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ON LOCAL MEROTOPIC CHARACTER

Petr SIMON, Praha

Merotopic spaces represent one type of non-classical
continuity structures. They were introduced by M. Kat&tov
in [4). It is known that there are certain relations be-
tween merotopic spaces and other structures. In the pre-
sent paper, we shall study the merotopic spaces and the
topology induced by the given merotopy on the same set.

In the first part, we recall preliminary definitions
and propositions; see [3],[4]. In the second part, we gi-
ve a construction of an important class of merotopis spa-
ces over the given closure space , and we define the no-
tion of the local merotopic character. We shall study tho-
se subsets of a given merotopy which determine in a spe-
cified sense (see 2.4) a neighbourhood system of a given
point. We call the least cardinality of such a subset a
local merotopic character of a point. We are interested
in the problem, what are the values of the local meroto-
pic character of a fixed point for merotopies inducing the
glven closure. Such a set of cardinal numbers may be re-

garded as "the merotopic spectrum"” of the given closure
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(in a fixed point). We shall prove that this "spectrum”
contains always a certain interval of cardinal numbers.
(Theorem 2.11.)

In the third part, we shall solve the same problem
in special cases. We shall find the "merotopic spectrum"
of merotopies inducing the finest non-discrete topology.
'Fdrthor, we shall restrict ourselves only to the "natural"
merotopies; i.e., merotopies which may be considered as
images of closures under an embedding of the category of
closure spaces into the category of merotopic spaces.

We shall study the set of possible local characters of a
fixed point with respect to an embedding functor and a
given closure. We shall show that under these conditions
there are large "gaps" in the "spectrum".

The notation and symbols from [1] are used.

We assume the generalized continuum hypothesis

Hoe .
(GCH) in the form Koot = 2 for each cardinal K. -
1.
Let E be a set. Let T c eepp 2xn E be such
that
1)1 M eI', M c ep E and to each M € 7

there is an M, e T, with M, c M  (we say that
M, wminorizes Mm ), then also m4 e '
(ii)if’maumzel" then '”L4€1"or'mze]‘;
(iii) ((x)) e I’ for all x € E ;
(iv) (PreT, 4 T .

Then T is called a merotopic structure, or a merotopy

on E ; < E 5 T > is termed a merotopic space. Mem-
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bers of [ are said to be micromeric.

I' -continuous (or continuous) mapping
£: <E,, I",, > — <52: 1"1 > is such a mapping that
L m1] € 1‘2 whenever m1 € I:' . Merotopic spa-
ces with I' -continuous mappings form a category. We
shall say that T

3 is finer than 1"2 (and note I, <
< T

), iff the identity mapping 4 : < E T, > —»

2
— < E,, 1"2) is I -continuous, or, equivalently, iff
Ifl c I .

A merotopic cover ( I'" -cover) &£ of the space
CE, I'> is such a cover of the set E that for any
me T there exist a Z € & and an M € 7 with
M c Z . All merotopic covers form a filter under the
refinement order. On the other hand, for a given non-void
system () of covers of a set E there exists only one
merotopy I' on E such that ) is the collection of
all [ -covers, assuming just that () is a filter under
the refinement order.

Let I" be a merotopy on a set E . A system €, 6 c

c T will be called fundamental, if I" c l'j' when-
ever I’ is a merotopy on E with 6 c T, .

A merotopic space < E, I' > will be called a fil-
ter-merotopic space (and ' a filter-merotopy) if there
exists a fundamental system for I’ consisting of filters.

Let <E, T'?> be a filter-merotopic space. Then there
exists a I -fundemental system O consisting ef filters
such that I' is exactly the collectien of all 7 c ewp E,
minorizing some M € 6 .

The micromeric collection 7M is localized at a

point x € B if {M1yu(x)e I', The merotopy T
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(and also the space < E, I' > ) will be called loca-
liged iff either E = J or every micromeric 7 is
localized ( at some point of E ).

Let I' be a merotopy on a set E ; for every

X ¢ E let “w, X consist of all x € E such
that for some micromeric 7 , M e M implies x €
e€eM and Mn X = g . Then “wr, is a closure
structure on E , induced by the merotopy I .

