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ON PROBLEMS CONCERNING UNIQUENESS OF THE EXTENSION OF
LINEAR OPERATIONS ON LINEAR SPACES

FrantiBek CHARVAT,Praha

The aim of this paper is the formulation of the so-
called ¢ -unique extensibility of linear operators (i.e.
linear transformations of linear space into another one)
which is a generalization of the traditional uniqueness of
the extensibility of linear functionals preserving the norm
(see [1]). The necessary and sufficient conditions for

$ -unique extensibility and for the uniqueness of the
extensibility of bounded linear operators are proved. The
paper further contains a generalization of the Phelps’ re-
sult (see [1]).

‘Mis note follows the paper (2], and the same conven-
tions are used here.

Definition 1. Let & be a mapping from P into

en Q@ (i.e. the set of all subsets of the linear spa-
ce @ ). The operator will be called ¢ -unique extensio-

nable, if there is one and only one operator B such that
defB = P

x € def A = A(x) = B(x) ,
xXeP = B(x)e & (x) .
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Remark 1. It is true that every @ -unique extension-
able operator is a ¢ -extensionable operator (see Defi-
nition 2 in [21). '

Definition 2. Let (¢ be a mapping from T into

en G . The mapping is called a uniquely linearly cove-
ring P in respect to (@ , if the following statement is
satisfied:
Let A be a d -admissible operator (see Definition 1 in
[2]), then for every Yy € P there is one and only one
a € @ such that
A+ xa € P (x +aaqg)

for all x e def A and «x € K

Remark 2, It is true that every uniquely linearly co-
vering mapping is a linearly covering mapping in respect to
Q.

Theorem 1. let ¢ be a mapping from P into Q@ .
Then the following statements are equivalent:

(i) Every ¢ -admissible operator is a ® -unique exten-
' sionable operator;

(ii) The mapping ¢ 1is a uniquely linearly covering P
in respect to @

Proof. Let (i) be true, but (ii) untrue. From Remark 1
and Theorem 1 in [2] it follows that ¢ is linearly cove-
ring P in respect to (G . Then there is also a @ -admis-
sible operator A and en element o € P as well as the
different elementa a,, a, & O such that
Alx)+xa, ¢ dix+ang),

AlxY + @, € (x + x o) for all x e defA and x € X.
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We define the operators B, , B, as follows:
def B, = adf B, = [def Au 41,

if x =x+an ,xedefA , xe€eXK , then
31(x)=A(.x)+ooa,1 .

B, () = Alx) + xa, .

31 and Bz are ¢ -admissible operators. From Theo-
rem 1 in [2] it follows that there are ¢ -admissible ope-
rators B, ,
3,3 and def B, = def B, = P . It is true that

B

of the operator A . This gives a contradiction.

B,'_ which are the extensions of the operators
3 and Bq‘ are different operators being the extensions

Let. (ii) be true, but (i) untrue. According to Remark 2
and Theorem 1 in [2] it follows that every ¢ -admissible
operator is a { -extensionable operator and that there is
also a ¢ -admissible operator A such that it has two dif-
ferent extensions, i.e. there are B , B, such that
def B, = def B, = P,

X edef A=>A(x) =B, (x) = B,_(.x) ,

xe€P =B (x)e P(x), B(x) ¢ P (x)
and there is o € P (resp. 4 € P - def A )such that

B, (g) + B, (%) .
If we denote a, = B, (), a, = B,(g) , it followe
Alx)+ca € Plx +axy ),
Alx)+oxa,e P(x+xy) for all x e def A and x e X.
This is a contradiction. The proof is complete.

Convention. In the following K will denote a field
of real or complex numbers. lLet P - e} be normed linear

spaces. We denote the norm on P by the same way as in (2]
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4|-||, thenormon G- 2.0 .

Analogously, the symbol S (a; € ) is used for the set
{be@; Na-LN&€ec?, ¢ 20.
Definition 3. Let S & 0. Let P, G be normed

linear spaces. The linear space (@ is called /& -produc-

tively uniquely centred in respect to P , if the following
is satisfied:

Let A be such that

SCA(X), R Mx v DN SAG), ol +q) g

for all X, , X, € def A and g ¢ P, then

chqu SCA (x), & "x +4 1) contains only one element
for every 4 € P .

Remark 3. It is true that every &k -productively uni-
quely centred linear space ( in respect to P is % -pro-
ductively centred in respect to P (see Definition 4 in [2]).

Theorem 2. Let h = 0. Let P, , be normed linear
spaces. Then the following statements are equivalent:

(i) The mapping § from linear space P to e¢n G de-
fined by the following

xeP=>P(x)={aecR; Hals o IxI}
is uniquely linearly covering P in respect to @ 3
(ii) The linear spsce ( is .k -productively uniquely
centred in respect to P .

Proof. Let (i) be true, but (ii) untrue. From Remark 2
and Theorem 2 in [2] G is M -productively centred in
respect to ( and there is also A such that
S(A(x), & X + 4D NSA(x), & x4+ 44 g
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for all x, , X, € def A and 4 € P and there is at
least one element o € P such that

4
erfA S(A(x), % "Ix +n4 ) contains at least two
different elements. We denote these elementa - a,, - a,z ,
It follows

A +ra & & Mx+ gyl ,

A +a, 1 € & Mx+ gl for all x e def A .

From there it follows that for all < € K, o« = (

Nax)rca, l 8 o MTxsxagl,

HAMD) +xa, | & & NMx+ oyl
in other words

Ax)+ca, € d(x+xny),
AX)+ xa, € P(x+ xagy) for all xe def A and « € X
(for o« = 0 trivially). However, this is a contradiction.

