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THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC, II

Marie HAJKOVA, Praha

This paper is a direct continuation of our [6). The
knowledge of [6) is presupposed. Similarly as in [6], in
the whole paper A = <A, K) denotes a fixed axioma-
tic theory with the following properties:

(1) A is a primitive recursive set,
(2) A is consistent,
3) P = A ( P is the Peano’s arithmetic).

Numbering of definitions and theorems in this paper
begins with 3.1; references like 2.24 or 1.18 refer to de-

finitions and theorems from [61.

III. Reducibility; a non-describability theorem

We shall now study the problem of reducibility of
elements of [Bin ] . We recall the definition:

3.1. Definition. An element z of a lattice M =
=<{M,<,n,U) is irreducible if, for each x ,
yeM, xuany =z implies X = =z or gy =
= % ,

3.2. Iheorem. Let A . be reflexive, let 7, 3 e

€ Bin  and suppose ¢ <o /3. Then there is a
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Jd° € Bim such that

S <, B
(%) {
Lyrlu ST =(pR] .

The main idea of the proof: Let o’ € Bim such

that «’ <, 7 . Put

A
F'(x) = oc’(x)vf'.m:m(x) A

A?\:“ LB f, (3, Iv«)/\zé\’*"\/ Baf (P, ,2)1.

Evidently, 0’ <, 8 and [y Ju [d’']1=[p]. But it
is not clear whether J’ #, 3 . So we modify the de-
finition of d’ and find a J" satisfying (%) in the
form

ot (x) v F:m,((m(x) Ao LBy Ly g A N~ B f (200

The following lemma gives a necessary and sufficient
condition for the existence of a d € Bim  with requi-
red properties ().

3.3. Lemma. Let 3, o € Bim and let <, f3.
There exists a d € Bin satisfying (% ) if and only
if there exist a formula o« € Bim and a formula
¥ (o) which is a PR-formula in £ with exactly one
free variable a4 such that

(1) b—&(—ngm,p A Comy) —> ¥1r(q,) ’

(2) H-q4 (~ Comy A Com ) — ’\*/‘l}"(ry.) .

Proof of Lemma 3.3. Let " € Bim  satisfy the
conditions (% ). It suffices to put [xl=[y]l n L]
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and vy () = Puf, (01, 4).

Conversely, let % (¢) and o« € Bin satisfy
the conditions (1) and (2). Put
I(x)= o (x)v f_‘/m'((m(x) /\%\'/%‘“(ty'(ly:’ YA Erf, (051, )
By (1) and the definition of J”, we have —, Conjy
(—»(C.owv,/\ Con,.) ,ie. [l ulLo]l=L[p]. By (2)
and the definition of d", we have -4 Con . —> Con,
ie. I <4 B,

Proof of Theorem 3.2. By 2.11, we can assume
F—5 4\ (9 (x) —> 3(x)) . Using the diagonal con-
struction 1.9 and Lemma 1.1 determine 7,  such that

(1) Fpn <> /}; (Prf, (ﬁ_,ry,)-—)xxv_P,mﬁ, (~m,z)).
We shall prove

(2) |'+ﬂ n .

Let 4 7 and let d be a proof of 7 in A . Then
4 z\</ai Pr Gn (~m, z) , and therefore, by Lemma 3.1

(1], —4, ~ 7 , because /3 bi-numerates A , It
is a contradiction and so we obtain 4~y 7 .
Put

(3) wiy)=Bnf, (T7,n) Ay Bl (R, =)

Evidently, % (4 ) is a PR-formula in ? and Far (y)=
= {n ¥ . We shall prove

(4) Fp~m—(~lm, A~ ¥ v (ny)).

In A, suppose ~m . Then \4CEmfa,(ﬁ,q.)/\
AN ~ Bef, (7, z)] and consequently
z<y - n
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~(¥Elfnﬁ.(~_1z,ry,) Azi\’*‘v Bef, (7,2)1).

The last formula is ~ \”/_ v (4 ) . From the assumption
~ M wehave Tr, (%) . On the other hand, by 1.7,
~ 7 implies P)oa, (~ ") , because ~ n  is an

RE-formula in % . Consequently, we obtain ~ Cgm«,r e

We shall now prove
(5) I——A(~C9w/3/\~\$/yr(:y,))—> ~m .
In A, suppose ~Csm«,, and ~ )4/—1",(%)' Then
@(fm%(z‘n,@) =Y (T2, Y Bh (7,4,

\'¢ Cfmfa,('?l',/y,) Az/<\»y_~ E”’Fp (~n,2))

and consequently ~ 7 .

