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SET FUNCTCRS

Vdclav KOUBEK, Praha

In the following paper we shall investigate set func-
tors. We shall characterize the behaviour of a functor on
all objects (sets) from its behaviour on its unattainable
cardinals, where a cardinal « is an unattainable cardi-~
nal of a functor F if there exists X  withcard X = o
and xe FX such that x ¢ Im Ff as soon as
carcl (domain f) < o .(A precise definition is given in the
part three.) We shall give a necessary and sufficient con-
dition for a functor to reflect monomorphisms, epimorphisms,
isomorphisms.

In the first part we introduce some definitions and
necessary conventions. In the second part we form some au-
xiliary propositions about sets. With their help we inves-
tigate the behaviour of a functor with respect to its unat-
tainable cardinals in part three, where there is also the
formulation of the main theorem on estimation of the beha-
viour of a functor. In the fourth part we show some construc-
tions of functors with a given class of unattainable cardi-
nals. Semiconstant functors, i.e. functors naturally equi-

valent with a constant functor up to a certain cardinality,
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are investigated in the part five. In the sixth part we

discuss the relation between a functor and the preservation
of monomorphisms, epimorphisms and isomorphisms.

' I want to express kind appreciation to doc. V&ra Trn-

kovd and RNDr Bohuslav Balcar with whom I discussed various

parts of the manuscript and especially to doc. Trnkové for

her encouragement in my work.

1.

Convention: Denote by S the category of all sets and
their mappings. Let o be a cardinal. Then S* denotes
the complete subcategory of S with X € (S%)7 ¢ card X < .
In agreement with the set theory a cardinal &« ia a set and
so caxd X = o means that there exists a bijection of X
and o .

Convention: Writing X £ Y we mean card X £ card Y
while X c ¥ means X 1is a subset of Y. By X =Y we
mean cand X = card Y . An ordinal also means the naturally
ordered set of all smaller cardinals. Denote by < the na--
tural ordering of the ordinals.

‘'If. A,B ‘are sets (categories), £ a mapping (func-
tor) f1rA—> B and C a subset of A (subcategory of A )
then f/C denotes the restriction of f to the domain C .

Definition: A set functor P is regular if:

1) Pd’x is a monomorphism where Q}x g =X .

2) Every monotransformation from C,/8 to F/S in S,
has an extension to a monotransformation from Cq to F in
. S . where é% is the category of nonvoid sets and their map-

pings and C‘, is a constant functor to one-point set.
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There is a difference between the notion of the regular
functor, as defined above, from the one in [5].
Lemma 1.1: A functor F is regular if and only if it

preserves prosections i.e.
VA,B F'J,A LFAl n _F‘i’B LFB]l = F".'AAB LF(AnB)]

where <+, , vy,

‘;Anb are the inclusions from A, B, AnB
to AuB respectively.

Proof: see [5] .

Lemma 2.1: For every set functor F there exists a re-
gular set functor F® such that F¥*/S§, = F/§ .

Proof: see [5] .

Convention: All functors throughout this paper will be
covariant regular functors from S to S . The superposition
F o G of arbitrary functors F and G is written left-hand
i.e. )

(FoG)YX = F(GX) .

Let us introduce some of the most commonly used functors:
1 - denotes the identical functor,
CM - a constant functor to M .

Convention: XY denotes tHe set of all mappings from
Y to X where Y arnd X are sets. Let A c B. Then 13:
denotes the inclusion from- A to B.

We recall the definitions of a distinguished point and

of a component of a functor.

Let T be a functor. A point. a € F1 will be cal-
led a distinguished point of F if there exists a transfor-
mation 4 : C' —~ P such that 2%(0) = @ where 1 is

ordinal.

Subfunctor F'.. of F, @ € F4 is a component of F
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if
X eF X&Fhxl=a, h:X—> 1.
There is a difference between the notion of a distinguished
point, as defined above, from the one in [5] .
Convention: Let X be a set, F a functor. FX deno-
tes the subfunctor of F  where F¥Z2 = U uzy FPLFY] .

Y<X fe
Let < be a cardinal. Denote by «’ the follower of o .

