

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2 (1971)

ERROR BOUNDS FOR EIGENVALUES AND EIGENFUNCTIONS OF SOME ORDINARY DIFFERENTIAL OPERATORS BY THE METHOD OF LEAST SQUARES

K. NAJZAR, Praha

1. We shall consider a numerical approximation by the method of least squares for the eigenvalues and eigenfunctions of the following real boundary value problem

(1)
$$\mathcal{M}u(x) = \lambda \cdot u(x), x \in (0,1)$$

subject to the homogeneous boundary conditions

(2)
$$\mathcal{U}(u(x)) = 0,$$

where

$$\mathcal{M}u(x) = \sum_{j=0}^{n} (-1)^{j} \cdot [n_{j}(x)u^{(j)}(x)]^{(j)}$$
,

(3)
$$\mu_{\hat{g}}(x) \in C_{(0,1)}^{(\hat{g})}, \ \hat{g} = 1,...,m, \ n_{m}(x) > 0 \text{ on } (0,1)$$

and the homogeneous boundary conditions of (2) consist of 2m linearly independent conditions of the form

(4)
$$\sum_{k=1}^{2n} \{ m_{jk} u^{(k-1)}(0) + m_{j,k} u^{(k-1)}(1) \} = 0, 1 \leq j \leq 2m$$
.

We assume that the eigenvalue problem (1) - (2) is self-adjoint in the sense that

AMS Drivery (FILE 1999)

AMS, Primary 65L15, 49G05 Secondary 41A10, 41A15 Ref.Z..8.322 , 7.962.5

(5)
$$(Mu, v) = (u, Mv)$$
 for all $u, v \in \mathcal{D}$,

where \mathcal{D} denotes the set of real-valued functions of the class $C_{<0,1}^{(2m)}$ which satisfy the homogeneous boundary conditions (2) and

 $(u,v)=\int\limits_0^1 u(t)\cdot v(t)dt$ for $u(t),\ v(t)$ in $L^2_{<0,1>}$. We also assume that there exists a real constant K such that

(6)
$$(Mu,u) \ge K \cdot (u,u)$$
 for all $u \in \mathfrak{D}$.

With the assumptions (5) and (6) the eigenvalue problem of (1) - (2) has countably many eigenvalues $\{\lambda_i\}_{i=1}^{\infty}$ which are real and have no finite limit point, and can be arranged as follows:

$$(7) \qquad \qquad \lambda_1 \, \in \, \lambda_2 \, \in \, \dots \, \, \lambda_{k_0} \, \in \, \dots \, \, .$$

The associated normalized eigenfunctions $\{g_i(x)\}_{i=1}^{\infty}$,

$$\mathcal{P}_{3} \in \mathcal{C}_{\langle 0,1 \rangle}^{(2m)}$$
 form a complete orthogonal system in $L^{2}_{\langle 0,1 \rangle}$

For each positive integer & let $K_2^{k} < 0, 1$ denote the collection of all real-valued functions \mathcal{U} defined on <0,1 such that each $\mathcal{U} \in C_{<0,1}^{(k-1)}$ and $\mathcal{U}^{(k-1)}(x)$ is absolutely continuous with $\mathcal{U}^{(k)} \in L_{<0,1}^2$. Now let M denote a differential operator of the form (1) with the domain $\mathcal{D}(M)$ in $L_{<0,1}^2$ a real separable Hilbert space, where

$$\mathfrak{D}(M) = \{ u \in K_{2 < 0,4}^{2m}; u \text{ satisfies (2)} \}.$$

Let $\{Y_i\}_{i=1}^\infty$, $Y_i \in \mathcal{J}(M)$ be a totally complete system (cf.[1]) and ω be a real number such that

(8)
$$\inf |\lambda_{k} - \mu| = |\lambda_{k} - \mu| > 0$$
.

By Theorem 3 of [11, we have

where ϱ_N^2 is the smallest eigenvalue of the algebraic eigenvalue problem

$$A_N u - 6 B_N u = 0 ;$$

the matrices $\mathcal{A}_N = \{ \alpha_{ij} \}_{i,j=1}^N$ and $\mathcal{B}_N = \{ \beta_{ij} \}_{i,j=1}^N$ have their entries given by

$$\begin{split} &\alpha_{ij} = (M_{el} \, Y_i, \, M_{el} \, Y_j), \, \beta_{ij} = (Y_i, Y_j), \, i, j = 1, ..., N, \\ &M_{el} \, v = M \, v - \mu \cdot v \quad \text{for} \quad v \in \mathcal{D}(M) \; . \end{split}$$

Let R_N and \mathcal{R}_N be subspaces of $L^2_{<0,1>}$ determined by the functions $\{Y_i, Y_{i=1}^N \text{ and } \{M_{cc}, Y_i, Y_{i=1}^N \}_{i=1}^N$, respectively.

By Theorem 1 of [3] there exists a constant \mathcal{C}_4 , independent of N , such that

$$\begin{aligned} &Q_N - |\lambda_{\frac{1}{2}} - \mu | \leq C_q \cdot \sigma_N^2 , \\ &\sigma_N' = \inf_{t \in \mathcal{R}_N} \|\varphi_{\frac{1}{2}} - t\| , \end{aligned}$$

where ϕ_{i} is a normalized eigenfunction of M associated with the eigenvalue λ_{i} . We shall call

$$\lambda_{j}^{N} = \mu + 2_{N} \cdot sign [\lambda_{j} - \mu]$$

an approximate eigenvalue. Thus

$$(9) \qquad |\lambda_{\frac{1}{2}} - \lambda_{\frac{1}{2}}^{N}| \leq C_{1} \cdot \sigma_{N}^{2} .$$

Suppose the eigenvalues { λ_i } of (1) - (2) satisfy the following assumption

(10)
$$|\lambda_{i-1}| < |\lambda_{i}| < |\lambda_{i+1}|$$
.

Construct $\{\omega_N\}$ such that the following conditions be satisfied:

1)
$$u_N \in \mathbb{R}_N$$
, $\|u_N\| = 1$,

3)
$$(u_N, u_{N+1}) \ge 0$$
.

By Theorems 2 and 3 of [3] there exist constants C_2 , C_3 , K_4 , K_2 , K_3 and an integer N_4 such that for $N \geq N_4$

(11)
$$\lambda_{1}^{N} = \{ u + Q_{N} \cdot sign \left[\left(M_{u} u_{N}, u_{N} \right) \right] ,$$

$$C_{2} \cdot \sigma_{N}^{2} \leq |\lambda_{j} - \lambda_{j}^{N}| \leq C_{1} \cdot \sigma_{N}^{2} ,$$
(12)
$$|u_{N} - \varphi_{j}| \leq C_{3} \cdot \sigma_{N} ,$$

and

$$\begin{split} K_2 \cdot \varepsilon_N^2 & \leq \|\lambda_{\dot{\beta}} - \lambda_{\dot{\beta}}^N\| \leq K_1 \cdot \varepsilon_N^2 \quad , \\ \|\mu_N - \varphi_{\dot{\beta}}\| & \leq K_3 \cdot \varepsilon_N \quad , \end{split}$$

where $\varepsilon_N = Q_N - |(M_{\chi_L} u_N, u_N)|$.

We shall call u_N an approximate eigenfunction for (1) - (2).

We now apply the method of least squares to appropri-

ately selected finite dimensional subspaces R_N of $\mathfrak{D}(M)$.

In particular, we consider polynomial subspaces and subspaces of L-spline functions. We derive the asymptotic order of accuracy for the approximate eigenvalues, as well as for the approximate eigenfunctions.

2. As our first example, we consider $P_0^{(N)}$, the (N+1-2m)-dimensional subspace of $L^2_{<0,1}$, consisting of all real polynomials of degree $\leq N$ which satisfy the boundary conditions of (2).

Let ${\mathbb B}$ be the operator with the domain ${\mathcal D}({\mathbb M})$ defined by

(13)
$$B \times = x^{(2m)} \quad \text{for } x \in \mathfrak{D}(M).$$

The problem Bx=0, $x\in\mathcal{D}(M)$ has only the trivial solution. On the basis of the functional analytical theory of differential equations there exists a continuous operator B^{-1} mapping $L^2_{\langle 0,1\rangle}$ into $L^2_{\langle 0,1\rangle}$ such that

 $B^{-1}u = \int_0^1 G(t, \tau) u(\tau) d\tau, \quad u \in L^2_{<0,1>},$ where $G(t, \tau)$ is the Green's function for the problem Bx = 0.