(4) and (5) imply
(6) F—p (~ Cony A C‘-m"r) — \?/-y('y,) .

Put E =AU {~ 1. The theory ¢ = (E, K> is
consistent by (2). By (4), we have
7 —g ~ Cgrwﬂ .

Let ¢ (x) be a PR-formula in 5 defined as fol-
lows: € (x) = o (x) v x 22 ~ . Evidently,
€ (x) Dbi-numerates E . Using the diagonal construc-
tion 1.9, determine % such that

o 9 < Q(E"{;‘é (P,2) — ~ Cgm,ﬂ‘\z).
Put o« (x) = p(“)A'y-QxN P £,(®, 4 ) . Evidently,
« € Bim . Analogously as in the proof of 7.4 [11, one

can prove

(8) I_F‘E, @
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(9) F—p ~ 9 — Con ;
(7), (8) and (9) give
(10) FFp (~ Cong A Com ) — 7 .
(10) and (4) give
(11) Hp (~ Comy A Com ) — N ¥ (y)

(11) and (6) show that the conditions of Lemma 3.3
are satisfiable.

3.4. Corollary. If A is reflexive, then every ele-
ment of [Bim/] is reducible.

Theorem 3.2 enables us to formulate a partial result
on the "non-describability" of elements of [Bim J. First
we define some notions and prove a lemma.

3.5. Definition. Let @ & Fm,

K4
a A, -formula, ¢ & A, , if it belongs to the least

. & 1is said to be

class containing all atomic formulas in K,' , closed under
A and ~ and which contains with every formula %
also W' (w £ w < o+ A @ ), where «, v, w are
distinct variables.

3.6. Definition. Let ¢ € Fm“ . @ is said to
be a 2 -formula, ¢ € Z, ,if either p € 4, or o
has the form Y .- \“{x ¥ , where @ e 4, and
Loy eee ) 4y are distinct variables.

Remark. These definitions are analogous to the Lévy’s
definitions of Ao -formulas and 2  -formulas of the

4
set theory [4].

3.7. Lemma. Let M= <M, €, n, U) be a latti-
ce,det g € 4, and For () = {u,,..., Mgy} . Suppo-
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se o, ¥e M and a & & . Furthermore, let
Qoy 100y Cpe_4 be elements of M  such that
@ & a, € & for + = 0, ..., % -1 . Then
MeE=gla,,...,a2e 41 if and only if
<ay &> k=pla,, ..., aq_41 -

Progf by induction on formulas.

(a) If @ is atomic then the assertion is obvious.

(b) Let @ have the form 1y, A ¥, . For the sa-
ke of brevity of notation, suppose Fur (y,) = Foriyg)s=
= Fo (@), Then

MeE(y, Ay)la,,...,an_y] iff

M=y, Lla,,..,a_ ,] and M=y [a,,..., a4
it (Ca; >F= vy, [a,,..., 2y _,] and
Cas > y,la,,...,aq_,1 iff
Cas )= (y Ay ) ay,..., ag 1.

(¢) If @ has the form ~ y  the induction step
is trivial. .

(a) Let @ be \4(% £y £ v,
We can suppose 5 = ., x . Suppose

AYy) .

&

M= @ la,,...,aa_, 1. Then there is an ¢ € M

such that a € a, < e éa,,pélr and

n
M= v ([a,,...,ap_,, €1 . By the induction hypo-
thesis, < a; &) k= w[a—o,.,.,'afh_,,,el and
consequently Sa; &) k= ) (4 £ v, £ 2, A yila,,..,a,_ ]
The converse implication is proved analogously.

3.8. Definition. Let M = <M, £, n, vu)> bea
lattice and let <a,,...,2p_, > € M* The & -
tuple <a,,..., @ _, > 1is said to be = -definable
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in M if there isa 2, -formula @ such that
< L T > is the unique % -tuple satisfying
@ in M.
3.9. Theorem on Z, -non-definability. Let A  be
reflexive. Then no S -tuple of elements of [ Bim ] is
Z, -definable in [ Bim ] . Moreover, if g e X,
Fr(p)=fu,,.., ug 43,0c]... . [y J&[Bin]and if
[Bin) k= @ [[x,],...,Loq, 1], then there are [e,J,...