2.
Definition: Let X ©be a set, « a cardinal such that

o« £ X . let & be a system of sets such that:

Ucep X; Zel = Z 2 a; z1,zzsa,=>cz4nzz><oo.
Then we call the system & a (uxc ) -system.

Lemma 1.2: Let &« £ X £ #, . Then there exists a (i()-

system ¢ such that

@ = (m«ﬁ,X} , i.e. carxd § = (cak:x) .

Proof is evident.

Lemma 2.2: Let o < ¥ £ X .Then there exists a (fc) -
system ¢ such that & =~ X .

Proof is evident. _

Convention. Denote by (':’) the system of all sub-
sets Z of a gset X with Z =2 ax, « < ®, .

Clearly (z') is a (fr. ) -system.

Lemma 3.2: Let &, % < £ X.Then there exists a (i)-
system. ‘Q such that ¢ =~ X .

Proof is evident.
Let us introduce this known lemma:

Lemma 4.2: Let us assume the generalized c‘ontinuum hy-
pothesis. Let o« = K, be a cardiml. Let X be a set such
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(O‘XC) -system ¢ such

o . Then there exists a

that X =
that § = 2%,
Proof: Let w, be an ordinal such that @, = o« and
= 2 = w here 2 is
that @’ < W, => w’< x . Let S_QL'LJ% 2 w
ordinal. Clearly § = o . Let f be a mapping from @, to
2 .Let n,=1glg = f/domain g, g €5} .Clearly g = «
N r, =< ok as there exists an
2

and ﬁ' 2

* f = /eﬁ

@, o<
ordinal @ ¢ @, and f (@) * f (@ ). As 27° = 2%,
{/.:f I € 297} ia the system we were looking for. Q.E.D.

3
is said to be an un-

Definition 1: A cardinal o > 1
attainable cardinal of a functor F if Foe #+ F%x ’
Carcl (Fx ~-F%x ) is said to be the increase of the functor F

on o .
Denote by AF the class of all unattainable cardinals of the

functor F .

Lemma 1.3: Let o be an unattainbale cardinal of F
Let f: X — Y be a monomorphism Then Ff (FX -F*X) c

c FY-F=*Yy .
Proof: Suppose x e FX — F*X and Ff(x) = ¥, Y €
€ F®Y . There exists 9 :Y — X such that g eof=4d and
so Fg(y) = x. We have Fg (F*Y) ¢ F*X, hence x €
Q.E.D.

€ F*X . That is a contradiction,

Lemma 2.3: Let o« be an unattainable cardinal of F .
Let 24, Zz be sets such that Z1 c X, ch){, (z1nzz)< oc.

Then
. X X
(F1,11EFZ4]-—}""‘X)A(FchEFZzI-F“'X) =40
Proof: There exists a morphism g : X — 24 such that
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9,9{,:= <«d and g-(ZL) < oc . Suppose
x € [(Fi* [FE1-F%X) n (Fi} [FZ]- F"X) .
1 2
As 9,-1',:= <d there exists =z € FZ,, - F“Z4 such that
1

F{,;(z):x and therefore Fg_(x)—_- %, 9,94‘,:-,'1,4011,2
where J, : Zz—-» Y, }1-1:}’—* Z1 and Y < o« . Then P*Y=FY
and therefore
Fg (Fig LFZ,1-F*X) c Fh, [FY] c FA [F*Y] c F*Z,
and Fg (x)e F* Z, . That is a contradiction. Q.E.D.

Lemma 3.3: Let o be an unattainable cardinal of F .
Let $ be a (i)-aystem .
Then there exists a monomorphism = :  — FX - F*X

Proof: Lemma 1.3 impliea FL; LFEI N (FX-F<X)+ &
for every Z € § . Lemma 2.3 implies (PL: [PZ1]-}"°‘X) A

1

N (FingFzzl—F“X)=¢ for every Z , Z € § . Choose
xzePL;EFZJ~F°‘X for every Z € & . Put v :

: 9> FX-F*X,v(Z)=2z_ for every Z e d . T is evi-

1
dently a monomorphism. Q.E.D.
Convention: Denote
max (X,Y)= max (ecard X, card Y), min (X,Y) = min (card X, card Y),
where X and Y are sets.
Lemma 4.3: Let « be an unattainable cardinal of a fune-
tor F'. Then FX 2 max(Fa, X) for every set X with
X 2 mac (e, #,) .