There exist many merotopies on a set E , inducing a
given closure & for a set E . We shall notice two of
them: the coarsest localiszed filter-merotopy 1"“ which
has a fundamental system consisting of all neighbourhood
systems ("(x) of all points x € E , and the finest
merotopy I’ with a fundamental system 6 defined in
the following way: ™ € @ iff there exist x € E
and Ac E such that x € A’ |, and m-{(x,ry.)lty.zA}.

A merotopic space < E , T > will be called a semi-

r is
semi-separated. This condition is fulfilled if and only if

’

_ separated merotopic space iff the induced closure
((x,y)) ¢T for any two distinct points x,4 € E .

2.
2.1. Definjtion. Let < E, I' ? be a merotopic space,
We shall call a merotopy ess ' c T an essential part
of the merotopy I‘ , iff ens T' is the coarsest locali-
sed meretopy finer than [ .
The merotopy ess I exists forany < E , T > .
This roiion from the definition of induced topology.
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2.2. Proposition. 4, n = 4«p for every meroto-
pic space C( E , T' >-. (The proof is obvious.)

2.3. Theorem. Let < E, 4 7> be a semi-separated clo-
sure space. Let x € E, let ("(x) be a neighbourhood
system of X and let W € ¢ (x) . Let ’nwcmE
be a system satisfying

(i) N e nu implies x e N ;

(i1) UV ?Lu = U .

Put xu = nuu {(,.‘,)l,y_*.x} and let 1"“ be a me-
rotopy on E such that { Zul U e F(x)t forms a
subbase of all I, -covers. Let I' = U{I, Ixe E? .

Then 4, = a . Moreover, whenever I’ is a mero-
topy such that 4, = 4« , then putting 'nu- star ((x), &)

2
for x € E and every I -cover X | we obtain the me-

?
rotopy €hs I'q . (The symbol sfar ((x), ) denotes
theset {21 Z € X xe2Z2}.)

Proof of the first part is obvious and the second fol-
lows immediately from this easy proposition: Let < E, « »
be a closure space, < E, I'> a merotopic space and “, =
= A4 , Then {btz(x)lx is a I -cover 3 is a neigh-
bourhood system of x . (The symbol ’““'z (x) denotes
the set U Z|ZeX,x6Zt.)

2.4. Definition. Let < E, "> be a merotopic space,

let x € E . Local merotopic character of a point x is
the least cardinality 6'x such that there exists a sys-
tem A c T with carnd O = 6x for which these
two conditions are satisfied:

i) M e A implies x € NM

’
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(ii) for every choice Mm e M there exists a neigh-
bourhood 0 of the point x in the closure space
{E,wpY such that 0 c U{M, IMm e Al.

It follows from Theorem 2.3 that the system
A=i{MmiIMmeenT, xe NM} satisfies (i) and (ii).

2.5. Theorem. Let < E, " ? be a semi-separated me-
rotopic space. Then 6 x = 1 for all x € E if and
only if eww [ = I‘“,r .

Proof. Let x € E and let (0 (x) be its neigh-
bourhood system. Let enn» I = I'“r_ . Then obviously 6 x =
= 41 since the system A equala to ( 0"(x)) .

Let 6 x = 1. The aystem A contains exactly one micro-
meric collection, say 7 . Each M € 7N is a neighbour-
hood of x in <E, 4., by 2.4 (ii). If there exists

a neighbourhood (0 of a point x such that for all M e
€ M is M - 0 non-void, then x € «,  (E - 0) ,
which is a contradiction. Thus M = 0 (x) and ess ' = I'“r .

2.6. Theorem. Let <E, I''> and <E, T,> be mero-
topic spaces,. for which M..q = M';. holds, and let ot be
finer than I‘z . Then e;;c > 6'2.x for every x € E
( €; x is the local merotopic character of x in the
space < E T, > 4=1,2 ).