..l 1 € [Bin] such that [} ]+ [eci] for all
i,G=0,..., -1 and(Bimlk=@Lllx)l,... [} 1].
Proof. Let @ bea 2, -formula and let [Bin]k=
=@lla,l,. ..., Lxg 11 . We can suppose that ¢
has the form ){... }ﬁ/MzV (2,...,v,_,), where y e 4 .
It follows that there are [w,1,..., [, 16 [Bim]
such that [Bin J b= y [[e,], ..., [y J1 . Put[R]=
=lec,Ju... ulecy 1 andletl[yl <qI[p]l, (F] <,
€plxyln...nlecy 1 (cf. 2.6). By Theorem 3.2, the-

re is a [0"] <4, [3] such that [y] v [ = [3] .

Put [eJ=[y] n [JFJ . By 1.19 there exists an iso-
morphism f of ([p]; [BA1> and<[e);[L]>.
By Theorem 3.7 we have < [o-]1 ; [31> b=y [[u,],...
senylocy, 11, and putting [e; ) =f(le]) (i=0,...,500-1)
we obtain < [€], () b= ¢ [[ex,], ..., L)y 1)

by Theorem 1.20. Using again Theorem 3.7 we have [ Bim ] l=
b=y (le],..,0[c; 1], which implies [Bim ] b=

b= g lle,],...,[ec’y _,11 . Since the intervals
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<[yl , (B1)> and < [Legl; [ are disjoint

we have [oc, 1 + [oc’; ] for 4,4 =0,..., o ~1.
3.10. Remark. It can be easily seen from the proof

that we can obtain an infinite sequence of distinct fe -

tuples of elements of [ Bim ] satisfying o .

IV. Relative complements in the lattice of bi-nume-

rations of arithmetic

In this section we are going to study the problem of
existence of relative complements in the lattice [Bim I .
Roughly speaking, we show that in every non-trivial inter-
val there are many elements having relative complement
(w.r.t. this interval) and many elements having no relati-
ve complement (w.r.t. this interval).

We recall the definition.

4.1, Definition. Let M= <M, £, N, U > be a
lattice and let a, &, ¢, d « M . Suppose a <
< 2, Then d is said to be a relative complement to C
with respect to a, &+ if c Nnd = a andcud =2,

4.2, Definition. Let M =<M, <, N, U > bea
lattice, 2, &, c e M and auppose a < £ . Then
¢ is said to be complementible w.r.t. a , £ if there
exists a d € M which ial a relative complement w.r.t.
a, & .

The following lemma can be easily proved from the
axioms of the.lattice theory.

4.3. Lemmg. Let M = <M, <« N, K6 U> be a
lattice, a, &, c ,d,d’ e M and suppose a < £&.
Then
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(1) ¢ is a relative complement to d w.r.t. a,
& if and only if 4 is a relative complement to
c w.orete a, &

(ii) if ¢ 1is complementible w.r.t. a, £~ , then
a £c = & ;

(1ii) if M is distributive and d , &’ are
relative complements to ¢ w.r.t. a, & , then d =
=d’ .

4,4. Lemma. Let M = <M, <, N, U)> be
a distridbutive lattice, @, a, , &, &;, ¢ € M and
suppose wéa1 <c <4?)_" < & . Then

(i) if ¢ is complementible w.r.t. a, 2 , then ¢

is complementible w.r.t. a 2

1> 4
(ii) if ¢ 4is complementible w.r.t. e, and
both a, and 2(1 are complementible w.r.t. a, & ,

then ¢ is complementible w.r.t. a, & ;

(iii) if a, and & be complementible w.r.t. a,
& , then both a, U 4, eand a, A &  are complemen-

tible w.r.t. a, & .
Proof. (i) Let ol be the relative complement to ¢

v.r.t.a,b.Putd.’:(anb;,)ua.1. By ele-

mentary calculation, d’ A ¢ = @, and d’uv e = 2, .

(ii) Let d’ ©be the relative complement to c

w.r.t. a,, ‘b;' , let d.1 be the relative complement to

@, w.r.t. a, & and let d, be the relative comple-

ment to & w.r.t. a, &. Putd=(d,vd) n d, .

By elementary calculation, d U e = & sndd ne = a,
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(iii) Let ¢, , d, be the relative complements to
a, respectively w.r.t. a, & . It can be ea-
sily shown that ¢, M d,4 is the relative complement
toa, v Y w.r.t. a, & and that ¢, v &, is

1
the relative complement to a, n & w.r.t. a, £ .
4.5. Lemma. Let o« , 3, o, I € Bin and

suppose o« =, 7 , d £, 3 . Then

(i) [plulogl=1L[p1] if and only if

"—.R.'Vc?'"“p A qu,r—-rvaqwd. s

(ii) [ylALldl =Ll if and only if

F—a ~ cpnf A CQ‘)D“—9 C?"’d' 5

(1ii) [J1 is a relative complement ta [y] w.r.t.
(), [A] if and only it k4 (~ Con, A Con_ ) —
— (Cq»n,? > ~ c‘-’""d') .