Proof: Lemmas 3.2 and 3.3 imply FX = X . As every

functor maps monomorphisms into monomorphisms it holds that
Fx & FX. Q.E.D.

Lemma 5.3: Let o , o, be cardinals such that there
exists no unattainable cardinal oy of the functor F with

a6 < € < o,

4 3 ,. Let o, = K, . Then for every X with
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x, £ X<, FX £ (mac Fcr,,,X“") s

Proof: As there does not exist any unattainable cardi-

nal « of F with « <« £ X , we have FX =

= impli < *1) . Q.E.D.
48){‘1}-" [Fa,] . It implies FX € (max Fo,, X*7). Q
Lemma 6.3: Let o, , %, be unattainable cardinals of

F  with «, < a,,cc, < &, and let there exist no unattain-

able cardinal o, Wwith ® < X < X, . Let Foc,, be fini-

te. Let @ be the increase of F on o . Let X be a set

with «, éx<nnbn,(ocz,xo).ThenFXﬂF“4XVa..( x1x).
Proof: We prove FX 2 F“ X v a . (uu:: X) . For
every L ¢ X, ¥ = « there exists a monomorphism f, from

o, into X . Lemmas 1.2 and 2.3 imply FX 2 F X v

(e ) i
v a. «, .As for every monomorphism g : oy > X there

exists an isomorphism M_: o, — o, and Z € (?) such
- | 1 o,

. X .
that gt i, ;’fz ° by, we have Pg.[E;1J=F(1,;- -Fz)EFot}J .
3 X oy card
Evidently F JCU;GL(JR_ Flige f)[Fx,1) *F ' Xv a. ( o ) .

Also clearly F¥Xu{ () F(4fef,)(Fu))=F¥ X u (U, FfLFx D).
As there does not exist any unattainable cardinal e« of F
with @ < oc £ X it holds that FX =F¥Xu (U  Ff[Fe,)
and therefore FX ® F™X v a . (ca.:;,X) : Q.E.D.

Lemma 7.3: Under the presumptions of Lemma 6.3. Let %, £
€ X < x, . Then FX = X .

Proof: Lemma 2.2 implies FX = X . As there does
not exist any unattainable cardinal o« of F with X, <x£
€ X we have FX = e, TFIFx, 1 > X | Q.E.D.

Remark: Let oc be a finite unattainable cardinal of F

and let Foo = %, . Let X be a set such that o = sufe Ay -
Then FX & max (F«x, X) .
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Proof is evident.

Theorem 1.3: Let X be a set with supr ﬂF, =B >41.

1) If X is finite then FX = F2X v a . ( P XY  wheve

a is the increase of F on f3 .
2) If X is infinite then max (FB,X) £ FX £
£ max (Fp, X?)

Proof: The theorem is a consequence of Lemmas 4.3, 5.3,
6,3 and 7.3.

Corollary: Under the presumptions of Theorem 1.3 and as-
suming the generalized continuum hypothesis it holds for eve-

ry set. X = #, with conf X > f3 that FX & mac(Ff3, X).

]

Proposition 2.3: Let us assume the generalized continuum

B = 2% . LetFB>mac(Fx, 3).

hypothesis. Let « = ¥, ,
Then (3 is an tnattainable cardinal of F .

Proof: It follows from Lemma 5.3 that F/’/S £ max (Fwo, (3);
R > Ff’f!, and therefore Fj3 - F”/& + @ , hence 8
is an unattainable cardinal of F

Proposition 3.3: Let o = be an unattainable car-
dinal of F . Then 3 = o where 3 is the increase of
F on « .

Proof: Lemmas 3.2 and 3.3 imply 3 = Fa — F*x 2 oc .