We now present an elementary lemma which will be essentially used later.

Lemma 1. With the assumptions of (3), (8) and (13), let $C = M_{AL} \, B^{-1}$ be a linear operator whose domain is

 $\mathfrak{D}(\mathcal{C}) \ , \quad \mathfrak{D}(\mathcal{C}) = \{ \omega \in L^2_{<0,1\rangle}; \ \omega \ \text{is piecewise continu-}$

ous on $\langle 0, 1 \rangle$ and whose range is in $L^2_{\langle 0, 1 \rangle}$. Then C is continuous.

<u>Proof.</u> If $f \in \mathcal{D}(C)$ then there exist the points $\{x_i\}_{i=1}^{2n}$, $x_i \in (0,1)$ such that $f \in C(\bigcup_{i=0}^{n} (x_i, x_{i+1}))$, where $x_0 = 0$, $x_{k+1} = 1$.

If $x \in (x_i, x_{i+1})$, $0 \le i \le k$, it follows from the definition of the Green's function that

 $(B^{-1}f)^{(j)}(x) = \int_{0}^{1} G_{x}^{(j)}(x,t) \cdot f(t) dt \text{ for } 0 \le j \le 2m - 1$ and $(B^{-1}f)^{(2m)}(x) = f(x).$

Since Mu can be written as

 $M_{cL}[LL] = \sum_{i=0}^{2m} a_i(x) L^{(i)}(x), a_i(x) \in C_{(0,1)}, 0 \le i \le 2m,$ we have $Cf = M_{cL} B^{-1} f = v$, where $v(x) = a_{2m}(x) \cdot f(x) + \int_{1}^{2m-1} (\sum_{k=0}^{2m-1} a_k(x) G_{k}^{(i)}(x,t)) \cdot f(t) dt$ for each $x \in (x_i, x_{i+1}), 0 \le j \le k$.

It follows by direct computation that $\|Cf\| \leq Q \cdot \|f\|$, where

$$G = a + b, \qquad a = \max_{x \in \{0,1\}} |a_{2m}(x)|,$$

$$b = \left(\int_{0}^{1} \int_{1}^{1} |\sum_{i=0}^{2m-1} a_{i}(x) G_{x}^{(i)}(x,t)|^{2} dt dx\right)^{\frac{1}{2}}.$$

Note that Q does not depend on {x;} and this completes the proof of the lemma.

Corollary. With the assumptions (3) and (8), let $R_N\subset \mathcal{D}(M)\cap \mathcal{D}(C) \text{ Then there exists a constant } C_4 \text{ ,}$ dependent on β and m but independent of N , such that

$$\sigma_{N}^{\prime} \equiv \inf_{t \in \mathcal{R}_{N}} \| g_{t} - t \| \leq C_{4} \cdot \inf_{t \in \mathcal{R}_{N}} \| g_{t}^{(2n)} - t^{(2n)} \|^{2} .$$

(We make use of the fact that the eigenfunctions $\{g_i\}$ of (1) - (2) are of the class $C_{(0,1)}^{(2m)}$ and $M_{(ii)}g_i$ = $(\lambda_i - \mu_i) \cdot g_i$.)

We remark that if $N \ge 2m$, then the set $P = \{t^{(2m)}, t \in P_0^{(N)}\}$ is a finite dimensional subspace of $\mathcal{D}(M) \cap \mathcal{D}(C)$ consisting of all real polynomials of the degree $\le N - 2m$. The following result is obtained from Corollary and Jackson's Theorem of [4], p.113.

Theorem 1. (a) With the assumptions (3) and (8), let λ_j^N be the approximate eigenvalue of (1) - (2), obtained by applying the method of least squares to the subspace $P_0^{(N)}$ of $L_{<0,47}^2$, where $N \geq 2m$. If the eigenfunction g_j of (1) - (2) is in $C_{<0,47}^{(4)}$, with $t \geq 2m$, then there exists a constant D_j dependent on m and j but independent of N, such that

$$(14) |\lambda_{\frac{1}{2}} - \lambda_{\frac{1}{2}}^{N}| \leq D_{1} \cdot \left[\frac{1}{(N-2m)^{\frac{1}{2}-2m}} \cdot \omega \left(g_{\frac{1}{2}}^{ct}, \frac{1}{N-2m}\right)\right]^{2}$$

for all $N \geq 2m$, where ω is the modulus of continuity.

