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ERROR BOUNDS FOR EIGENVALUES AND EIGENFUNCTIONS OF SOME
ORDINARY DIFFERENTIAL OPERATORS BY THE METHOD OF LEAST
SQUARES

K. NAJZAR, Praha
1. We shall consider a numerical approximation by the

method of least squares for the eigenvalues and eigenfunc-

tions of the following real boundary value problem

(1) M (x) = Aenn (X)), x€ (0,1)
subject to the homogeneous boundary conditions
(2) Ulw(x)) =0,

where

M (x) ’;go (- 2. Ly ()P (x)1P

(3 ’f“é("‘)ecctf,)m #=4..,m, 2,(x)>0 on €0,1)

and the homogeneous boundary corditions of (2) consist of

2m linearly independent cond .tions of the form

V2.
@) 5 Sy a0+ my g TNV 1m0, 464 £2m .

We assume that the eigenvalue problem (1) - (2) is self-

adjoint in the sense that
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(5) (Muw,v )= (u,Mv) for all u, re D,

where £ denotes the set of real-valued functions of the
2m)
<0,1>
conditions (2) and

class C which satisfy the homogeneous boundary

q
(w, )= S (t)-v(t)dt for w(t), » () in PP

We also assume that there exists a real constant K such

that

(6) (Muw,w) 2 K-(u,s) for all we D .

With the assumptions (5) and (6) the eigenvalue pro-
blem of (1) - (2) has countably many eigenvalues { .h,'}’-‘:_q
which are real and have no finite limit point, and can be

arranged as follows:

Ve £ e e

(7) .7\,1 < .7L2 € A

The associated normalized eigenfunctions {9?- (x 7};1 5
. € 0OV form a complete orthogonal system in

% <0,1>

16 .

<0,13

For each positive integer & let K:’ <0,1> deno-
te the collection of all real-valued functions « defined
on €0,1)> such that each u € C::":; and «™"(x)

) 2
€ L<°’,,) .

M denote a differential operator of the form (1) with
the domain P (M) in

is absolutely continuous with w Now let

L"“’“ -~ a real separable

Hilbert space, where

DM ={ue K:m’«,,“; u satisfies (2)%.
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Let {Y, 1% ¥, € (M) be a totally complete sys-

=4 ?

tem (cf.[1]) and @ Dbe a real number such that

(8)  fpfl A - @l =12, - @l > 0.

By Theorem 3 of [11, we have

e
where Q"" is the smallest eigenvalue of the algebraic

eigenvalue problem

ANAL«—G'@NM- = 0 ;

’

i - I3 “ = N
the matrices ‘R'N { <4 }4,4._1 and :6~ {/3‘:3. }‘,”.._4

have their entries given by
oo‘-_’- - (MG"%' M@Yé)’ {31"= (!’;,Y‘), 4:,’:.4,..-’N,

M@V-Mv-tu-v for v € M) .

L 2 i~
et RN and Q’N be subspaces of L<°,1> determi
ned by the functions {¥; 3!_1 and {M(w Y; 34".4 , Tres-
pectively.

By Theorem 1 of [3] there exists a constant C1 , indepen-

dent of N , such that
2
q’n—l.ﬂ.’--(blfcq.d;‘ ,

d;- imfly,'-tll

teR, ?

where % is @ normaliged eigenfunction of M associa-
ted with the eigenvalue ﬂ.’- . We shall call
N :
M =+ nign A, - ]
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an approximate eigenvalue. Thus
(9) Ia, - a4 £ G-t
Suppose the eigenvalues {1‘-'} of (1) - (2) satis-
fy the following assumption
(10) Ih4_1l< I.7L4|<M.é+4l .

Construct {“’N 3 such that the following conditions be

satisfied:
1) wNeRN,Iu.NH-4,
2) gy = Mg «y 1,
3 (e, My, 20 .

By Theorems 2 and 3 of [3] there exist constants C,, C,,X,

sz K, and an integer _N’1 such that for N =2 _N1
(11) Jt.:‘-(u.-o-gu'/dqn[(M“uN,uN)J -
A2 N 2
Czd;‘élhé—-ﬂ.t-léc."d; ,
(12) 'uﬂ-?ilécﬁ'd;{ .
and '

. g2 - aN .l
J(z r:"él.a.5 Aéléx,‘ €y >

lM«“—?%.éKg-EN s
where €, = Quf"(“u“u""nn .