Proposition 4.3: Let us assume the generalized continuum

hypothesis. Let e 2 X, be an unattainable cardinal of F.
Then (3 2 2% where 3 is the increase of F on o .
Proof: Lemmas 4.2 and 3.3 imply A = Fx - F*x = 2%,
Corollary: Let us assume the generalized continuum hy-
pothesis. Let oc = &
Then Fa 2 2%

~ be an unattainable cardinal of F.
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4.
Convention: Let e« , (3 be cardinals. Define a func-
tor “Rﬂ
‘Rﬂx={(A,ahcc)|A’—‘-’ﬁ,Acx,/y.€or.§u{0} . F: X'— X7,

Rof (A, g, x) = 0¢=> F(A) < B, "Ry =0,
“Rpfh, g, a) = (FLA), g, = FLA)=f .

Proposition 1.4: Let A be a class of cardinals with
< € A ==> oc > 1 . Let £ be a mapping from A
to the class of all cardinals with f(ec) = 2% . Then

there exists a functor F such that A = A and f(oc)

(4
is the increase of F on o

Proof: Define a functor F

FX = USSR X, ¢:X’> X", FaI*™g_x'= "™5_g Ve e A.

XER

Clearly ¥ is correctly defined and satisfies the condi-
tions of the proposition. Q.E.D.

Corollary: Let us assume the generalized continuum hy-
pothesis. Let A be a class of cardinals with x € A =
= K = K, . Let ¥ be a mapping from A to the class
of all cardinals. Then there exists a functor F auch that
A = A, and #(x) is the cardinal of increase of F
on oc if and only if € (x) = 2% .

Proposition 2.4: Let A be a class of cardinals with
xe A =>« & K, . Let f be a mapping from A to the
class of all cardinals with f(«x) Z 2 and «, 3 €
€ A « <3 =f(x) € £(B) .  Then there exists
a functor F such that A = AF and P =~ £(x) for
every «« € A .
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Proof: Define a fiunctor P

FX=_u f®g_x, ¢: X'—X”, Fg /g _x' =

X &R o

=“°°qu, Yce A .

Clearly F is correctly defined and satisfies the conditions
of the pfoposition. Q.E.D.

Corollary: Let us assume the generalized continuum hy-
pothesis. Let A be a class of cardinals with « & A =>
=> o« & K,. Let £ be a mapping from A to the class
of all cardinals. Then there exists a functor F such that
A=A, and Fx “f(x) Vo € A if and only if .
fle) 2 2% and «, Beh, x <@ => f(x) < f(3) .

We recall the definition of a small functor.

Convention: Denote by a‘ a functor from the category
K into & defined by
O & = {g | g:x — £ ? for & an object from K "
G‘f(q,)g fo 9 for a morphism fi&r — o snd g e Qab,
@, ias called covariant homfunctor.
A functor FK — S5 is emall iff it is a colimit of a
diagram the objects of which are covariant homfunctors.
Lemma 1.4: A functor is small iff it is a factorfunctor
of a disjoint union of a set of covariant homfunctors.
Proof: see [2] .
Lemma 2.4: If T ia a factorfunctor of G , then
A ¢ A .
Proof is evident.
Lemma 3.4: ‘A'GM ={x |l o is a cardinal, M =
20 > 13 .

Proof: A) &« = M . Let f be an epimorphism with
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f: M— «. If 8 x = (QM)“‘ o« holds then there
exist g+ M —=> 3, 8 — o, 3 < o« such that f =
=g eh .Img £ and therefore Im g < o .
That is a contradiction and therefore QMoo + (GM)"‘ac
and o« e Ag . Bl =M. Let ¢ & @, < .
Then € = GM € (id, ) and therefore QM«. = (8, )"«
amd x ¢ Ag - Q.E.D.

Theorem 3.4: A functor F is a small functor if and
only if J{F is a set.

Proof: The theorem is a consequence of Lemmas 1.4, 2.4
and 3.4.

Definition 2: A functor F is said to be a semicon-
stant functor up to e«

if F% is a constant functor on S .

F is said to be a semiconstant functor if there ex-
ists o« such that F is a semiconstant functor up to o« .

Definition 3: A functor is said to be a big functor if
it is not a small functor.

Remark: F is a big functor if and only if AF‘ is
a proper class.

