

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2 (1971)

ON PROBLEMS CONCERNING UNIQUENESS OF THE EXTENSION OF LINEAR OPERATIONS ON LINEAR SPACES

František CHARVÁT, Praha

The aim of this paper is the formulation of the socalled Φ -unique extensibility of linear operators (i.e. linear transformations of linear space into another one) which is a generalization of the traditional uniqueness of the extensibility of linear functionals preserving the norm (see [1]). The necessary and sufficient conditions for Φ -unique extensibility and for the uniqueness of the extensibility of bounded linear operators are proved. The paper further contains a generalization of the Phelps' re-

This note follows the paper [2], and the same conventions are used here.

<u>Definition 1</u>. Let Φ be a mapping from P (i.e. the set of all subsets of the linear space Q). The operator will be called Φ -unique extensionable, if there is one and only one operator B such that

def B = P,

sult (see [1]).

 $x \in def A \Longrightarrow A(x) = B(x)$, $x \in P \Longrightarrow B(x) \in \Phi(x)$.

AMS, Primary 47A20, 55G36 Secondary -

Ref.Z. 7.974.7

Remark 1. It is true that every Φ -unique extensionable operator is a Φ -extensionable operator (see Definition 2 in [2]).

Definition 2. Let Φ be a mapping from P into exp G. The mapping is called a uniquely linearly covering P in respect to G, if the following statement is satisfied:

Let A be a Φ -admissible operator (see Definition 1 in [2]), then for every $\psi \in P$ there is one and only one $\alpha \in Q$, such that

$$A(x) + \alpha \alpha \in \Phi(x + \alpha \eta)$$

for all $x \in def A$ and $\alpha \in K$.

Remark 2. It is true that every uniquely linearly covering mapping is a linearly covering mapping in respect to $\mathcal Q$.

Theorem 1. Let Φ be a mapping from P into Q. Then the following statements are equivalent:

- (i) Every Φ -admissible operator is a Φ -unique extensionable operator;
- (ii) The mapping $\, \dot{\Phi} \,$ is a uniquely linearly covering $\, P \,$ in respect to $\, Q \,$

<u>Proof.</u> Let (i) be true, but (ii) untrue. From Remark 1 and Theorem 1 in [2] it follows that Φ is linearly covering P in respect to Q. Then there is also a Φ -admissible operator A and an element $\psi \in P$ as well as the different elementa α_1 , $\alpha_2 \in Q$ such that

 $A(x) + \alpha a_1 \in \Phi(x + \alpha c_1)$,

 $A(x)' + \infty \ a_2 \in \Phi(x + \infty \ y)$ for all $x \in def A$ and $\alpha \in K$.

We define the operators B_1 , B_2 as follows: def B_4 = def B_2 = [def $A \cup y$],

if $x = x + \alpha n_f$, $x \in def A$, $\alpha \in K$, then

 $B_{A}(x) = A(x) + \alpha a_{A},$

 $B_2(x) = A(x) + \alpha a_2.$

 B_4 and B_2 are Φ -admissible operators. From Theorem 1 in [2] it follows that there are Φ -admissible operators B_3 , B_4 which are the extensions of the operators B_1 , B_2 and $\det B_3 = \det B_4 = P$. It is true that B_3 and B_4 are different operators being the extensions of the operator A. This gives a contradiction.

Let (ii) be true, but (i) untrue. According to Remark 2 and Theorem 1 in [2] it follows that every $\bar{\Phi}$ -admissible operator is a $\bar{\Phi}$ -extensionable operator and that there is also a $\bar{\Phi}$ -admissible operator A such that it has two different extensions, i.e. there are B_1 , B_2 such that def B_4 = def B_2 = P,

 $x \in \text{def } A \Longrightarrow A(x) = B_1(x) = B_2(x)$, $x \in P \Longrightarrow B_1(x) \in \Phi(x)$, $B_2(x) \in \Phi(x)$ and there is $y \in P$ (resp. $y \in P - \text{def } A$) such that $B_1(y) \neq B_2(y)$.