The 1lemma follows from Corollaries 2.20 and 2.22.

4.6, Leuma. Let o« , 3, 7 € Bim and suppo-

se x £, 7 £, (3. Then [y] is complementible

w.r.t. [ecl , [ 3] if and only if there exists a formu-
la @ (4 ) which is a PR-formula in P with exactly
one free variable q, and such that

(1) F=p (~ Comy A Con, ) — (qu'r - \”{?Cn‘,)) .
Proof. (i) Let [d"] be the relative complement to
Lyl woete [eeld,[3]. Put 9(:;):13»@.(63 1,4).

Evidently, @ (4 ) is a PR-formula in P and
Fuv(p)= {a} . (1) follows from Lemma 4.5 (iii).
(1) Let @ (4) be a PR-formula in P,
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Fr () = <y} and suppose (1). Put

I(x) = x(x) v Em& (x) A

A%'\'{u“ (Pl )N Bty (0 1,4,)) .

Evidently, d'e Bimn, «x =, " <4 3 and
l—ﬂ(»ch,mﬂA and_)-—-b(«/(',gnd,e—o\’/q(q,)).

Therefore, by Lemma 4.5 (iii), [ "] is the relative
complement to [1 w.r.t. [ecl, L3 .

4.7. Theorem. Let «< , B , o & Bin and
suppose o« & 5 7~ &, 3 . Then

(i) if [y 1 is aomplementible w.r.t. [l , [ 3]

then there exists an m 6 w such that

(1) oy (~ Cony A ana,)—r Parm (G — Con )

(ii) if A  is reflexive and (1) holds then L[4 ]
is complementible w.r.t. [<1, [ 3] ; in fact, if we put

F(x)= x(x)v Emi (x) A

/\%'\:ﬁx(lfmﬁﬂh”](%—» Cong ) ABRf (01, 4,)) ,

then [J°] is the relative complement to [y1 w.r.t.
(3, [p].
Proof. (i) Let [y 1 be complementible w.r.t.
[x1,[3] . By Lemma 4.6, there exists a formula
P {7 ) with exactly one free variable 7 such that
\4 @ () is an RE-formula in 7° and

(2) i——‘&(—v an.n/\ Con, ) — (CgmrH ¥<y(:g,)) .

Therefore, there exists an m & o such that
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(3) E"M.Mu,:l«'v Cony A Com ) — CCQ?LT(—* ¥ @(y)).
Let 3 be an RE-formula such that
(%) F—f,wﬁ\”/'g:@y.).

Evidently, we can suppose Yy & StK . Therefore, there
o

exists an m, € w such that

(5) '——93“(.&»%1 (y < \”/_gac'y.)).

By Lemma 3.9 [1] and Corollary 5.5 [1], we have
(6) I'_'?W—"P'ILEQJ('IV, .

Hence, by (4), (5), (6) there exists an m_, € v auch

3
that
M *—?\{,q’(?)—’l""'tﬂbﬁj(\{,y('y’n‘

~ ngﬂ is an RE-formula in % . We can prove that

there exists m, € such that

4

(8) b=p ~ Comy —> Brpap,, o (7 Comg)

analogously as (7).

Taking m = max (m,, m,, m, ) we have:
=g (v Comy A C‘-’"‘f"’\é P (y) (by (2) and the

assumption x =, o ),
F=a(~ CGm,y A qur)—rhmr“](\q/_ga(@)) (vy (7)),
=y (~ an,o A Cgmr)-v Emmml('VCfnbACw‘t‘-r%)(by (2)),

F=p (~ Cpuh A ln )— B prmy ¢ — Comy ) (by (8)).
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(ii) Let A be reflexive and let J° be as indica-
ted. Suppose that (1) holds. Evidently, J° € Binm and

'—.n,("’C?"U,,/\ Cqmv)—rfv&?wd. . It follows
from Lemma 4.5 that it suffices to show that

(9) k=4 (~ Cm. A Comy )~ Brppy, 4 CCon — Con,. ) .

If oc =, 7~ , then (9) is evident. Suppose oc <, 7.
Then A + {~ Cm, . A Cn } is consistent and,
by 5.8 (ii) [11], reflexive. Therefore I—j4 ~ anr A

A an‘—> c""”tc.ﬂ+<~Cywz,Aqm‘Hr~mJ for each m €
€ @ . In particular, putting m’ = mac(m,~ an,rz\ C'«_m&),

we have .}—‘n (~ ana.. A CQ'";‘)_" C?‘ntf-ﬂ-*‘c"’c?""-"cf”k’ Y21

ice.
(10) b=, (~ Co'n.z, A Com ) =~ Frppn 0 (Com — Cgm.r).
Evidently,

1) F=p~ Prp g ey (G — anr)—»mlfmm’“:(%q Com).