Proof.Clearly I, < I, implies esp I, < esv I, .
For i =4,2 let{={MIiMe em [;, xeNm?1l .
Clearly A, c 4, . If A" c ews T, is the system sa-
tisfying 2.4 (i),(ii) and if caxd A" = 6, x , then (ein-
ce A ¢ A, 4, ) A'  has the same properties in
CE, T,>. Mus 6;x £ card &' = ¢ x .
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2.7. Definitjen. Let < E, « ) be a closure space,
let x ¢ E . ¥ -character of x (notation 2rx ) ie
the least cardimality of a neighbourhood of x ; i.e.
¥ X = coxd 0, , where 00 is a neighbourheod of x such
that card 0, £ card U for every neighbourhood U of

X .

2.8. Definition. Let <E , « > be a closure space,
let x € E ., Consider the index set A with the following
property:

(1) There exists a neighbourhood (¢ of x and a disjoint
system {R_Ilx e A} where R_cE, xe R for e-
very « €« A, and U{R_lxe AloO0 .
o~ -character of x (notation o°x ) is the least up-
per bound of the set {card AI|A satisfies (1)1 .
2.9. Let < E, 4 > be a semi-separated closure spa-

ce, x € E and 7 x the local character of X . Then

4és'xér.xv ’

1 £ 6x € e ¢ X

for every merotopy I on E inducing « .

Proof. As a consequence of 2.6 it suffices to verify
the proposition for the finest merotopy I' inducing « .
Let 0O, be a neighbourhood of Xx with card 0 = 7 x .
Let O'(x) be a neighbourheod base of X with cardinality
x % such that O e€ O (x) implies O c Oo .

Let us choose an X € W for each U € O (x)
and form M = {(x,x, )1 U € 0"(x)}. Let A be the
system of all such M ., Clearly, the first inequality

holds for A ‘. The second inequality holds fer A1 c T
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consisting of all M, = {(x,4 )| 4 € X 3 for all
X ¢ Oo with x € X* .

Both systems satisfy 2.4 (i), (ii).

2.10. Remark. The bounds given in 2.9 are the best

possible in the sense that there are examples of spaces
with 6'x = fr.x%x or X = efr FX . On the other
hand, there is a topology such that the upper bounds from
2.9 can be reached by no merotopy inducing it. To see a
part of it let us consider the following two spaces:

a) (P, «> is a set (O)u{;—iln<wo} endo-
wed with the relativization of usual topology for real num-
bers.

b) < G, 2> is the set of real numbers with this
topology: A c Q@ is closed iff it is finite or A = @.

In the case a) both upper bounds for 6x are equal to
ey i, as ;\;O:Jqo and card P = &, in <P, «>
and 6 0 = «qpn *, for the finest merotopy I"on P inducing «.

In the case b) 7 0 = exn &, and the cardinali-
ty of each neighbourhood of 0 is exp ¥, , 8o both
upper bounds for & 0 are the same and equal to
e exp K, - Choosihg A consiging of all M =
= {(0,x)Ix €8, S is countable infinite } in the fi-
nest merotopy I' , we obtain 6x £ carol A = <cpn A .

An interesting question remains: Let < E, « > be a
semi-aseparated closure space and let #, equal to 6x
for the finest merétopy inducing 4« . Given a cardinal num-
ber x¥_ with 453“.4.4&

B

I' for ¢<E, « > esuch that &, = « and 6x = &_?

In other words, we are interested in the question what are

does there exist a merotopy
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the possible characters. The following theorem gives a par-
tial answer to this question.
2.11. Theorem. Let (E, « > be a semi-separated clo-

sure space, x € E . Then for every cardinal number Ky 5

1 2 g, < Ix there exists a filter-merotopy I’ in-

n
ducing w with 6x = K,

’

°
2,12, Lemma. Let < E, « > be a semi-separated clo-

sure space, x € E and let there exist a system

D c en E with the following properties:

(i) 73 is a filter base of some proper filter 5 on
E;

(ii) B e D implies x € B> , x € (E - B )’
(iii) for each B, e B there exists a B, € B with
X € (ZB,‘ - B,

.
3

5
(iv) if B, < B, cord B < carcl B  then NRB e F.