We shall call “N an approximate eigenfunction for (1) -
(2).

We now apply the method of least squares to appropri-
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ately selected finite dimensional subspaces Rn of
M) .

In particular, we consider polynomial subspaces and sub-
spaces of L -spline functions. We derive the asymptotic
order of accuracy for the approximate eigenvalues, as well

as for the approximate eigenfunctions.

the

2. As our first example, we consider Po(") ,

_ s : 2
(N +1-2m) -dimensional subspace of Leo,1>

ing of all real polynomials of degree £ N which satis-

consist-

fy the boundary conditions of (2).
Let B be the operator with the domain P (M) de-
fined by

(13) Bx = x?™  for x € DM .

The problem Bx = 0, x € ) (M) has only the trivial
solution. On the basis of the functional analytical theory

of differential equations there exists a continuous opera-

tor B-? mapping I'2<o,1> into L2<o,4> such that
1
Blu = fE(t, 2 ulwldr, well,,, ,

where G (t,2 ) is the Green’s function for the problem
Bx = 0. .
We now present an elementary lemma which will be essenti-
ally used later.

Lemma 1. With the assumptions of (3), (8) and (13),

let C = ,M(“ :B"" be a linear operator whose domain is

D), D) =4uw € Lto,1>3 4 is piecewise continu-
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ous on < 0,1>} and whose range is in L%, ,, . Then
?
C is continuous.
Proof. If £ € & (C) then there exist the points

I
{x‘}:’ﬂ , X; € (0,1) such that fe C(J (x,x

»,

+1

where Xx, = 0, o = 1

s e :
i4q)r 0% 4 £ & , it follows from the

definition of the Green’s function that

If xe (x‘:,.x

1 s
(B )P x) = L, 8 fDdt for 02 5 & 2m -1
and (B1F)2™ (x) = £(x) .

Since .M‘w can be written as

2m 5
MMEuJ = &goa"‘ (x )u“"(x),a,‘.'(.x)e C

<0, » 0€i£2m,

we have Cf = M‘“ B1f= o , where
1 2m-1
v(x) = @y, (x)FO)+ SOZ . (x) GP(x, ). F(t)at
for each x & (“9':""5.0-4)’ 0€ 4 & &
It follows by direct computation that NCf N & Q-0+ y

where

G =a+tr a = mac
» “‘<0’4> la—zw (X), >

201
<) 2
re S 18 e a9, 12 at anrt
Note that @ do?e not depend on {x-}.‘ and this

4Y 41

completes the proof of the lemma.
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Corollary. With the assumptions (3) and (8), let
KNC QM) A DCC) , Then there exists a constant C+ ”

dependent on 7 and m but independent of N, such that
: . @an) am) 2
. -t £ C - S ]
h= i gt e G {1t
(We make use of the fact that the eigenfunctions {%} of

2m)
(1) - (2) are of the class (',(o,‘,> and M‘“ ®;

= (_a,’. —(q,).%.)
We remark that if N 2 2m , then the set P =
= {ta'”: te Pom’} is a finite dimensional subspace of
D(M) A D(C) consisting of all real polynomials of the
degree < N -~ 2m , The following result is obtained
from Corollary and Jackson’s Tﬁeorem of [4], p.113.
Theorem 1. (a) With the assumptions (3) and (8), let

JL'; be the approximate eigenvalue of (1) - (2), obtained
by applying the method of least squares to the subspace

N) ] i
Po of L<°’47 , where N 2 2m , If the eigenfunc-
. _ c . ) . o
tion g of (1) - (2) is in c<o’4> s with t 2 2m,

then there exists a constant D dependent on ~m and 3.

1
but independent of N , such that

N 4 . Cﬂ’_4_._ 2
(14) lké-.ﬂ’-lé D1.L-(N-2m«)"2”’ wc?ﬁ ’N-Znu

forall N =2 2m where ¢ is the modulus of conti-

?
nuity.