Lemma 4.4: Let F, G be functors. Define a mapping
h.s from ‘A‘G into the claass of all cardinals:

hc’(a;)a mg’ if the minimum exists; if contrary ,
put hG'(ar.) =1.If G 1is not a semiconstant functor then
(A v hG(JLG)) ~41c Ac,g - If G is a semiconstant
functor then [(A, v kg (A)) - (1 vy Acgle A ),

Ge F
where 3 = F,Jrzdm_f A:r .

Proof: We have (Fxc - F¥c) 2 o where o« € AF
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(Proposition 4.3). If G is not a semiconstant functor or
Fa =2 3 where 77 =min A, and « e A  , then
G(Fc~F*x)nG*F, ¢ GF and G(Fa -F¥x) + GF .
Therefore o~ is an unattainable cardinsl of G o F .
d e ‘h‘s (.ﬂc) is evidently an unattainable cardinal of
GoF. Q.E.D.
Theorem 4.4: Let F be a big functor, let G be a
non-constant functor. Then Foe G .and G o F are big
functors.

Proof is evident.

5.

Theorem 1.5: Let F be a semiconstant functor. Let o
be the smallest cardinal such that {Ff|fe «® 3 > 1 .
Then o« = mim A,

Proof: Every point of the set F1| is a distinguished
point of the functor F and therefore for every a € F41 ,
2* (0)= @ defines a transformation T: 61 — F . It im-
plies that the functor F* ia a constant functor and the-
refore oc is an unattainable cardinal of F . Q.E.D.

Theorem 2.5: Let F be a functor, X a set with
FX < X . Then F is a semiconstant functor up to
(econad X -1) .

Proof: We shall prove that every component has a dis-

tinguished point. For every component F, of F where a ¢
eF1 F X< X and therefore there exist #,, f,: 1
— X with Ff, = Ff, and v 4n: 41— 2 anda

=

morphism +: 2 — X such that vey; =%, vo7,

£, .
1
As F (v) is a monomorphism it holda that R (y) = E, (25)
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snd therefore a is a distinguished point. If X = 4 ,
then FX = g and therefore F = Cy . If X =2,
then FX = 4 and therefore the cardinal 2 ia not an un-
attainable cardinal of F. If X > 2 and there exists
an unattainable cardinal o« of F  such that X-1 = «
then FX = X (Lemmas 4.3 and 6.3). That is a contradic-
tion. Therefore there does not exist any unattainable car-
dinal of F smaller or equal to card X - 41 and hence
F is a semiconstant functor up to (ecaral X-1)". Q.E.D.
Corollary: Let F be a functor and let o« = min .R.F s
Then there exist. A, B such that (Ix<C,) v C /g

is naturally equivalent F /.. .

6.

Lemma 1.6: Let X be a set with X > 4. Let
(Fflfe X*3 = 1 . Then the functor P is a semi-
constant functor up to (cand X ) .

Proof: Let Y . be a aet with Y € X . Let f: Y = X
be a monomorphism. Then there exists an epimorphiam
9: X =Y such that g o f = <d . It implies Fg o Ff =
= Fid . It follows from the assumptions that F(+4 ¢ g) =
= 1d. It implies that Ff and Fg.  are isomorphisms.
Suppose there exist h1, ‘h‘z’ Y— Y, Fh1 - Ph,_ .
Then P(#o)p1ag.)=¢.r'(f.h2.9,) which is a
contradiction. Therefore for every h:Y— Y, Fh = id .
Hence for every &:Y — X it holda & = Ryo f o ke

2
vhere R : X — X, f,: Y = Y and Fe = F(#e, o f o k)=
= Ff . The lemma is proved. Q.E.D.

Lemma 2.6: Let X, Y be sata with ¥ > 1, X > 4
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and {Fflfe Y¥X3 = 1, Then

1) Every point of the set F 4 is a distinguished point
of F .

2) If X > 4 then the functor is a semiconstant functor
up to [Lmim Ccand X, card Y )1’ .

Proof: The proposition 2) implies the mroposition 1)
with the exception X =~ 4 in which case the proposition
1) is evident. We shall prove the proposition 2). Let X £
< Y . Then for every f: X— Y , Ff is a monomorphism
and therefore for every g : X — X , Fg = Fid, and
the rest follows from Lemma 1.6. Let X 2> Y . Then for eve-
ry f: X—> Y, Ff is an epimorphism and therefore for
every g : Y — Y , Fg = Fid.y and the rest follows
from Lemma 1.6. Q.E.D.