(10) and (11) show that (9) holds.

4.8. Corollary. Let <, 3, 9, d € Bim  and
suppose o =, 3 .

(1) If [g-1 is the relative complement to [] w.r.t.
[ec], [3]1 , then there exista an m € @  such that

- )
1) 7 =4 x(x)vEm, (x)A*«\f/‘kfﬂ(xbﬁ"‘

Sl At T 1,4, 0

MJ(Cgu“_-—)

W)
(2) d'=4 ec(.x)vf}m..(( (a()/\%’\éc'(l.”&ﬁﬂw(%"’ c”"yﬂi)/‘

ARty (0= 1, 04,))
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and, moreover,

(3) =g (~ Gy A Cp»‘)—r(f&tﬂpmjcm‘—» Cgv»’_) v

v P

Pearns = Comg 20 s

(ii) if A is reflexive and (1), (2), (3) hold, then
{d"] is the relative complement to [J] w.r.t. [x]
Lpl.

4.9. Theorem. Let o« , 3, § € Bim and let
oL <p ﬂ. Put (e=ﬂ+{va¢nb/\Cern¢} and e (x) =

?

=§vx X~ Con, A Con, . Let 3 be defined as
follows:

M) 't
7 (x)= & (x) v Fm$ cx)%"\v/&“c Re (g )nBe £, (025 1,4,)).

Then [9-] 1is complementible w.r.t. [ <l ,[ B3] if and
only if

(1) ~g ~ Cgn, , i.e. if and only if

1)’ l—-A(—Vqupﬂ/\Cq-m‘c)—-?Efo?(azC.o—n«d).

Proof. Note that " € Bim , o« <, 7 <4 3
(ef. Theorem 2.12) and

(@) =g (~vCmy A Con, ) = (Cn, <> o ) .

(i) Let [y 1 be complementible wer.t. [l , [3].
By Theorem 4.7, there exists an m € @ such that

(3) b—4 (~\C<,m¢n/\ CS”“r""E"':sz:(C‘?%" Cnp 0.

Hence

(4) F=4 (v Comy, A Con,) — P-"'t&rmz(("c?"h A Con, ) — C;mr).
(2) gives
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(5) =g Fr, (Con, < o, ) .

(4) and (5) show that I—,4 (~ Con, A Com, ) —
— Pr (g, ) and therefore
(6) l—-ﬂ(~ngﬂAC9wT)—+~Cgme.
By (2), p (~Cmn, A Com ) — ~ @, . Hence
n =g (~ G A Con, ) — ~ Con .

(6) and (7) give I—j, (~ C‘-”"'/s A Cm, )—>~ ('.gm..c e

(1) Let b—4 ~ Com_, .  Put

F(x) = & (x)v Em@#(x) A'm\-;—f“ [(Baf, (~ g ,a)A

/\14\?161&;‘(@;’%))/\ Enfy (021, 34,1].
Evidently, d & Bim and « =4 d =, B . We have
F=p~ Cny, — [, «* }"/(Ifmﬁ,'(fv%_,q.) A

Azﬁ\g_'v Brf (@, 22)]
and it follows that —y (~ anb/\ Con ) — (Con,. <>

> ~ and.) . Hence, by Lemma 4.5, [ 3] is complemen-
tible w.r.t. (o1, [ 31 .

4.10. Corollary. Let « , 3 , 77, 7, € Bin  and
let < €4 P <A P2 =a R . Suppose that both
E'fq.'l and [ 9, ] are complementible w.r.t. [el,[ 3],
Then there exists a 7 € Bim  such that

(1) o) <p 7 <@ ¥, e

(ii) L[yl is complementible w.r.t. [ ] [p3].

Proof. It suffices to take 7 from Theorem 4.9, whe-
re we replace byy;,f& by % and§ "Y?',_-
The assertion follows from Lemma 4.4.
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4.11. Corollary. let <, 3 € Bim , « <4 A
Denote by Comp (x, 3) the set of all [3+1 such
that

(1) x =4 o =4, B .

(1) [g 1 ie complementible w.r.t. [oal, (3T .
Then the structure < Comp (x,B3), <4, N, v > is an
atomless (denumerable) Boolean algebra. (Note that it is

known that all such algebras are isomorphic.)

We shall now be interested in non-complementible ele-

ments.