(b) With the assumptions (a) let

$$|\lambda_{j-1}| < |\lambda_{j}| < |\lambda_{j+1}|$$

and let \mathcal{M}_N be the approximate eigenfunction for (1) - (2), obtained by applying the method of least squares to $P_0^{(N)}$. Then there exists a constant \mathcal{D}_2 and an integer N_0 , dependent on j and m but independent of N, such that

(15)
$$\|g_{j} - u_{N}\| \leq D_{2} \cdot \frac{1}{(N-2m)^{t-2m}} \cdot \omega(g_{j}^{(t)}, \frac{1}{N-2m})$$
 for all $N \geq m$.

(c) If, in addition, the eigenfunction φ_{2} is analytic in some open set of the complex plane containing the interval $\langle 0,1 \rangle$, then there exist constants α_{1} and

$$(u_2, u_1 \in \langle 0, 1 \rangle, i = 1, 2, \text{ such that}$$

$$\lim_{N \to \infty} |\lambda_j^N - \lambda_j|^N = |u_1|,$$

and

Remark 1. If there exists a constant $K_2 \ge 0$ such that $\max_{\mathbf{x} \in \{0,1\}} |\mathbf{u}(\mathbf{x})| \le K_2 \cdot \|\mathbf{M}_{\mathbf{u}}\|$ for all $\mathbf{u} \in \mathcal{D}(\mathbf{M})$, then we may obtain error estimates in the uniform norm for the approximate eigenfunctions.

Remark 2. If the hypotheses of Theorem 1 hold, then the error of the approximate eigenvalue \mathcal{A}_{+}^{N} has the order of magnitude $\sigma\left(d^{-2t+4m}\right)$ and the error of the approximate eigenfunction u_{N} in the norm $\|\cdot\|_{L^{2}(0,1)}$ has the order of magnitude $\sigma\left(d^{-t+2m}\right)$, where $d=\dim P_{0}^{(N)}=N+1-2m$.

We now assume that $\lambda_i \neq 0$ for i=1,2,... and consider S_N , the (N+1) -dimensional subspace of $L^2_{<0,1>}$ consisting of all real functions of the form

 $M^{-1}t$, where t is a real polynomial of the degree $\leq N$. From Lemma 1 and Lemma 5 of [3], we obtain Theorem 2. Let the assumptions (a) in Theorem 1 be

satisfied and let $\lambda_i \neq 0$ for any integer i. Let

 λ_{j}^{N} be the approximate eigenvalue of (1) - (2) obtained by applying the method of least squares to the subspace $R_{N} \equiv S_{N}$ of $L^{2}_{<0,1>}$. Then there exists a consonant D_{3} , dependent on j and m but independent of N, such that

(16)
$$|\lambda_{j}^{N} - \lambda_{j}| \leq D_{3} \cdot \frac{1}{N^{2t}} \cdot [\omega(u^{(t)}, \frac{1}{N})]^{2}$$

for all $N \ge 1$.

If, in addition, the assumptions (b) in Theorem 1 are satisfied, then there exist a constant $\mathbf{D_4}$ and an integer N_a such that

(17)
$$\|u_{N} - \varphi_{j}\| \leq D_{4} \cdot \left[\frac{1}{N^{t}} \cdot \omega \left(u^{(t)}, \frac{1}{N}\right)\right]$$

for $N \ge N_a$.

Remark 3. Theorem 2 gives us that $|\lambda_{i}^{N} - \lambda_{j}| = \sigma (d^{-2t}),$

and
$$\|u_N - g_j\| = \sigma(d^{-t})$$
, where $d = \dim S_N = N+1$.

3. As our second example, we consider subspaces of L -spline functions introduced in [5]. We now restrict for reasons of brevity to the special homogeneous boundary conditions of the following form

(18)
$$u^{(k)}(0) = u^{(k)}(1) = 0, 0 \le k \le m - 1$$
.