Let (ii) be true, but (i) untrue. From Remark 3 and

Theorem 2 in [2] it follows that $ is linearly covering
P in respect to @ and there is also a { -admissible
operator A and 4 e P and two different -a,, - a,
such that

2lA(.>c)+a:.at.‘,ll £ oM x+ gyl ,

zlﬁ.(x)*-oca:zll € & x + gl
for all x e def A and « € X .

From it
S(A(x), * I, + gD NS, o Ix, + 4l +p

for all Xy ,%, € def A and 4 € P because it follows
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A EAE R PRt D PR
B MA(x -0 = HA(X) = Ax)l
and that

1
-aq,—a.’.ex‘odAS(A(.x),k 1x+ ).

This gives a contradiction. The proof is complete.

Definition 4. We call the linear space (3  producti-
vely uniquely centred in respect to F if this linear spa-
ce is & -productively uniquely centred in respect to P
for every @ .

Theorem 3. Let P, G be normed linear spaces. Let
P be productively uniquely centred in respect to P .
Then every bounded operator from P into @ has only one
extension on the whole P preserving the norm.

Proof. This theorem is a result of Theorem 1.2 and De-
finition 4.

Remark 4. In the following we shall be concerned with
a slightly different problem formulated for linear functio-
nals in (1]:
Let P, @ be normed linear spaces. Let R be a subspace
of the space P . Let @ be productively centred in res-
pect to P . We want to formulate a necessary and suffici-
ent condition for the uniqueness of the extension preser-
ving the norm of every bounded operator such that def A =
= R , more exactly, there is only one operator B such
that
def B=P, xeR=>ACx)=B(x), AN = 4B
(in this way we denote the norm on a linear space of all
bounded operators from P into G ).
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It follows from Theorem 2, Remark 1 from [2] respectively,
that there is an extension of this operator. The problem
lies in the uniqueness of such an extension.

Convention. Let P, G be normed linear spaces. By
the symbol & we shall denote a normed linear space of
all bounded operators from P into @ such that their
domain is the whole P . Analogously, we denote by the sym-
bol $R a normed linear space of all bounded operators
from P into @ such that their domain is the subspace
R.

Furthermore, let A € & , By the symbol AR ,we denote an
operator such that Ap &€ & ,x€ R =» A  (x) = A(x) .
The set {B € & ; x € R = B(x) = 03 we denote

1
QR and call @ - anihilator of the product R .

Definition 5. Let P be a normed linear space. Let
R Dbe a subspace of the space P . We say that R has
the Haar s characteristic (see [11), if the following is
valid:
if xe P

such that -
Mx-gpl = infsMx-201 xeR 3§ .

, then there is at most one element 7 < R

Lemma 1. Let P be a narmed linear space. Let R be
a subspace of the space P . Then the following statements
are equivalent:
(i) R has not the Haar’s characteristic -;
(ii) there are x € P and 5 € R, o4 = 0 such that
fIx il =T1x -yl = Mx -zl gor all z e R .

Proof. Let (i) be true. Thus, there are x, ¢ T ,
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different . , 4, € R so that
My -y = Mx,- gy = mf {Mx-2zl; 2R 7.
We denote x = x, - Ny o Y= gy~ Y - It follows
Mol e Mx-nl, 4y eR, y + 0.
Let z €« R, then z + 4, e R and further
4lxa- (z + '9'4)' = 1l.x°-ak‘ 1,
in other words,
| TWxll & I x - z 1 . Thus, (ii) is satisfied.
If (ii) is true, then (i) is trivially satisfied. The proof
is complete.
Lemma 2. Let P, 6 be normed linear spaces. Let Q@
be productively centred in respect to P . Let R be a
subspace of the space P . Let A € & . Then

WAl = imf{de; HA(XII € £ x|, xeRT =

i B

= imf{3%A-BIl, Be 4R
Proof. If B e oR' , then
AAN = inf{ae; NCA-BIGONE R Ixl, xeR3I2AA-B
Also, it follows that: JIARI & nf{MA-BI, B eaR'Li .

According to the assumption that @ is productively cen-
tred in respect to P; from Remark 1 in [2] it follows

that there is an operator C such that

MAN=1CH, x e R = Ag (x) = C(x) .
Since

MAN=2MCl = MA - (A-C)I, and A-CegRY,
the proof is complete.
Theorem 4. Let P, ( be normed linear spaces. Let
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G  be productively centred in respect to P . Let R
be a subspace of the space P . Then the following state-
ments are equivalent:

(i) For every B e :&R there is one and only one

Ce & such that

xeR =>B(x)=C(x), BN = 3nc .
(ii) The linear space GR‘L has the Haar’'s characteris-
tic ("in respect to the linear space & ").

Proof. Let (i) be true, but (ii) untrue. From Lemma 1
it follows that there is C e & and D caRJ', D+ 0
such that

et = NC-Dl=inf{NC-EN; E egrY 7 .

From Lemma 2 it follows that

ey = imfgUC-EN; Ee gRY 7 .

Also, the operator CR 6 x'& has two different exten-
sions, i.e. C and C - D , on the whole P preserving
the norm but this is a contradiction.

Let (ii) be true, but (i) untrue. There is an opera-
tor B e :&R having at least two different extensions
on the whole P preserving the norm. We denote these ex-

tensions C C It is true that C - C, € GRJ' .

and, furthe:,,frozm Lemma 2 it follows that
e, 1= -~ = NBl=inf 4%, -DI, De R T,
however, it is a contradiction (see Lemma 1).
The proof is complete.
Theorem 5. Let P , & be normed linear spaces. Let
@ be productively centred in respect toc P . Then the

following statements are equivalent:
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(i) Every bounded operator is uniquely extensionable on
the whole P preserving the norm;

(ii) @ -anihilator of every subaspace of the space T
has the Haar’s characteristic.

The proof is easy.
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