If we denote $a_1 = B_1(y)$, $a_2 = B_2(y)$, it follows $A(x) + \alpha a_1 \in \Phi(x + \alpha y)$,

 $A(x) + \alpha a_2 \in \Phi(x + \alpha y)$ for all $x \in def A$ and $\alpha \in X$. This is a contradiction. The proof is complete.

Convention. In the following K will denote a field of real or complex numbers. Let P, Q be normed linear spaces. We denote the norm on P by the same way as in [2]

Amalogously, the symbol $S(a; \varepsilon)$ is used for the set $\{ \varepsilon \in a : |^2 | a - b | | \le \varepsilon \}$, $\varepsilon \ge 0$.

<u>Definition 3.</u> Let $\mathcal{H} \geq 0$. Let P, Q be normed linear spaces. The linear space Q is called \mathcal{H} -productively uniquely centred in respect to P, if the following is satisfied:

Let A be such that $S(A(x_1), k^{-1}||x_1+y||) \cap S(A(x_2), k^{-1}||x_2+y||) \neq \emptyset$ for all $x_1, x_2 \in def A$ and $y \in P$, then $A \in A$ such that $A \in A$ contains only one element for every $A \in A$.

Remark 3. It is true that every k-productively uniquely centred linear space Q in respect to P is k-productively centred in respect to P (see Definition 4 in [2]).

Theorem 2. Let $\mathcal{H} \geq 0$. Let P, Q be normed linear spaces. Then the following statements are equivalent:

(i) The mapping Φ from linear space P to exp Q defined by the following

 $x \in P \Rightarrow \tilde{\Phi}(x) = \{a \in Q; ^2 | a | \leq ke^{-1} | x | \}$ is uniquely linearly covering P in respect to Q; (ii) The linear space Q is k-productively uniquely centred in respect to P.

<u>Proof.</u> Let (i) be true, but (ii) untrue. From Remark 2 and Theorem 2 in [2] Q is k-productively centred in respect to Q and there is also A such that $S(A(x_1), k^1 | x_1 + y_1 |) \cap S(A(x_2), k^1 | x_2 + y_1 |) \neq \emptyset$

for all x_1 , $x_2 \in def A$ and $y \in P$ and there is at least one element $y \in P$ such that

 $x \in \operatorname{def} A$ $S(A(x), \ \ ^1 \| x + y \|)$ contains at least two different elements. We denote these elements $-a_1$, $-a_2$. It follows

 ${}^{2}\|A(x) + a_{1}\| \le k \, {}^{1}|x + y| \, ,$

 2 | $A(x) + a_{2}$ | $\leq ke^{-1}$ | x + y | for all $x \in def A$.

From there it follows that for all $\alpha \in K$, $\alpha \neq 0$

2 | A(x) + a a | ≤ le 1 | x + a y | ,

 $^{2}\|A(x) + \infty a_{2}\| \leq \Re^{1}\|x + \infty y\|,$

in other words

 $A(x) + \alpha a_1 \in \Phi(x + \alpha y)$,

 $A(x) + \infty a_2 \in \Phi(x + \infty y)$ for all $x \in \alpha \in A$ and $\alpha \in K$ (for $\alpha = 0$ trivially). However, this is a contradiction.

Let (ii) be true, but (i) untrue. From Remark 3 and Theorem 2 in [2] it follows that Φ is linearly covering P in respect to Q and there is also a Φ -admissible operator A and ψ e P and two different $-a_1$, $-a_2$ such that

 $^{2}|A(x) + \infty a_{1}| \leq k^{1}|x + \infty y|$,

 $^{2}|A(x) + \alpha \alpha_{2}| \leq k^{1}|x + \alpha_{3}|$

for all $x \in def A$ and $\alpha \in X$.