4.12. Theorem. Let A Dbe reflexive, o, (3 € BPim
and suppose oC <a (3 . Then there exiata a ¥ € Bin
such that

1) o <4 @ <4 B »

(i1) LC9] is non-complementible w.r.t. [al, L/3] .

Broof. Let E=Au {~ Cony A Com 3 put
g (x) = x(xX)vx ™~ Cn, A Con, and let

€ =<E,K >, Evidently, € is consistent and refle-
xive (cf. Theorem 5.8 [1]) and €, (x) is a PR-formula
in # Dbi-numerating E . Using the diagonal construction
5.1 [11, determine a ¢ such that

e @ <> N (Baf, (F,2)— ~ Cmy ().

Suppose I—-2 P . Then for some m , we would

have +—¢ ~ Con . . , which would make €
1
inconsistent. Hence
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(1) H—¢y P

Define § , &, 7 as follows:

$(x) = & (x) A'”‘é\va Pf (F,4) .

a(x)=§‘(x)vxz~C9nﬂACon“ .

(x) = ) T
7 (x)= oc(x)vEmf (.x)A%'\é«—vRE('y,,)Alfmfﬁ(Oz 1,n) .

Evidently, §, o € Bim and « <4 ¥ <3 B -
We shall show

(2) H‘%’V Conv

VS v 88 T Gy A Gy i.e. Hg ~ Cong .

Evidently,

3) —p~o — \z_/flfn.-Fs"(g?,z)A c?"’e,'r«z A

A /\ ~ P'/(,‘PE"C?,&)J 3

Yy<x

since 5 Con Ay <z— Cmn .

LA N e My
By (1), F—mP,Icﬁ“(?,x) — x> m for every
m € w ,and therefore
(4) F_G’~9_-’¥£m¢hzvx~~ — = A

A/.*\Cg(.x)e»oc(.x)/\xé )1 ,

which immediately gives

(5) —p~o— c?"’gvxﬂm‘

(2) follows from (1) and (5). Non-complementibility
L] waret. [«],[3] follows from (2) and Theorem
4.9.

4.13. Corollary. Let A be reflexive, «, 3 € Bin

and suppose o <g A 3 in this corollary "non-complemen-
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tible" means "non-complementible w.r.t. [e1, [ 3] “,
(i) Non-complementible elements are dense in

Clely[B31>; i.e., for every 6 , ¥ € Bin such that

o« £, 6 <, %, (3 there is a non-complementible [ o]
such that & <, o <o = .
(ii) Non-complementible elements are not closed w.r.t.

the operations U, n 4 in fact, for every 3 € Bim

such that o« <, 7 =4 3 there are 6, v >, «
such that [e]l U [z] = [p]J and [6J,[x] are

non-complementible. Similarly, for every o & Bin such
that « <4 <4 3 there are o, = <, /3 such

that [6] A [v] = [d'] and (&], (=] are non-comple-
mentible.

(Consequently, the interval < [ecl; [ 31 > is genera-
ted by its non-complementible elements.)

Proof. (i) follows from Theorem 4.12 and Lemma 4.4 (i).

(ii) Let o« <,y o =4, 3 . By Corollary 4.10
there are 6, , v, € Bm such that o« <4 6; ,

Y <4 ¢ and [6,1 v (71 =1"CLgl. It follows from
the part (i) of this corollary that we can define non-com-
plementible 6, v ~ such that G, <4 6 <4 7 and
Yy <A T =4 7. Evidently, [e&]l v [»] = [p].
The second part of the assertion can be proved analogously.
The following theorem shows that the dual theorem to
Theorem 3.2 does not hold.
4.14. mg_r_gg_,_ Let A be & -consistent and let
& € Bim . Then there existaa 7 € Bon such that

(1) < <4 v,

- 298 -



(ii) [ 1 1is non-complementible w.r.t. [«l, []
for any 3 =, 7 ; in other words

(iii)” there is no J" >, « for which [ 1 n
NnIld]l =[],

Proof. Note that the proof will only be a deeper ana-
lysis (formaligzation) of the proof of 7.5 (1].

Let D= A+ {~P (~ Con )} . To show

that &) is consistent, we shall show that

H‘ﬁ?ilb“_("’cy’b ) .

o

Let ,_-A P'IO" (~ C?ﬂ;«') N I'.'

—

—a4 \”/_ e fo (~ Cony , 4 ) . It followas from @ -consis-
tency of A that there exists an m € w such that

H-naagmfx(,u ZZ' Zx , M) . The formula
In fe (~Comp , M) is a PR-formula in #, and

therefore decidable. Consequently, there exists an m ¢

such that +F—,4 Paf, (~ Con, , m ) . Hence
F=s ~ Con . , since Prf, bi-numerates Pr f, .