Lemma 3.6: Let £+ X — Y be not a monomorphism and
let Ff be a monomorphism. Let there exiat
w (cand f (4 )) . Then I is a semiconstant func-
tor up to [wﬂ:.a;b Ceard £, (y)) 1.

Proof: We shall prove that 4 = (FfI|f e 8%) where
f = w Ccard £ , (¢)) and the proof then follows from
Lemma 1.6. There existe 4 & Y with £ (g) = (3 . There-
fore there exists a monomorphism g.: 8 — X such that
fog(B)== 4 clearly F(fo g) is a monomorphism.

For every h: 3 —> (3 , fog o o = fog . Itim
plies Fh = Fid, for every h:p3 — 3 . Q.E.D.

Lemma 4.6: Let £z X — Y -be not a monomorphism and
let Ff be a monomarphism. Let l‘.\a‘;!l;ymd. £, () Dbe
a singular cardinal. Then F is a semiconstant functor up
to ( Au-c«.cia&d. £,y
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Proof: If ¢ ’“,"!:y"'“"“" f,(y)) =(m$aymt1(wg
the proposition of Lemma 4.6 is & consequence of Lemma 3.6.
Let there not exist ""g’ﬁf“’w‘fq (y).Let
w-wcmg.gud.f_,, (q)) . Then there exist g: X— Y,
As X — X such that ¢ = g - h nndm.',f_:saxd.ﬁ1(¢y_)=
- bm;,‘ud, L () . Clearly F# is a monomorphism.,
There exists % ¢ X such that Z = wut xuu.d. h_, (y)
and A (Z) = o« . Therefore there exists a monomorphism
K : X — X such that h e fe 0o A (Z)= 1 and Lemma 3.6
implies the proposition. Q.E.D.

Lemma 5.6: Let #: X— Y be not a monomorphism and
let F¢ be a monomorphism. Then F is a semiconatant func-
tor up to M#fl.«sa&d— f, () .

Proof is evident.

Definition: Put FX = { ¥ | &£ is a filter on X3 v
u{w&Xi.f:X—»Y,ZeF#C%)@)SZ,,s36 with

£ CZ,,) © Z. Clearly F ia a functor. Define a mapping
?F,x from FX into FX, Z e ‘?F,x (x) &= x €
€ F%’!‘ tFZ2] .
There is a difference between the notion of mapping 3;',.( A
@as defined above, from the one in [6]. In [6] the mapping
?;,,x is not defined in case f(x) where X is a dis-
tinguished point and ¢: 4 — X ,

Definition: Let ¥€, q, € FX . Define % c G cmm>
= (Zed =>Zeq).

lemma 6.6: The relation c is an ordering.

Proof is evident.

We recall the definition of essential cardinality.

For every 3 &« FX put mu:t‘.‘c‘mod, Z = |21 . The number
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- | will be called essential cardinality of 3¢

The definition of essential cardinality is the same as
in [31 in case P is a filter.

Lemma 7.6: Let F be a functor, o an unattainable
cardinal of F. Let X 2 o . Then there exists ¥ e
€ ?;.’X(FX) with N2 H = o« .

Proof: oc is an unattainable cardinal of F and the-
refore for every X = o« , F¥*X - P*X % g . Put x € F<'X-

- FX . Definition 1) and definition F. . imply
’
x ~r
xeFi, [FZl= Z2 «, 353 =~ «, xeF{IFZ1 .
Therefore I?'F’xl = ., Q.E.D.

Lemma 8.6: Let F be a functor. Then for every x e
e FX and every f: X — Y it holds FF(’?';,X (x)) c
c 3;.), (Ff(x)) .

Proof: ZeFF(g;.,x(.x))<=> 3EZ, e ?r-',x(“) with

X
P(Z)c 2 =>x ef'i,21 [Fg 1

F#(x) & F(fed, VIFE ] = Ff(x) e Fif, [FF(Z)]c

c Fi[FEl=> % e £ (Ff(x)

Q.E.D.