Then there exists a filter-merotopy I inducing w
with 6x = cara B .

Proof of 2.11: Let 8, be a cardinal number. Let &,
be the least cardinal number such that there exists a
transfinite sequence of ordinal numbera { Sole < wp
converging to &, , We shall write ¥, = cf s,‘

Since dx 2 ¥, , wecen find a system {S_ Iy e C}
which is disjoint, x € s’ for every o € C
U4LS, Iy e C? is aneighbourhood of x and card C =
= 4,

First, suppose that cf Ky = Ky - Denote B, =
= U4{S lyeC-XK 3§ for every non-void K ¢ C  with
card K < carol C . Then the family B= {B K< C,

cand K < card C t satisfies 2.12 (i),(ii),(iii),(iv)
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((iv) follows from the condition cf By = 8, ). The
statement of Theorem 2.11 follows from 2.12.

Secondly, let #e = cf By < ¥ Then there ex-

n
ists a sequence { 4 |L < w,.? such that { @ It < @ 1}

converges to <, and cf ¥ = K < ¥; holds for all 4 ,
L .< Dy o

Consider a disjoint union € = U {H_ |L < o, ,

=

carcl H = 8 § . Define on each subspace D,
= U{ 8, ly € H 3 u (x) the merotopy I,  with
6 x = £, in the same way as in the first part. Let
¢~ bea T -fundemental system and let A c <t I,
with card A = 6 x satisfy 2.4 (i),(ii). Let m_
be a filter with the base: {U{(D lL<c @, ,L&Fin0l0 a
neighbourhood of x , I a finite set of ordinal numbers }
and let U4 lL< @ 3o(m) be a I -fundamen-
tal system.

Put A = Uil lv =< deu(’mq) .It is easy to pro-
ve that A eatisfies 2.4 (i),(ii), and that card A = #, .
In the way gf contradiction let us suppose bog = 6 < Js'ﬂ .
Let us choose $, > $, . Then the restriction of I'". to
:Du has its local merotopic character at x not greater
than & . Since this restriction coincides with I, , this
is a contradiction with 6. x = ¥ _ .

It remains to prove 2.12.

Proof of 2.12. Let C"(4) be the neighbourhood system
of 4 for each 44 € E , Let ua define the T -funda-
mental system O in the following way:

9-{’m,9_lny+x,q«ef,}u{m.bl.36 Bruwm)
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3
n

F(y) ,

iBAaU uUulx)IUeO(x),Be B} ,

2
i

M. = {(E-B)AnUu(x)IU€Tx)?

and let A = (M) v {M, IBe B3 .

It is simple to verify that I' is a filter-merotopy
inducing « and card A = card B .

We verify 2.4 (i),(ii) for A . 2.4(i) is obvious.
Let M, € 7  be chosen for each 7L € A . Then Mm‘,
is of the form Mm’ = B Al u(x) and there exists a

YV e *(x) contained in U{Mm I M e At because
L)‘(M.m_l‘n’lfeA}:D.M.mo\./MmB =
i

=B AU v (x)(E-B)nU, v (x)> u~u, .
Thus we have 2.4 (ii).

It remains to prove that card 4 is really the
minimal cardinality of the system fulfilling 2.4 (i),(ii).
Suppose that there exists A, ¢ I' with caxd 4, <
< card A having all the needed properties. We may
assume A, c A, because I’ is a filter-merotopy and

A c 6 . Let B, € B be defined by B € B, iff
'm‘BeA“,Sinccca.caL-ﬁ,,<mJ3‘- the set L =
= N .751 is by (iv) non-void, by (ii) x is a cluster
point of L | and by (iii) there exists a B* € B  with
x € (L - B*)Yy |

Suppose that M, & A1. Let Y be the neighborheod
ofx,Vc:U4Mm’lBe.731}. Since x € L' ,
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0nL - (x) is non-veid for every 0 & O'(x) . Thas
ﬂ#VnL—(x)cU(Mmblbe@InL é

cU{E-BIRPeBinl-=
=CE-f\(D\DG.T543)nL=(E—L)nI, =g
which is a contradiction. We see that ™, must belong to
'