On the other hand, t-~, ~ Con, , asince A is w -

consistent. Hence, r~, Ex, (~ Con ) .
Put §f(x)= (X)) v x & C;;. o - Evidently,

(1) g Gy, lee bplon, g -

Using the diagonal construction 5.1 (1], we can construct
a % € Ffm,xo such that k—g »¢ €> ~ \’,{Emfs ().
It follows from 5.6 [1] that

(2) ‘—“A ‘Df —_ C‘O’n«e .
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Hence, by (1), we have-

(3) = ¥ , 1 b—p~ Prp (5g) .
Put
— M) =
¥(x) = x (x) v Emg (x)/\q_”‘ Bof (3,%) .

Evidently, o e Bin and

(4) —p (':45;'11/3r — 2 .

Hence there exists an m, 6 @ such that for every
m Z m,

(5) —~a EMEAPMJ(ana,—r vg.) .

Since t—gn Er 44, ,(Com — vr)—.p P ($g ), we have,

(6) l——g i < P

~'°E.&rm3(c9"ec—’ ».) for every m & .

§
(5) and (6) give

3 |__.9 ~ 13":.& - (%_, C‘-mr) for every m > m,

and therefore for every m e o .
Let (3 >, 2 and let [ ] be complementible

w.r.te [ , [AJ . By Theorem 4.7, there exists an m ¢
€ @ such that

(8) b—py (~ ngp A Cgmr)-r 13/«.{"\“](697;.‘ -+ Cm,).

Hence, by f?) and (8), we have

(9) F—4 (~ CynnACmr)—blfm“(~an ) .

oc

- On the other hand, }—, Pr_ (~ Go_z, <) Cgmf
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and therefore, by (2) and (4),

(10) F—a P, (~C91|,¢)-->~C9nr

But (9) and (10) show that F—p ~ Cq-n,n—p ~ c(.rnr ,
which is a contradiction with the assumption o <, f3.

4.15. Theorem. Let A be reflexive, o y B 2,
G, ¥ eBin and x my, T <4 <4 6 £, 3.
Suppose that [ 31 is not complementible w.r.t. [l ,
[ 31 . Then there exist Vi) 7 © Bon  such that

(1) = 24 % <4 7 <a 72 <4 6

(i) if o, =, o’ <4 73 , ‘then [z’] is
not complementible w.r.t. [oxl, [ B3] .
Proof. Let

E,=Avud{~ CQ?UAACQ’W’_}, EQ_=AU{~C¢WT,/\

ACmn,d, e(x)=alx)yv x & ~ Cony A Com

(X)) = w(x) v X & ~ C,on,r/\ Cm,_, ¢, =<E, K>

and ‘82 = (E,,X> ., Evidently, €; bi-numerates E .
(£ =4,2) and ¢, (i=1,2) is consistent.
Using the diagonal construction 5.1 [1], determine fed

such that
e @« /*\ Ef_’/ofe_' (P,y) v If/zfeztﬁ,fy,)) —

I (PTIRVINE vy - R

Suppose |— @ . Then for some m , we would have
£, ’

l-—<e1~ mdbﬁvuﬂm , l.e.

F~4q (~ an.n A can)ﬁ Bergpmy (Com — anr) .
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But [ 2] is not complementible w.r.t. [al , [ 3]
and therefore, by Theorem 4.7,
g (~ Cony A C9~n,r)—-r Brarmg (Cong — Cony) .

Hence we have proved

Suppose "_"tz P . Then for some m , we would have

’—'ﬁz s C?"’ar.bﬁlvxz @;‘Afv(!an °

Let m' s mac (m , Comy A~ Con ) . Then

'_—'tg ~ c‘-m'l:‘int‘m.’J . On the other hand, from reflexi-
vity of A , we have =, Con L% Pmr3 - Hence

we have proved

(2) H-‘&z ¥ .