Let L be the m -th order linear differential operator defined by

 $Lu = \sum_{k=0}^{m} a_{k}(x) \cdot u^{(k)}(x), x \in (0, 1)$

for all $u \in K_2^m < 0, 1 > .$ We assume that $a_{2k}(x) \in K_2^m < 0, 1 > , 0 \le 2k \le m$, and $a_{2m}(x) \ge \omega > 0$ for all $x \in < 0, 1 > .$

Let $\pi: 0 = x_0 < x_1 < ... < x_N < x_{N+1} = 1$ denote a partition of the interval (0, 1) and let $x = (x_0, x_1,, x_N, x_{N+1})$, the incidence vector, be an (N+2)-vector with positive integer components each less than or equal to m, i.e., $1 \le x_i \le m$, j = 0, ..., N+1. The class of all L-splines for fixed π and x with $x_0 = x_{N+1} = m$ we denote by $S_{\mathcal{P}}(L, \pi, x)$, which corresponds to the boundary interpolation of Type I in [5]. Note that if $Lu = u^{(m)}$ and x = (m, 1, ..., 1, m) then $S_{\mathcal{P}}(L, \pi, x)$ is the space of ordinary spline functions $S_{\mathcal{P}}(\pi)$. If x = (m, m, ..., m) and $Lu = u^{(m)}$, then $S_{\mathcal{P}}(L, \pi, x)$ is the Hermite space $H^{(m)}(\pi)$ of piecewise polynomial functions.

We remark that if m>m, then $Sp_0(L,\pi,z)$, the subset of elements of $Sp_0(L,\pi,z)$ which satisfy the boundary conditions of (18), is a finite-dimensional subspace of $D(M)\cap D(C)$.

Let $\{\pi_k\}_{k=1}^{\infty}$ be a sequence of partitions of $\langle 0, 1 \rangle$ such that $\lim_{k \to \infty} \overline{\pi}_k = 0$, $\overline{\pi}_k = \lim_{k \to 0} |x_i - x_{i+1}|$ and let 6 be a positive constant such that $6\underline{\pi}_k \geq \overline{\pi}_k$ for all $k \geq 1$, $\underline{\pi}_k = \min_{k \to 0, \dots, N_k} |x_i - x_{i+1}|$. Let $x^{(k)}$

be an incidence vector associated with $\boldsymbol{\pi}_{\!\!\boldsymbol{k}}$.

If $\varphi_i \in K_2^{2^m} < 0, 1 > , m > m$, then there exist a positive integer k_0 and a constant G, dependent on i and i but not on i, such that

 $\|\varphi_{j}^{(2m)} - s_{k}^{(2n)}\| \leq G \cdot (\overline{\eta}_{k})^{2m-2m} , \quad k \geq k_{0} ,$ where s_{k} is a unique $S_{l}(L, \eta_{k}, x^{(k)})$ -interpolate of φ_{j} (cf.[5]). Since $s_{k} \in S_{l}(L, \eta_{k}, x^{(k)})$, the following result follows immediately from Corollary.

Theorem 3. Let $\{\pi_k\}_{k=1}^{\infty}$ be a sequence of partitions of $\langle 0,1 \rangle$ such that $\lim_{k \to \infty} \overline{\pi}_k = 0$ and $\mathscr{C} \cdot \underline{\pi}_k \geq \overline{\pi}_k$ for all $k \geq 1$, where \mathscr{C} is a positive constant. Let $\{\infty^{(k)}\}_{k=1}^{\infty}$ be a corresponding sequence of incidence vectors associated with $\{\pi_k\}_{k=1}^{\infty}$. With the assumptions (3) and (8), let λ_{k}^{N} be the approximate eigenvalue of (1) - (18) obtained by applying the method of least squares to the subspace $R_N \equiv Sp_0(L, \pi_k, \infty_k)$ of $L^2_{\langle 0,1 \rangle}$. If the eigenfunction \mathscr{G} of (1) - (13) is in $K_2^t \langle 0,1 \rangle$ with $t \geq 2m > 2m$, then there exist a constant \mathscr{G} , dependent on \mathscr{F} and \mathscr{F} and \mathscr{F} but independent of \mathscr{F} , dependent on \mathscr{F} and \mathscr{F} and \mathscr{F} but independent of \mathscr{F} ,

(19)
$$|\lambda_{j}^{N} - \lambda_{j}| \in G \cdot (\overline{\eta_{k}})^{4m-4m}$$

and a positive integer & such that

for all M ≥ M, .