Since x & (L - B*) )it is 0 A (L-B*)-(x) # ¢
for every O € O'(x) .Let us choose M, € M, such
that M, =(B* A U) u (x) . Let V be a neigbourhood
of x with Vc U{Mm'lb€31}uMo . We have

F % (L-B")AV-(x)c (L-B*)n
n(U(Mm’lDe IB13uM,)c(L-B*)n(u{E-Blbe:Bq}u
U =(L-B*)A(CE-N4BIBe 3313)u.'5"') -

=(L-B*")A(E-L)UuP*)= (L-B*) A (E-(L-3*)) = 4

which is a centradiction.

Thus we have that the cardinality of A cannot decrea-
se. The lemma is proved.

2.13. Lemma (Kuratowski,[6]). Let F be a mapping
defined for all ordinal numbers § < o, such that
F(§) 1is a set of cardinality %, vhenever £ < o .
Then these exists a mapping G ( §) defined for all § <
< Wy with the following properties:

G(§) n G(§") = @ for § + §’

G¢g) c F(§) for all § < w, ;

card G(§)= K, for all § < @, .

.Uoinx Kuratowski ‘s Lemma one can preve that in every
space with Ax £ rR there exists a collection
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{ Ry |l e Al having the preperty 2.8 (1) and with
condk A = X, In this case we have the following
Corollary. Let < E, .« > be a semi-separated space
and let x € E, X < ox . Then for every cardinal
number % with 1 = By < FX there exists a meroto-

py T inducing w« such that &x = &, .

3.

3.1. Now we shall study the spaces with fine nen-dis-
crete topology, i.e. the spaces with exactly one non-isola-
ted point x , for whoae neighbourhcod system J(x) the
family U = [0"(x))] A (E-(x)) is an ultrafilter on

E -~ (x). Since ox = { for fine non-discrete spa-
ces, Theorem 2.11 says nothing new about its merotopies.

3.2. Proposition. Let < E , 4 > be a fine non-discre-
te closure space and let ' be the finest merotopy on E
inducing &« . Then 66X = y«x for the non-isolated point

x € E
Proof. Let A c I satisfy 2.4 (i),(1i). Then
card A = caxd $ By [ By = (x) = (g1 (x,q)e M}, med}

and the collection on the right hand side must be a base of
a neighbourhood system.

3.3. Definition. Let 9 be an ultrafilter on a set

E . We shall call % to be an Ky -ultrafilter, if

Niw, |u,be WU,L e L3 belongs to %  for every I ,
card [ € K

3.4. Theorem (GCH). Let < E , I'? be a semi-aepara-

ted merotopic space, A, the fine non-discrete closure, X
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the non-isolated peint of < E, «, >, ((x) its neigh-
bourhood system and [ 0'(x)] n (E - (x)) an K-
ultrafilter. Then 6x * 41 implies 6x = K., ,
Proof. We shall show that A  cannot fulfil 2.4 (ii)
for every A c T with 4+MA6,«¢¢H.Let
Ac T be fixed with cara 4 = Ksnq which has
the property 2.4 (i). Let us write A= 4{TM _IL < @, ¥ -
Put U =[0(x)] A (E~-(x)) and M, =L[M I=-(x).
Put U = E. Wecanfind Al e M , A ¢ U
(since 6x + 1 ), thus ¥, = U, - A - (x) belongs to U,
consequently there exists a B & m; , By € .,2 €%
(since 71,

Put U =E-UfA, uB le <Lt for L< &, .
4 ' e o+

Since % is an Lo -ultrafilter and all the sets E -

minorizes O'(x) ).

- (Auu B,) - (x) belong to % , it is U € 2 . Since
'm:' minorizes % end 6x 3 1 , there exists an A €
em, withA cU A ¢ U . PtV =U-A4-&
and let us cheose a B e 7’ with B ¢ U, B c V,
Wecanput A= UfA L <@} B=UIB IL< @y, fe
If the collection A fulfils the condition 2.4 (ii), then
both A and B belong to4 % , Clearly A A B = £ and so
at least one of the sets A , B is net a member of U .