Lemma 9.6: Let F be a functor, # ¢ ?Fx (FX ). Let

f Dbe a mapping from X into Y such that f/2Z is a mo-

nomorphism for some % e« ¥ . Then F#(?;x(.x))c ?‘;Y(P-F (x))
where F_ . (x) = ¥ .

Eroof: There existsa ¢ :Y —> X auch that g o f/8=4d /3.

,X‘.s.ﬂgx(x)-l-'q«-f (?,;,x(‘x)) c Fg,(?;'y(f‘f'(x)) c

C Ty (F@ef)(xN = & (x).

F%(Ej.,(x))s%' ()wp Ff (Fy (x))= &y (F£e)), Q.E.D.
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Lemma 10.6: Let f: X — ¥ be not a monomorphism.
Let F#¢ be a monomorphism. Let « = A(;ﬂa )c;a&d, f, () -
Then P is a semiconstant functor up to «’ . .
Proof: If « is a singular cardinal or oc:m#);axdfq (@)
then the proposition follows from the lemmas 3.6 and 4.6.
Now let o« be a regular cardinal with no predecessor. Lem-
ma 5.6 implies that F is a semiconstant functor up to o« .
Presume oc is an unattainable cardinel of F . There ex-
ists Z ¢ Y such thet Z & o« and y € Z = f () > 1.
For every 4 € Z  choose .x;_ ef, (), i=4,2

.
2

1 2 < ;
Xy =% .x,} and put X; = uLe)! Xo , ¥ = 1,2 . Clearly
X, X, ¥« and f/X , /X, are monomorphisms.

Let # be a filter such that I ¥ = o« and ¥ € ?’F’X(FX).
Let Z e #& with Z = o, let f: X— X such that
A /21 is a monomorphism and A (X) c x1 . Define e :

: X —= X as followa: h(x):x;<=> M (x) = .x;_ . Lemma
9.6 implies PM(?,',’X(.X)- ?’éx(Fh(x)), Fh(&;,x (x)) =

= ?'_’_'x(r‘hcx)) as soon as QF"X (x) = % . Further,
FfoF(x) =F(fo fa)(x) =F(fo &)(x)=F+fo Fhe (x) .
But Fh (x) ¢ Fi (x) and therefore Ff is not a

monomorphism. That is a contradiction. Q.E.D.

Theorem 1.6: Let f: X — Y be not a monomorphism

and let FPf be a monomorphism. Then F is a semiconstant

functor up to max (min (card X +1, K,),(»ﬁu‘cya&d £, (g0,

Proof: A) X £€ Y . Then there exist a monomorphiem

¢:X—> Y and a morphism 4 : X—> X such that geoh=
=f . A is not a monomorphism and Fi is a monomorph-
ism. Let X < $, . Then there exist isomorphisms " P

wey G, 8uch that ho%ahc%o,.,-h.%,h(x) ~ 4 .,
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As F(heg,ee...oq, ¢ h) is a monomorphism, Lemma
10.6 implies the proposition. Let X = «, . Then for every
finite cardinal 7 there exist isomorphisms ¢4,9;,---, 9a
such that hoeg,oh ocg,2...co g oh = k. Fh is a mo-
nomorphism and ¥ < ”‘,;_4‘;,‘("‘"““’ #_,(y) . Lenma 10.6 im-
plies the proposition.
B) X > 7Y . Then there exista a monomorphism g: Y-
—> X such that g of is not a monomorphiam and F(g e +)
is a monomorphism. Then we proceed 8s in the case discussed
above. Q.E.D.
Lemma 11.6: Let f: X — Y be not an epimorphism.
Let Ff be an epimorphism. Then F is a semiconstant
functor up to (candl (Y- £(X)) + 1) .
Proof: Let £ be a set such that Z=(Y-£(X))+ 1.
Then there exists an epimorphism g : Y — Z such that
g f(X) = 1. F(gef) is an epimorphism and therefore
for every morphism h: & — Z  for which ho gof=gof
we have Fio = 4id . Let 52 - & — Z be a constant morph-
iem with e g e f = gof . Then Fh is a monomorph-
iem and bmiaad h_, (q) = Z . Lemma 11.6 is proved
due to Theorem 1.6. Q.E.D.
Theorem 2.6: Let £: X —> Y be not an epimorphism.
Let P+ be an epimorphism. Then F is a semiconstant
functor up to max Lamim (Y +1, K,), (caxd LY~ £(X11)].
Preof: A) X Z Y . Then there exist an epimorphism
g X —>Y and amorphism h : Y— Y such that
. ,"/4(1') is a monomorphism and. h o g = £ . R is
not an epimorphism and F#  is an epimorphism. Let Y <

