) and (28) we can easily show
- (29) Hy (~ Cong ~ Cong ~ Pic (~ Cong)) + Pic (~ Conoc).

On the other hand, using (20), we have

References

- [1] FEFERMAN S.: Arithmetization of metamathematics in a general setting, Fundamenta Math.XLIX (1960-1961),35-91.
- [2] HERMES H.: Einführung in die Verbandstheorie, Springer Verlag Berlin-Heidelberg-New York 1967.
- [3] KLEENE S.C.: Introduction to metamathematics, Amaterdam 1952.
- [4] LÉVY A.: A hierarchy of formulas in set theory, Memoirs of the American Mathematical Society 57(1965).
- [5] MOSTOWSKI A.: A generalization of the incompleteness theorems, Fundamenta Math.XLIX(1960-1961), 205-323.
- [6] HÁJKOVÁ M.: The lattice of bi-numerations of arithmetic, Comment. Math. Univ. Carolinae 12(1971), 81-104.

(Oblatum 27.10.1970)

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo.