

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,2 (1971)

AN EXAMPLE CONCERNING SET-FUNCTORS

Jan REITERMAN, Praha

In her paper [2], V. Trnková studied set-functors preserving limits of certain diagrams, leaving open the problem of the existence of a big set-functor preserving finite limits. The aim of this note is to construct a big set-functor preserving finite limits and colimits up to a given cardinal (see Definition 4). The existence of a proper class of measurable cardinals is assumed (see Definition 2).

Definition 2. A cardinal ∞ is said to be measurable if there exists an ∞ -complete ultrafilter on ∞ .

Convention 1. Throughout this note, the word functor denotes a wovariant functor from the category of sets into itself.

Definition 3. A functor F is said to be small if

AMS, Primary 18B05

Ref.Z. 2.726.2

Secondary -

there exists a set A such that for every set X + B $F(X) = \bigcup_{f \in A \to X} F(f) [F(A)].$

A functor F is said to be big if it is not small.

<u>Definition 4.</u> Let $D: \mathcal{D} \to \mathcal{S}$ be a diagram (\mathcal{S} is the category of sets). Let $(X, \{\mathbb{T}_d : d \in \mathcal{D}^{\bullet b}\})$ be its limit (or colimit resp.). Let F be a functor. We shall say that F preserves limit of \mathcal{D} if $(F(X), \{F(\mathbb{T}_d); d \in \mathcal{D}^{\bullet b}\})$ is a limit (or colimit resp.) of $F \circ \mathcal{D}$.

We shall say that F preserves limits (or colimite resp.) up to a cardinal. ∞ if it preserves limit of any diagram $D: \mathcal{D} \longrightarrow S$ such that $\operatorname{card} \mathcal{D}^m < \infty$. (\mathfrak{D}^m is the set of all morphisms of \mathfrak{D} .)

We shall say that F preserves finite limits if it preserves limits up to \mathcal{B}_{o} .

Convention 2. Let F, G be functors. Denote $F \subset G$ if

- (1) $F(X) \subset G(X)$,
- (2) $x \in F(X) \Longrightarrow F(f)(x) = G(f)(x)$

holds for every X and every $f: X \longrightarrow Y$.

<u>Definition 5.</u> Let $\mathcal J$ be a directed class. Let a functor F_L be given for every L \in $\mathcal J$. Assume

- (3) $\iota < \iota' \Longrightarrow F_{\iota} \subset F_{\iota}$,
- (4) $\bigcup_{k\in \mathcal{I}} F_k(X)$ is a set for every set X.

Define a functor F by

 $F(X) = \bigcup_{x \in X} F_{x}(X)$ for every set X,

 $F(f)(x) = F_{\alpha}(f)(x)$ for every $x \in F(X)$, $f: X \to Y$,

 $x \in J$ is arbitrary with $x \in F_x(X)$. (The correctness of the definition of F(f) is guaranted by (3).)

Lemma 1. Let $F\iota$; $\iota \in \mathcal{I}$, $F = \bigcup_{\iota \in \mathcal{I}} F\iota$ be as in Definition 5. If $F\iota$; $\iota \in \mathcal{I}$ preserve finite limits, so does F.

<u>Proof.</u> I. It is well-known [1] that a functor preserving equalisers and products of any two sets preserves all finite limits.

II. F preserves equalisers. Really, if $f, g: X \rightarrow Y$ are arbitrary, $E = \{x; f(x) = g(x)\}, j: E \rightarrow X$ is the inclusion then

 $\{x \in F(X); F(f)(x) = F(g)(x)\} = \bigcup_{i \in J} \{x; F_i(f)(x) = F_i(g)(x)\} = \bigcup_{i \in J} F_i(i)[F_i(E)] = F(i)F[E].$

III. F preserves products of any two sets: Let X_4 , X_2 be sets, let $W_i: X_1 \times X_2 \longrightarrow X_i$ (i=1,2) be the canonical projections. We have to prove that for every $X_1 \in F(X_1), \ X_2 \in F(X_2)$ there is exactly one $x \in F(X_1 \times X_2)$ with $F(W_i)(x) = x_i$, i=1,2.

The existence of z: Choose $\iota \in \mathcal{I}$ with $x_i \in \mathcal{I}$ \mathcal{I} \mathcal{I}

The unicity of x: Assume that $F(\Pi_i)(x') = x_i$, i = 1, 2 for some $x' \in F(X_1 \times X_2)$. Choose L with $x, x' \in F_1(X_1 \times X_2)$. Thus we have $F_1(\Pi_i)(x') = x_i$, $F_1(\Pi_i)(x) = x_i$ which implies x = x'.

Lemma 2. Let F_{ι} ; $\iota \in \mathcal{I}$, $F = \bigcup_{i \in \mathcal{I}} F_{\iota}$ be as in Definition 5. If \mathcal{I} is a linear ordered proper class and if for any $\iota \in \mathcal{I}$ there is $\iota' \in \mathcal{I}$ such that $\iota < \iota'$ and $F_{\iota} \neq F_{\iota}$, then F is big.

<u>Proof.</u> Assume that F is small i.e. that there exists a set A such that for every set X + B

$$F(X) = \bigcup_{f:A \to X} F(f) [F(A)] .$$

As the ordering of J is linear, there is $\alpha \in J$ with $F(A) = F_{\alpha}(A)$. Consequently,

 $F(X) \approx_{f:X \to X} F_{\infty}(f) [F_{\infty}(A)] \subset F_{\infty}(X)$ for every $X \to \emptyset$. Choose $\beta \in \mathcal{I}$ with $F(\emptyset) = F_{\beta}(\emptyset)$ and put $\varepsilon = \max\{\infty, \beta\}$. Thus, we have $F(X) \subset F_{\varepsilon}(X) \subset F_{\varepsilon}(X)$ for $\varepsilon > \varepsilon$; hence $F_{\varepsilon} = F_{\varepsilon}$ for every $\varepsilon > \varepsilon$ which is in contradiction with the assumptions of the lemma.

<u>Definition 6.</u> Let $F\iota$; ι \in Ord be a system of functors such that $I \subset F_{\iota}$ for ι \in Ord (I is the identical functor.) Define functors G_{ι} , ι \in Ord by the transfinite induction as follows:

(5)
$$G_o = F_o$$
, $G_c = F_c \circ \bigcup_{\beta < c} G_{\beta}$.

(Evidently, G_{β} , β < C form an increasing sequence

and thus the definition of $\bigcup_{\beta < \zeta} G_{\beta}$ is correct.) Let us assume that

(6) for every set X there is an ordinal ∞ such that $F_{x}(G_{\infty}(X)) = G_{\infty}(X)$ for every $x > \infty$.

Then G_L , L \in Circl satisfy the conditions (3),(4) from Definition 5 and we can define a functor $Supp\ F_L$ by $Supp\ F_L = \bigcup_{G \in Circl} G_L$.

Remark 1. If F, G preserve finite limits, so does $F \circ G$.

Lemma 1'. Let $F\iota$, $\iota \in Ord$, $F=Supp\ F_\iota$ be as in Definition 6. If F_ι , $\iota \in Ord$ preserve finite limits, so does F.

Lemma 2'. Let F , ι \in Ord, F = Supp F_{ι} be as in Definition 6. If for any ι \in Ord there is $\beta > \iota$ with $F_{\beta} + I$, then F is big.

<u>Proofs</u> of the last two lemmas follow from the definition of Supp F_L and from Lemma 1, Lemma 2, Remark 1.

Now, we recall the definition of a functor $Q_{A, \P}$ where A is a set and $\mathcal F$ a filter on A (see [2]): If X is a set, then the elements of $Q_{A, \P}$ (X) are equivalence-classes on the set of all $f: A \to X$ with respect to the equivalence $f \sim Q = \{x; f(x) = Q(x)\} \in \mathcal F$. For every $f: A \to X$ define [f] by $f \in [f] \in Q_{A, \P}(X)$. If $f: X \to Y$ is an arbitrary mapping then $Q_{A, \P}(f)([q]) = [f \circ q]$. For every $X, x \in X$ define $\widehat{X}: A \to X$ by $\widehat{X}(a) = x$ for every $a \in A$ and put $a \in A$. Evidently, $a \in A$ is a monotransformation from I to $A \in A$.

Hence there is a functor $\widetilde{\mathcal{Q}}_{A,\mathcal{F}}$ and an isotransformation $\varepsilon:\mathcal{Q}_{A,\mathcal{F}}\longrightarrow\widetilde{\mathcal{Q}}_{A,\mathcal{F}}$ such that $\varepsilon^{\times}\circ (\iota^{\times}(x)=x)$ for every set X and $x\in X$. Thus, $I\subset\widetilde{\mathcal{Q}}_{A,\mathcal{F}}$.

Remark 2. [2] QA, 7 preserves finite limits.

Remark 3. (a) If ${\mathcal F}$ is a filter on A and X a set, then

card
$$Q_{A, \mathcal{F}}(X) \in (\operatorname{card} X)^{\operatorname{card} A}$$
.

(b) If $\mathcal F$ is an ∞ -complete ultrafilter and if X is a set with $\operatorname{card} X < \infty$ then $\widetilde{\mathcal G}_{A,\mathcal F}(X) = X$.

<u>Proof</u> of(a) is easy, (b) follows from the well-known fact that every function $f:A \longrightarrow X$ is (under our assumptions on X and F) constant on a set of the filter F.

Theorem. For every cardinal ∞ there exists a functor preserving finite limits and colimits up to ∞ .

<u>Proof.</u> Let fm_i ; $i \in Ord$; be a class of measurable cardinals such that $m_o > \infty$ and $m_\beta < m_\gamma$ whenever $\beta < \gamma$.

For every $\iota\in Crd$ choose a m_{ι} -complete ultrafilter \mathcal{F}_{ι} on m_{ι} . Put $F_{\iota}=\widetilde{\mathcal{G}}_{m_{\iota},\,\mathcal{F}_{\iota}}$ and define \mathcal{G}_{ι} as in Definition 6.

Let X be a set with $card \ X < m_{L}$ for some $L \in \mathcal{O}\!\!rd$. As each measurable cardinal is unaccessible, we can easily prove by the transfinite induction that $card \ G_{\beta}(X) < m_{L+1}$ for $\beta \leq L$. In particular, $card \ G_{L}(X) < m_{L+1}$ which implies (see Remark 3(b)) that $F_{\beta}(G_{L})(X) = G_{L}(X)$ for $\beta > L$.

Hence we can define $F = Supp F_{i}$.

 ${\bf F}_{}$ is big by Lemma 2' and it preserves finite limits by Remark 2 and Lemma 1'.

As \mathcal{F}_{L} are ∞ -complete ultrafilters, F_{L} defined above preserve coproducts up to ∞ (see [2]). It may be easily proved that $F = \sup_{L} F_{L}$ also does.

There was proved in [21 that a functor preserving coproducts up to ∞ , ∞ > κ_o , preserves coequalisers and thus preserves colimits up to ∞ .

References

- [1] J.M. MARANDA: Some remarks on limits in categories, Canad.Math.Bull.5(1962),133-136.
- [2] V. TRNKOVÁ: On descriptive classification of set-functors, I.II. Part I, Comment. Math. Univ. Carolinae 12(1971),143-175; Part II to appear later in the same journal.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 9.11.1970)

,