From it

 $S(A(x_1), k_1^1|x_1 + y_1|) \cap S(A(x_2), k_1^1|x_2 + y_1|) \neq \emptyset$ for all $x_1, x_2 \in def A$ and $y \in P$ because it follows

$$-a_1, -a_2 \in \bigcap_{x \in \text{def } A} S(A(x), k^1 | x + y |)$$
.

This gives a contradiction. The proof is complete.

<u>Definition 4.</u> We call the linear space $\mathcal Q$ productively uniquely centred in respect to P if this linear space is $\mathcal R$ -productively uniquely centred in respect to P for every $\mathcal Q$.

Theorem 3. Let P, Q be normed linear spaces. Let P be productively uniquely centred in respect to P. Then every bounded operator from P into Q has only one extension on the whole P preserving the norm.

<u>Proof.</u> This theorem is a result of Theorem 1.2 and Definition 4.

Remark 4. In the following we shall be concerned with a slightly different problem formulated for linear functionals in [1]:

Let P, Q be normed linear spaces. Let R be a subspace of the space P. Let Q be productively centred in respect to P. We want to formulate a necessary and sufficient condition for the uniqueness of the extension preserving the norm of every bounded operator such that $\det A = R$, more exactly, there is only one operator B such that

def B = P, $x \in \mathbb{R} \implies A(x) = B(x)$, $^{3}||A|| = ^{3}||B||$ (in this way we denote the norm on a linear space of all bounded operators from P into Q.). It follows from Theorem 2, Remark 1 from [2] respectively, that there is an extension of this operator. The problem lies in the uniqueness of such an extension.

Convention. Let P, Q, be normed linear spaces. By the symbol $\mathcal L$ we shall denote a normed linear space of all bounded operators from P into Q such that their domain is the whole P. Analogously, we denote by the symbol $\mathcal L_R$ a normed linear space of all bounded operators from P into Q such that their domain is the subspace R.

Furthermore, let $A \in \mathcal{L}$. By the symbol A_R , we denote an operator such that $A_R \in \mathcal{L}_R$, $x \in R \Rightarrow A_R(x) = A(x)$. The set $\{B \in \mathcal{L}: x \in R \Rightarrow B(x) = 0\}$ we denote $\mathbb{Q}^{\mathbb{L}}$ and call \mathbb{Q} - anihilator of the product \mathbb{R} .

Definition 5. Let P be a normed linear space. Let R be a subspace of the space P. We say that R has the Haar's characteristic (see [1]), if the following is valid:

if $x \in P$, then there is at most one element $y \in R$ such that

$$|^{1}||x-y|| = \inf \{|^{1}||x-x|| | x \in \mathbb{R}\}$$
.

Lemma 1. Let P be a normed linear space. Let R be a subspace of the space P. Then the following statements are equivalent:

- (i) R has not the Haar's characteristic;
- (ii) there are $x \in P$ and $y \in R$, $y \neq 0$ such that $\|x\| = \|x y\| = \|x x\|$ for all $x \in R$.

 Proof. Let (i) be true. Thus, there are $x_0 \in P$,

different y_1 , $y_2 \in \mathbb{R}$ so that ${}^1 \| x_0 - y_1 \| = {}^1 \| x_0 - y_2 \| = \inf \{ {}^1 \| x - x \| ; \ x \in \mathbb{R} \} .$ We denote $x = x_0 - y_1$, $y = y_2 - y_1$. It follows ${}^1 \| x \| = {}^1 \| x - y \| , \ y \in \mathbb{R} , \ y \neq 0 .$ Let $x \in \mathbb{R}$, then $x + y_1 \in \mathbb{R}$ and further ${}^1 \| x_0 - (x + y_1) \| \ge {}^1 \| x_0 - y_1 \| ;$ in other words,

 $\|x\| \le \|x - x\|$. Thus, (ii) is satisfied. If (ii) is true, then (i) is trivially satisfied. The proof is complete.