(b) With the assumptiona (a) let

Rl < 1250 < 12, ]

a1
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and let Ay be the approximate eigenfunction for (1) -

(2), obtained by applying the method of least squares to

Po‘m . Then there exists a constant Dz and an integer

No , dependent on 3 and m but independent of N,
such that

1 1
(15) Iq,--unﬂé%._———{q;.w(%m, m)

(N=-2m)
for all NZ m .
(¢) If, in addition, the eigenfunction & is ana-
lytic in some open set of the complex plane containing the

interval <0, 1> then there exist constants (%4 and

?

“2 v € <0,4),4',.*4,2, such that
T 12N
N‘t—:z la%"a?-l = (((,1 A

and .
Jm (M py = 0¥ =
Remark 1. If there exists a constant ](2 ] such
that x%)lu(.x)lél(z. IM“M,H for allu &€ D(M),

then we may obtain error estimates in the uniform norm for
the approximate eigenfunctions.
Remark 2. If the hypotheses of Theorem 1 hold, then

the error of the approximate eigenvalue A';-_ has the

-ﬁt-c»km)

order of magnitude o (d and the error of the

approximate eigenfunction w« in the norm fl « {

N
has the order of magnitude o (d~t+2m) , where

dcdzmr;”’-‘-um-zm.

L2<0,1>

We now assume that A“ % 0 for v =4,£,... and

consider 3" , the (N +4) -dimensional subspace of

L’.(p 1> consisting of all real functions of the form
v
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M-t " where ¢t is a real polynomial of the deg-
ree £ N . From Lemma 1 and Lemma 5 of [31, we obtain
Theorem 2. Let the assumptions (a) in Theorem 1 be

satisfied and let A; # 0 for any integer 4 . Let

.7&: be the approximate eigenvalue of (1) - (2) obtai-
ned by applying the method of least squares to the subspa-
ce R, = SN

sonant :D$ , dependent on 4 and m but independent of

of ]'.,2«,",> v Then there exists a con-

N , such that

N 1. w 4 2
16) 12 - 2,1 Do Lo () £

for all N = 1.
If, in addition, the assumptions (b) in Theorem 1 are sa-
tisfied, then there exist a constant D,', and an integer

_No such that

7)) luy -9 1 €D, [.ﬁ_{ fw W, N'f_)J

for N 2 N, .
Remark 3. Theorem 2 gives us that

N -2t
IJL‘:_-.‘IL,;I-&Cd. ) ’

and Ilu," -9?,l = o (d" %) , Where d-dém,8N=N+4.

3. As our second example, we consider subspaces of
L, -spline functions introduced in [5]. We now restrict
for reasons of brevity to the special homogeneous bounda-

ry conditions of the following form

(18) w0 =™ =0, 06 ke m -1 .
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Let L, be the m -th order linear differential opera-
tor defined by
m
Lu -‘”Zoa.h(x)-um)(x) , x€ <0,1>
for all w e K™ <0,12 . We assume that a, (x) e
e X¥<0,15, 0« kb €m
all x 6 <0,4> .

Let ¢ 0 = Xy < X< o < XXy = 4 denote a parti-

, and a, (x) T @ > 0 for

tion of the interval <0, 1) and let z = (%,, Z,, ...

oo, ZN, z"’,'

vector with positive integer components each less than or

), the incidence vector, be an (N +2) -

equal to m , i.e., 1€ 2, & m, G=0,..., N+1 .
The class of all L -splines for fixed ## and 2z with
X, = Xy, .= mv we denote by S»p, (L, x, zx ) , which
corresponds to the boundary interpolation of Type I in
[5]. Note that if Lu = «™ and x = (m,1,...,1,m)
then 3p CL, m, 2 ) 1is the space of ordinary spline

functions Sp (), If 2= (m,m,..., m ) and

Lu = @™ , then Sn (L,a, ) is the Hermite spa-
ce H™ (m) of piecewise polynomial functions.

We remark that if m > m , then Sp, (L,mr, ),
the subset of elements of &f (L, s, £ ) which satis-
fy the boundary conditions of (18), is a finite-dimensio-
nal subspace of (M) A D(C) .