This is a contradiction, thus 6x = ¥.,, -

3.5. It was shown in 2.11 that there are many different
values of @'x for a given clesure space. The only restric-
tion on the merotopy was given, namely that it induces the
given closure. The situation changes if we add another natu-

ral condition.
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Let <E1, 1;‘ >, <.E,2, 1"z > be meretepic spaces. Let a
mapping f: (E, I, >—> <E, I ) be continuous if and en-
ly if the mapping f: <E,,
eus. In other words, we shall study a lecal merotopic cha-

u,,; ) —> <Ez; “‘q > is continu-

racter with respect to embeddings F of the categery of se-
mi-separated closure spaces into the category of merotepic
spaces which preserve the underlying set functor. A trivial
example of such embedding is the functer <E,«>—> (E I ).
In this case 6x = 1 fer all x ¢ E and every < E , «) .

Other examples: <E, I:‘ > is an image of < E, « >,
ife 1'_" is the finest merotopy inducing « ; <E, I'z > is
an image of < E, « > iff the collections
M, =M vix)aeA M=1{x,la’>al} form a T, -funda-
mental system for each x ¢ E and fer each net X =
= 4ix, laeA, A is directed} converging to x € E ;
<E, 1'" > is an image of <E, « > iff the I;-fundamen-
tal systen §, consists of all mw= fUvx)IU € U,
where % is an ultrafilter converging te x & E

3.6. Propesitien.Let F be an embedding ef the cate-
gery of semi-separated clesure spaces inte the categery of
merotopic spaces. Let 6x # 41 in FC(E,« > for a spa-
ce {E, «> and an x € E . Then for every cardinal #_
there exists a space ( E,, I, > with a peint x, such that
6:» X, = Ko -

This follows from the fact that the continuity ef pro-
Jjections implies the existence of such x, inF <E,u.>"" 5

3.7. Theorem. Given a cardinal number «_ , there ex-
ists an embedding I ef the category of semi-separated

clesure spaces inte the category of merotopic spaces such

- 263 -



that 6x = 1 implies 6x > 4

Prgoof. We shall construct a merotopy I’ for every
clesure space <E, « > such that F<E ,«w> = <E, T >
will be the desired embedding.

Let <E, «> be a semi-separated closure space and
xe E. Let A  beaset A = {UU ie an ul-
trafilter on E - (x), x is a cluster peint of % ? . The

fundanentll system fer I consists of all ((x)) and of

all collectiens ‘mA’* c en E of the form 7, =
=O{lUT U (x)IU eAf where Ac A  cad A = & .

It is clear that T defined by F<E w)>= <(E,T)> is
an embedding, fer a centinuocus image of an ultrafilter con-
verging to x ia an ultrafilter cenverging to the image of
X . Evidently, «, = « .

Suppoae that there exiata a peint x € E with 6x <
£ &_ . Then there exists A= <M |M € ess 't with card 4=
= 6x < #, . Further, let M, € 7 . Then there exists
a neighbourhoed 0 of a point x  such that
0cUiMy, IM e A . Since we may assume that all M e A
are filters of the ferm mentiened abeve, we have
NAMIMe Ay=0(x) where (¢"(x) is a neighbourheed sys- _
tem of X . But M= N{LUIU(X)]I U € Ay } and
caxd A, £ 6. ,
= #_ holds fer A= U{Am I € A7 and consequent-
ly NM{tUJu(x)IWU e A} belongs ta I ., As
NELUIT v (XN U eAT=Ni{MIMe A} = T (x)
itis O(x)e I and &x = 1.

thus the inequality card A £ &, -4, =

3.8. Theorem. Let F be an embedding of the categery

- 264 -



of semi-separated clesure spaces into the categery of mero-
tepic spaces. Conaider [0,4] with its usual topelegy.
Then 6x # 41 implies 6x > 4, fer every x e F[0,11]. Assu-
ming (CH), then 6x in F [0, 411 can reach enly twe va-
lues, 1 and e &, .