Lemma 2. Let P, Q be normed linear spaces. Let Q be productively centred in respect to P. Let R be a subspace of the space P. Let $A \in \mathcal{B}$. Then

 $|A_R| = \inf \{ A_E; 2 ||A(x)|| \le A_E^{-1} ||x||, x \in R \} =$ $= \inf \{ 3 ||A - B||, B \in {}_{Q}R^{\perp} \}.$

<u>Proof.</u> If $B \in {}_{Q}R^{\perp}$, then ${}^{3}\|A_{R}\| = \inf\{A_{C}; {}^{2}\|(A-B)(x)\| \le A_{C}{}^{4}\|x\|, x \in R^{\frac{7}{2}} \ge {}^{3}\|A-B\|$. Also, it follows that: ${}^{3}\|A_{R}\| \le \inf\{{}^{3}\|A-B\|, B \in {}_{Q}R^{\perp}\}$. According to the assumption that Q is productively cen-

According to the assumption that Q is productively centred in respect to P, from Remark 1 in [2] it follows that there is an operator C such that

 3 $\|A_{R}\| = ^{3}\|C\|$, $x \in R \Rightarrow A_{R}(x) = C(x)$. Since

 $^{3}|A_{R}|| = ^{3}|C|| = ^{3}|A - (A - C)||$, and $A - C \in {}_{\mathbb{Q}}R^{\perp}$, the proof is complete.

Theorem 4. Let P, Q be normed linear spaces. Let

- Q, be productively centred in respect to P. Let R be a subspace of the space P. Then the following statements are equivalent:
- (i) For every $B \in \mathcal{B}_R$ there is one and only one $C \in \mathcal{B}_R$ such that

 $x \in \mathbb{R} \implies \mathbb{B}(x) = \mathbb{C}(x), \quad {}^{3}\|\mathbb{B}\| = {}^{3}\|\mathbb{C}\|.$

(ii) The linear space $Q R^{\perp}$ has the Haar's characteristic ("in respect to the linear space 26").

<u>Proof.</u> Let (i) be true, but (ii) untrue. From Lemma 1 it follows that there is $C \in \mathcal{L}$ and $D \in_{\mathbb{Q}} \mathbb{R}^{\perp}$, $D \neq 0$ such that

 3 | C | = 3 | C - D | = inf $\{^3$ | C - E | ; E \in \mathbb{Q} R $^{\perp}$ }. From Lemma 2 it follows that

 ${}^{3}IC_{R}I = inf {}^{3}IIC - EII; E \in {}_{Q}R^{\perp}$.

Also, the operator $C_R \in \mathcal{E}_R$ has two different extensions, i.e. C and C-D, on the whole P preserving the norm but this is a contradiction.

Let (ii) be true, but (i) untrue. There is an operator $B \in \mathcal{L}_R$ having at least two different extensions on the whole P preserving the norm. We denote these extensions C_1 , C_2 . It is true that $C_1 - C_2 \in {}_{Q}R^{\perp}$, and, further, from Lemma 2 it follows that ${}^{3} \| C_1 \| = {}^{3} \| C_1 - (C_1 - C_2) \| = {}^{3} \| B \| = \inf \left\{ {}^{3} \| C_1 - D \| \right\}, \ D \in {}_{Q}R^{\perp} \right\},$ however, it is a contradiction (see Lemma 1). The proof is complete.

Theorem 5. Let P, Q be normed linear spaces. Let Q be productively centred in respect to P. Then the following statements are equivalent:

- (i) Every bounded operator is uniquely extensionable on the whole P preserving the norm;
- (ii) ${\cal Q}$ -anihilator of every subspace of the space P has the Haar's characteristic. The proof is easy.

References

- [1] PHELPS R.P.: Uniqueness of Hahn-Banach extensions and unique best approximation, TAMS 95(1960),238-255.
- [2] CHARVÁT F.: On problems concerning extension of linear operations on linear spaces, Comment.Math.Univ. Carolinae 12(1971),105-115.

Praha - Vinohrady Ambrožova 13 Československo

(Oblatum 6.11.1969)