Let (ﬂ“}:.q . be a sequence of partitions of < 0,1>

such that fim 7 =0, 7 = &_ml Xy = Xgo ] and
let & be a positive constant such that &g, = T,

> . . 7S
for all & 4, £~=&M"~I X Xy e q | . Let =
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be an incidence vector associated with ’ﬁ .
If % € K:""" <0,1>, m > m , then there exist a

positive integer de and a constant & , dependent on

# @and m  but not on fe, such that

l‘?;mm,“ ab“"w‘é G, (ﬁh)mm-z'n. , o = ho s

where &, is a unique Sp (L, Tae s PR ~-interpo-
. )
late of @ (cf.[5]). Since 4, @ &, (L, m, , 2%%), the

following result follows immediately from Corollary.

Theorem 3. Let { m }:_4 be a sequence of parti-
tions of < 0,1> such that tom 7, = Q@ and
’ Koo

6'...1_7“?_;1» for all % = 4 , where & is a

positive constant. Let ¢ 2 }:.1 be a corresponding

sequence of incidence vectors associated with {:rg_?:” =
With the assumptions (3) and (8), let h;‘_ be the ap-
proximate eigenvalue of (1) - (18) obtained by applying
the method of least squares to the subspace

Ry= 8p, (L, my, =) of L, ,, .

If the eigenfunction % of (1) - (13) is in K;_ <0, 1>

with ¢t 2 2em >2m , then there exist a constant G,
dependent on j. and m and mbut independent of Ao y

and a positive integer *‘o such that

N L (= yam-km
(19) l&é—ﬂ.’-l £ G (JT“)

for all M 2 b, v

If, in addition,
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IRy 1< 1250 < 12y, .1

?
then there exist a constant 61 dependent on j,, m and
m but independent of e , and a positive integer h4

such that

—_ \2m-2m
(200 lay - 1 &« G- ()

for all R =2 k4 .
Remark 4. Let {dmp, ?:_1 be a sequence of parti-

tions of < 0,1 such that “j_%y o = 0 and let

{ z‘“’ ;:-1 be a corresponding sequence of incidence vec-
. . -4

tors associated with 4 Mo Soewq -

Define bfv as the class of real-valued functions of the

form

w=3"Y ¥YeSpn (L,m,z™), & =1,2,. .
With the assumptions of (3) and (8), let ﬁ,; be the ap-
proximate eigenvalue of (1) - (18) obtained by applying
the method of least squares to the subspace R = ':fh_ .
If g € K: <0,1> , t+ =2 2m + 2/m , then there ex-

ist constants Gz , Cv’3 . and a positive integer e, such
that
N = \é&m
5 = A < .
| A 3.? ] G2 (m )
for any & = 'k’o s
If, in addition, .l J.a-,_,‘[< I.?t?.l < "7"54-1 | , then the-

re exist a constant G',‘, and an integer k,, such that

- 2m,
I\.a.N - q?-ﬂ <= G/,.' (7, )
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for any &k = ,Oo1 . This follows from Lemma 1 and Theo-
rem 9 of [51.

In [7], Ciarlet, Schultz and Varga obtain the asym-
ptotic order of accuracy for the approximate eigenvalues
and for the approximate eigenfunctions by applying the
Rayleigh-Ritz method to Pocm and to Sp (L, z) .
Comparing the above theorems and remarks with the results
of [7] we see that the asymptotic order of accuracy for
the approximate eigenvalues and the approximate eigenfunc-
tions obtained by the method of least squaree are very
close to those of [7]; more precisely, (16), (17), (19)
and (20) correspond to (5.1), (5.4), (5.9) and (5.10) of
[7], respectively.

We remark on the ether hand that the principal advan-
tage of the method of least squares is that we need net
know the eigenvalue A, for 4 < 7 and the corresponding
eigenfunctiens teo obtain an appreximation of Aé .
Moreover, ene can obtain upper or lewer numerical approxi-
matiens of the eigenvalues and the eigenfunctions of (1) -
(2) by choosing a parameter ¢ appropriately.

The behaviour of the constants C; and K,, ©+ =

=41,2,3 of (11) depending on F are studied and the
results will be published later.
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