Put §’(x)= Cx)/\,'/<\“(~]2mf£1 (@, yIn~B 452 (F,y)).
Evidently, ¢’ & Bim . Analogously as in the proof of
Theorem 4.12, we can show

(3) “—@'\/?‘-’ c?ﬂdgovxz C?,D‘A,ch"_r ’

(4) ;.__?,vgp_)V/\Cg’(.x)(—’ec(x)A.x < z).
x X

Let ®, . be defined w.r.t. the theories
ﬂ+{~09n‘Aanri,A+{~anﬂAanrA~g>f
and A+ {~ Comvy A Gn, A~ @}

(cf. Definition 1.16). Further let (“y, o De defined
w.r.t. the theories A+ {~ Cn, Al A~ A w3
and

'ﬁ'+{~c¢"'3’/\ Cny Av @ A @, ¥
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Put
(5) §(x) = §2(x) v
vg\</x[~ M,,"Cq.)/\xzfcm/,\m’_g%ﬂv
v*\</“E~M2)x(rg.)Axx(Cwl«_‘/\'V%/,\%#m)J,
(6) 7 (X)) = & (x) v
vf:mé’“’(x)/\ Vv (En%(m,%)/\

W11 ¥a< X
AEIcﬂrfoz 1, %)) ,

(7) P (Xx) = (x) v

o ]::m,(:‘)(.x),\*x’<x (]?/(,'% (C?nz‘ - C;m,,r,fyq)/\

AR (O 1, 4,)) .

Evidently, §, 7, , 7, € Bin

(i) The inequalities = <, o) =4 2 =4 7; <4 €
are evident. We have (cf. Theorem 1.18)
(8) H"ﬂ (~ c‘.”‘l’e A c?"“.r) —> (“4,“

It is clear that

(9) l-—g,fv(w‘,x—b]?bgf@n/‘—’ Cp‘n«r) 5

(10) r—$~c?n6,\mf<c9wx—>c9nr>—»~ Con,, .
2
and therefore

1) bF—gp (~ Cn, A an,&) —
~(8) and (11) immediately give
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i.e. we have proved o <4 7, .
We have (cf. Theorem 1.18)
(A3) B (v lmp Ay A~ @A & I (4, -
Evidently, we have
(14) F—-g,(@o,,,&/\@uz,x)—v DN (x) e §(x))
and therefore, by 4.4, we have
A5) F=p (v @ A @ A, ) Y A (F e (X)X £z).
We know that
(16) Fa Cmy =& ~ B (Com ),
since I~ Com,— Con, and 4 Cgn — ~ Bx, (Com_ )
(cf. Theorem 5.6 [1]). (15) and (16) give
(A7) = (Com, A G A g e AV @)= ~v Frg (Con, )
and therefore
(18) l—ﬂ(Cg?le@L4’“’A@2’xA~g)—,Cgvuﬁ
since F—@~E/of(anx)—>~?ifur(('gnxA~anr) and
F=p (Comy A~ Bap(Com A~ Cm.)) — Cony . (13) and
(18) imply
(19) H-sa Congy — Gng,

i.e. we have proved o, <, ¥ -

(ii) Let o, =, 7" =4 7, @and let [3’] be com-
plementible w.r.t. [ o], [A]. Then there exists an m ¢
€ ¢ such that |—4 (~ Cm, A Con, ) —»

= P (G, — anr, ) (cf. Theorem 4.7) and

- Jug -



therefore there exists an m € w such that
(20) =4 (~ Comy A Cc;n,i)—rfj/emhmJCan‘-’ Cony ) -
We shall show that it is impossible.
We have (cf. Theorem 1.18)
(@1) Hyp (~vlmynlom, A~V @A @ ) &, -
It is clear that

(22) —a ~ (“'n,ac_’ r (Cg'ﬂ-,‘/\fv anr) and in particu-

H
lar
(23) F=p ~ &y o = Brp (~ Comp ) .

On the other hard, we have from (22)

(24) F—?prz’w—rlf&f('&ep(%‘/\—v Con,. ))

since Fr. (Con, A~ Con, ) is an RE-formula in P (cf.
1.7).

(6), (23) and (24) show that
(25) ’—? ~ (“’Z,ac — P./Ls (~ C?‘"—yz ) .
By (3) and (5),

(26) g (~@ A g, ) > ~ Brg (Com, — Com, )

and therefore

27) I-—,P (~ P A @L"“)—bf\‘ ]?,;g (~ an,x)

On the other hand, by (26) and (7)
(28) l——g,((lqer~g/\(c(.4’“)—-> an,?.z .
Using (21), (25) and (28) we can easily show

(29) = (~ anﬂ/\ an,r’_/\?,/:s(—v Cony ) B, (~ Com )

¢ oC
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On the other hand, using (20), we have
(30) b—p4 ~ Cony A (Zc.m,a,é_/\lf/(Y (~anaq)—+lf/¢.f(~ Cn ),

since —p Pr . . (Cmg — Cyn.“)—r lfmf(('qw“_—-» Comy, )

and —g (Br, (Cony — Comrp. ) A lfmf (~ ana; N P, (~ Com_ ).

This completes the proof.
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