< $° « Then there exist isomorphisms 9% % such

10 Fn
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that h e 9‘4"&"9""'-' ho@ueoh(Y)=1 and
F(hog,- Mhe..o @, k) is an epimorphism. Lemma 11.6
proves the proposition. Let Y & #, . Then for finite car-
dinal 9* there exist isomorphisms @, @,,: <, @n such
that f o gy o0 S o @e...o e g, ° h = h. Fh is an
epimorphism and ¢ < (Y - A& (Y)) + 41 . Lemma 11.6
proves the proposition.

B) X< Y.If Y& ¥, , the proposition is evident.
Let Y< &, . Then there exists an epimorphism ¢ s ¥ — X
such that # ¢ g is not an epimorphism and F(f o ¢ ) is
an epimorphism. Then we proceed as in the case discussed
above. Q.E.D.

Corollary: Let X , ¥ be sets such that X % ¥ . Let
£: X — Y be a morphism such that F+¢ is an isomorph-
ism. Then F is a semiconstant functor up to [max (X,Y)1’ .

In [2] P. Freyd considers the reflecting of retractions,
co-retractions and isomorphisms. Much stronger results are
obtained when we work with set functors only.

Theorem 3.6: The following conditions are equivalent:

1) F reflects isomorphisms. '

2) F reflects epimorphisms.

3) T reflects monomorphisms.

4) T is not a semiconstant functor.

Proof: Implications 1) ¢= 4), 2) <= 4), 3¢= 4) are
consequences of Theorems 1.6 and 2.6. Let F be a semicon-
stant functor. Let +: 4 —> 2 be a morphimﬁ. Then For is

an isomorphism and so an epimorphism. Let £: 2 —> 4 be

@ morphism. Then FPf  is an isomorphism and so a monomorph-

ism. Implications 1)=p 4), 2)=» 4), 3) =—> 4) are proved.

: Q.E.D.
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Proposition 4.6: The estimate of the smallest unat-
tainable cardinal of the functor in Theorems 1.6 and 2.6 is
the best possible.

Proof : Let o =< %, . Then the functor 41{‘ proves
the proposition. Let o« = XK, .Let =y be an equivalen-
ce on 'R X defined as follows: ¥, Ze€ 'R, X ,

.Y =, X (Y-2Z) u (2 -Y)< ox.Thia equivalence defines
a factorfunctor :B: of the functor ‘R‘ , Let B bea
cardinal with B < e . Let f; be a morphism defined li-
ke this: fp: X=X ; X 2 xy, 3Zc X, 2=,

fly_g =W/x_g, fa2)= 4 . Evidently f, is neither
an epimorphism nor a monomorphism. Clearly :B:' £ =

= b:c 1',d.x . Q.E.D.

References

{11 P. FREYD: Abelians Categories, New York 1964.

[2] P. FREYD: On the concreteness of certain categories
(preprint).

[3] V. KOUBEK, J. REITERMAN: Of the category of filters,
Commente.Math.Univ.Carolinae 11(1970),19-29.

[4] B. MITCHELL: Theory of categories, New York 1965.

[5] V. TRNKOVK: Some properties of set functors, Comment.
Math.Univ.Carolinae 10(1969),323-352.

[6] V. TRNKOVA: On descriptive clasﬁificstion of set func-
tors,I,1I,Comment.Math.Univ.Carolinae 12(1971),
143-175(Part I); Part II to appear in the same

Jjournal.

- 194 -



Matematicko-fyzikdlni fakulta
Karlova universita
Sokolovské 83, Praha 8

Ceskoslovensko

(Oblatum 23.9.1970)

-195 -






	
	Article