Proof. Let I be an embedding and let <I[0,1J, T =
=FI[0,11. Let I  denote the interval [ Y/n.4, ¥/n 1.
W.l.0.8. we may agsume that x = 0 .

We say that a set L c [0, 1] haa a property (V),
if there exists a centinuocus mapping f:IL — [0, 1] which
maps L onte [0,411] .

We.say that a set L c [ 0,11 has a property (F),
if there exists an infinite sequence { h“ ? of natural
numbers such that the set I*M AL has a property (V)
for all m < @, .

Denote by P the following propesitien:

"For each nen-veid subset I < [ 0,1 ] with the
preperty (F ), for each M€ ess I and for each V
neighbeurhood of X  there exist a U neighbeurhead of x ,
UWcV andaset Me” with Mc U  such that
0A (L -M) has a property (F) for every neighbeur-
heod 0 of x, O c U ",

Either P or = P must held.

I. We shall preve that P = 6 x > £, . Suppose
that 6'x < &, . Then there exists a syatem A c <55 T 5
card A £ 4, , satisfying the conditions of 2.4. We
shall write A = {7, 7 . Let W, denote the neigh-
beurhoed [ 0, 7/m 1
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For L, =10,13, M e 4 and V, = W,
exist UL ¢V, , M e™MmM , M c U, esuch that the set
0ACL - M) hasaproperty (F) fer each neighbeur-
heod ( c U

there

. 3 00 there exists a natural number f, such
that W‘,.‘1 c U, . Since W, ~ (L, - M, ) has the proper-
ty (F) ,Wh A (I_1 - .M1 ) is uncountable. Cheese an x €

1
€ th n (L -M, ) and let 3'-1 > A, be a natural number

with *, ¢ W’-" .

Let Kyy Xyyoeey Xp_g4 be defined. As *.f(_"-_z.1 A
N (L‘q- M‘_1) has a preperty (F) , we can set L, = Wt-‘_1n

n (L‘_q- M‘M),Put Y, = W;‘q and let M, ¢ 4 . Then there
exist a neighbeurheod U, ef x, U, c ¥, and a set M, €
e M, with M, © u‘ such that the set (" A (L, - M,)
has the preperty (F) for each neighbourhoed ¢, 0 c U, .
Let &, be such a natural number that f, > 7, ~ and

Whtc U, . Since the set W, n (L, - M,) is uncountable,

there exists a point x, € WDu Pe) (L’_ - Mg . Let us

4

cheose % > &k, with x, ¢ W,- ;

If % is finite, say m = éx , then
(M, v Mzu.... uM,) AW (L, - M,) is void, and the
point x is a cluster point ef the set Whm nCL, -M)
(because this set has the property (F) ). If &x = &,
then the sets U{M‘.‘ 14 < @, 3 and {x’bli < @, t are
disjoint, and the sequence { x; } converges te x .

In both cases we have found M, e M , which cannet

cover any neighbourhood of x ., Ffom this contradiction it
follows that Gx > K ., Assuming (CH) we have 6x =

.-.-.MHQ-
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II. Now we show that =P =5 6x = 1. Let =P held.
Then there exist a set I c [ 0,1] with the property (F),
a micromeric collectien M € ess I' and a neighbeurheed V
of x such that we can find an Up neighbeurheod of x ,
UM c U , for which the set v n (L -M) has the
property - (F) for each neighbourheed U ef X, UeV
and for each M € M , Mc U . Let f4, 1 be a sequence of
natural numbers and let 4 f, } be a sequence of centinueus
mappings defined on I A In, such that £, [L A I,,ml =[0,1].
Let us denete I, =~ I%ﬂ’ £ 1 .We may assume that um {f 4|
ly>ag +,46Ln Tn,3=0, &m i ylysty ~gelnly i=1.
Put J1 = [a*’,“, I = l'a,.m‘ , a..‘%_"] for m=2,3,4,... and
let 4, be a linear increasing function of [ 0,411 eonto
J,,l . Let P be a Peano ‘s mapping, i.e. the continuous map-
ping defined on [0,1] which maps [ 0, 1] onteo
00,13 ~ [ 0,13 . Let m (i=4,2) be the
projections defined by m, <x,, X, >=x; (i =41,2).
Finally, let §, Dbe the compositien §, = Mpo M ePodf
and let §: (0)u (L n U1, 1)+10,1] be defined by
lehIh,,,' fm for m <@, §0=0. Clearly § is
a centinuous mapping of the set (0)u (L A U { I,.W |
Im < @,3) ento [0, 1] which maps the neighbour-
hood base {(0)u Ulleg "nLim>4i3li<aw,? of
X onto the neighbeurhood base {(0)u U 4 Inlm>itlicat
of x.(The first base is the base in the eubspace (0)u (L A