If, in addition,

$$|\lambda_{j-1}| < |\lambda_{j}| < |\lambda_{j+1}|$$
,

then there exist a constant G_1 dependent on j, m and m but independent of k, and a positive integer k_1 such that

(20)
$$\| u_N - \varphi_j \| \leq G_j \cdot (\overline{\eta_N})^{2m-2m}$$

for all & 2 kg.

Remark 4. Let $\{\pi_k\}_{k=1}^{\infty}$ be a sequence of partitions of $\langle 0,1 \rangle$ such that $\lim_{k\to\infty} \overline{\pi}_k = 0$ and let $\{\infty^{(k)}\}_{k=1}^{\infty}$ be a corresponding sequence of incidence vectors associated with $\{\pi_k\}_{k=1}^{\infty}$.

Define $\mathcal{G}_{\mathbf{k}}$ as the class of real-valued functions of the form

w = B⁻¹Y, Y \in Sp (L, $\pi_{\mathbf{k}}$, $\mathbf{z}^{(\mathbf{k})}$), \mathbf{k} = 1,2,.... With the assumptions of (3) and (8), let λ_j^N be the approximate eigenvalue of (1) - (18) obtained by applying the method of least squares to the subspace $R_N \equiv \mathcal{F}_{\mathbf{k}}$. If $\mathcal{G}_j \in K_2^t < 0$, 1>, $t \geq 2m + 2m$, then there exist constants G_2 , G_3 and a positive integer \mathbf{k}_0 such that

$$|\lambda_{j} - \lambda_{j}^{N}| \leq G_{2} \cdot (\widetilde{\pi_{R}})^{4m}$$

for any & > ko.

If, in addition, $|\lambda_{j-1}| < |\lambda_j| < |\lambda_{j+1}|$, then there exist a constant G_4 and an integer k_1 such that

$$\|u_N - g_j\| \leq G_4 \cdot (\overline{\mathfrak{I}}_{k})^{2m}$$

for any $k \ge k_1$. This follows from Lemma 1 and Theorem 9 of [5].

In [7], Ciarlet, Schultz and Varga obtain the asymptotic order of accuracy for the approximate eigenvalues and for the approximate eigenfunctions by applying the Rayleigh-Ritz method to $P_0^{(N)}$ and to $Sp_1(1,\pi,z)$. Comparing the above theorems and remarks with the results of [7] we see that the asymptotic order of accuracy for the approximate eigenvalues and the approximate eigenfunctions obtained by the method of least squares are very close to those of [7]; more precisely, (16), (17), (19) and (20) correspond to (5.1), (5.4), (5.9) and (5.10) of [7], respectively.

We remark on the other hand that the principal advantage of the method of least squares is that we need not know the eigenvalue λ_i for i < j and the corresponding eigenfunctions to obtain an approximation of λ_j . Moreover, one can obtain upper or lower numerical approximations of the eigenvalues and the eigenfunctions of (1) - (2) by choosing a parameter μ appropriately.

The behaviour of the constants C_i and K_i , i=1,2,3 of (11) depending on j are studied and the results will be published later.

References

[1] K. NAJZAR: On the method of least squares of finding eigenvalues of some symmetric operators,

Comment.Math.Univ.Carolinae 9(1968),311-323.

- [2] K. NAJZAR: On the method of least squares of finding eigenvalues and eigenfunctions of some symmetric operators, II, Comment.Math.Univ.Carolinae 11(1970),449-462.
- [3] K. NAJZAR: Error-estimates for the method of least squares of finding eigenvalues and eigenfunctions, Comment.Math.Univ.Carolinae 11(1970), 463-479.
- [4] I.P. NATANSON: Konstruktive Funktionentheorie. 1955.
- [5] M.H. SCHULTZ, R.S. VARGA: L-splines, Numer.Math.10 (1967),345-369.
- [6] J.H. AHLBERG, E.N. NILSON, J.L. WALSH: The theory of splines and their applications, 1967.
- [7] P.G. CIARLET, M.H. SCHULTZ, R.S. VARGA: Methods of high-order accuracy for nonlinear boundary value problems, III, Numer. Math. 12(1968), 120-133.
- [8] M.A. NAJMARK: Linejnyje differencialnyje operatory, 1969.

Matematicko-fyzikální fakulta Karlova universita Malostranské nám.25, Praha 1 Československo

(Oblatum 11.12.1970)