n v ‘(Ibwlm, < w, 1)

Since the aset Oy »n (L = M) has net the preperty (F),
there exists a natural number My euch that I, < Oy for

all m > my @nd further ne centinuoeus mapping defined
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on (L ~M)nl, isonte [ 0,11 . As a censequence, cheo-
sing g, = m, o Po f, there exists a peint 4, € [ 0,11
such that the set @' (4. 1A (L -M)n I, is void. Sin-
ce g, CL A I“”] contains a4 , it folleows 9;: f'y.” le
cMALnAIy .But then moPof [MnI, ~LI1o>
SmoPef, [gnly,ll =L0,11.

Thus we have preved that § (M n I, ~L1l=J, for
each M e Mm .

The space (0)u (L A Uflh” Im <, 1) is a subspa-
ce of [ 0,11 , therefore F((0)U(L n U{ly Im < a)}))
is a subspace of F L 0,11 .

Let us denete by I;_ the merotopy ef F ((0) v
V(LAULI, Im < @, 1)) . As M belongs to r,
the collection M1 A ((0) v (L A Ull, Im < a,1))
belongs to 1';. . The mapping § is continuous, hence T -
continueus and thus we have FLLMI A ((0)u (LA UL, |
Im < wgy1))1 € I' . But this syatem is a neighbourhood
base of x ; it follows that O (x) € I' . This completes
the proof.

3.9. Theorem. Let < E, « > be a space which can be
embedded into [0, 1 ]“" and suppese that the Cantor discon-
tinuum can be embedded into every open subset of < E, « > .
(Fer example, all uncountable separable complete metrizable
spaces with no isolated point have this property.) Let F
be an embedding of the category of semi-separated clesure
spaces into the ‘cntegory of merotopic spaces. Then &x + 1
implies &x > &, in FC<E, « > . Assuming (CH),
then 6x in FC(E, « > can reach only two values, 1

and <exh ¥, .
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Preof. Let us denete by ¢  the Cantor discentinuum.
It suffices te prove that local merotepic characters in €
and in [ 0,1 ]¥° are equal. ¥ and \e“’ being homeo-
merphic, their local merotepic characters are qqual. ‘Ex°
can be mapped onto [0, 1 ]x" in such a way that the
image eof every neighbeurhood in "e" is a neighbeurhood
in £0,1 Moreover, €%  is a subspace of
[0,12% , Tus F€ and F[0,4J”° have the same
local merotopic characters. The rest of the statement of the
theorem follows by 3.8.

3.10. Remark. The space E = [ 0,1 ] has two proper-
ties which are crucial for the proof of 3.8:

a) Every peint has a countable neighbeurhoed base ;

b) Let AABcE, xe A’ and let the set A be
continuously mapped by a function f onto a neighbourhoed

0O of apoint fx , Let V-qg[B] 5 @ for every conti-
nueus functien g and fer each neighbeurheod V ef g« .
Then the set A - B can be continuously mapped by a func-
tien / onto a neighbourhced U of M X . Moreever, we
can find the function /. independently on the choice of
B . (The mapping § defined in the proof ef 3.8 has this
preperty.)

It is obvieus that assuming a) and b) we can preve the
theorem analogeus to 3.8 by a mere medification ef the' given
preof. I do net know what class ef clesure spaces has these
properties and I have no example ef a space pessessing a)
but net b).
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