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ON DESCRIPTIVE CLASSIFICATION OF SET-FUNCTORS I .

V&ra TRNKOVA, Praha

The aim of the present paper is to study set-functors
(functors from the category § of all sets into itself)
in some detail, with respect to preserving of limits of se- .
veral types of diagrams (equalizers, sets of fixed points,
preimages, intersections, products and so on). Also, some
notions and proof from [9],[10] are modified and generali-
zed.

The paper has eight parts. In the first one the known
definitions, facts and conventions are recalled. In the se-
cond one the distinguished pair of a functor is defined and
some easy consequences are proved:

The categorial definitions of the preservation of preimages,
finite intersections, sets of fixed points and their equi-
valent forms expressed by means of sets are given in the
third part. The following two parts contain auxiliary pro-
positions. In the fourth one, the functors without non-tri-
vial separating subfunctors are considered, in the fifth
one the heredity of the preserving of limits, and its "con-
verse", is investigated. In the sixth part special functors

are considered. The main results are proved in the last two
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parts, in the seventh and the eighth ones. Namely, we give
a characterization of functors preserving preimages, equa-
lizers, pull back diagrams, separating systems up to

(see III.9), products up to 4 , limits up to s , rela-

3
tions between these properties and many examples.
An investigation of preserving of coequalizers, push
out diagrams, finite colimits etc. will follow soon in the
forthcoming paper On descriptive classification of set-func-

tors II.

Conventions:
I.1. Set-theoretic conventions:

a) As usual, an ordinal number oo is the set of all
ordinal numbers 3 < « ; thus, 0 = @, 1= 1{g}, 2 = 10,1}
etc. Cardinal numbers are the initial ordinal numbers.

b) If X is a set, the symbols 4% | Jy  designate

X
the mappings 4, : g — X, F: X = 1 thus,
4, =4, s vg: X—> 2 or v;:x—92 are

the constant mappings on 0 or 1 , respectively. The iden-
tical mapping of X onto itself will be denoted by idx -

c) As usual, a mapping f: X — Y is said to be an
injection if f(x) # f(g) whenever X # 4 , surjec-
tion if £(X) =Y
xe X .

, inclusion if f£(x) = x for all

I.2. If X is a category, then X% denotes the class
of its objects, K™ the .class of its morphisms. If
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a, ¥ € K% then K (a,£) denotes the set of all

morphisms of K from a to & .

I.3. The category of sets (the empty set included) and all
their mappings will be denoted by & . S* is the ca-

tegory of all non-empty sets and all their mappings.

I.4. Throughout this paper the word "functor" means always

a covariant functor from S to § .

I.5. Let P, M be sets, fo : P—> M a mapping. Then
CP’“, " is the functor H given by formulas
H(p) =P @and if X + @ , then H(d;():,ﬂ,,
HX)=M , H(f) = 4id, whenever f: X—>Y .
If Pc M and . is the inclusion, we write simply

CP,M , if, moreover, P =M , we write CM .

I.6. The identical functor of § onto itself will be de-
noted by I . If M is a set, we put QM(—) =SM,-).
Thus, @, is naturally equivalent to C4 5

I.7. The functor (, is called trivial, the other functors
are called non-trivial. If H is non-trivial then H(X) #
* @ whenever X #% @ . The domain-range-restriction of

H to S$* will be denoted by H* ; thus, H*: §*— S$*.

I.8. A functor G is called a subfunctor of a functor H
if G(X)ec H((X) for every set X and the inclusions

form a transformation of G in H . The expression in func-

tors:

.H=I-{“uH.2
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means: H, H,, H, are functors, H, and H, are
subfunctors of H and H(X) = H, (X) u H, (X))
for every set X . The expression in functors G = G,, 2} Gz

is obvious.

I.9. Natural equivalence of functors will be denoted by
= , G is said to be a factor functor of H if the-

re is an epitransformation »: H— G .

I.10. Disjoint union of functors: let J bea set, H_

be functors; we shall write H =;\¢/:7 H  iff H.;LcJJ G,
G XH

(% (9

then G_n G-b, =C, .

’

for every L€ J and if L,UVe T, L+ U,

I.11. A functor H ia called connected if caxrd H(41) = 1.
Maximal connected subfunctors of a functor are called its
components. If H is a non-trivial functor, put H, (X )‘=
= LH (3, )1a) for every a € H(1); then H, is a

component of H and H ’ay,m) Ho =m¢\{4(4) Ha

I.12. If H is a functor and f =+ 19~x is an injection
(or & surjection), then H (f) is alac an injection (or
a surjection, respectively) (see [8]). H(’l"x ) need not

be injections, of course.

I1.13. I£ H is & functor and i : A — X is an inclu-
sion, we shall write. H (A), instead of [H(4)] (HcA)Y).
Thus, H(A)y € H(X).

I.14. For every functor it holds:
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ifA,BcX,AnDB *+ ¢ , thenH(AnB) =H(A)n
s H(B)x (see [101, Proposition 2.1).

I.15. A functor H is said to be separating (see [9])

if A,Bc X, AnB=2¢ implies.H(A)an(B)X=¢.
Every functor H may be expressed as H = H,v Hy whe-
re H'°

rating subfunctor (see [91, Statement 4.3).

is separating and Hd. has no non-trivial sepa-

I1.16. Let H be a functor, x € H (X) . Then H o x, i8
the subfunctor G of H defined by G(Y)={LH(#)](x) ;
f: XY} for Y+ g ,G(B)=1fae H(g) ;

’
[H)T(a) = x§ X

.

IT.
IT.1. Definition: Let H be a functor, x € H(X). A pair
{x,X> will be called distinguished iff CH, x))"‘ =~ Cﬂ* .
Xy

II.2. Proposition: For every x € H(@), (x, ®> is dis-
tinguished.

Proof: It is evident.
Note: Thus, if H is separating, then H (@) = & .
11.3. Lemma: Let X #+ @, xe H(X) . <x,X > is dis-

tinguished iff the following conditions are satisfied:

a) [HM)I(x) = x for all f: X— X ;
Bl LH(»2)I(x) = LH(#!)1(x)

.

x) The dgfinition of H, Xy differs from that given in
{101 in the vealue G (a)
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Note: If caxd X = 4 then a) holds trivially. If
card X = 1 , a) implies b).

Proof: If X # @ and <(x, X)> is distinguished,
then a) b) hold trivially. Conversely, let a),b) hold. We
have to prove that [ H(g)1(x) =L[H(g’)I(x) for eve-
TY g, 9 : X—=Y . Put a = [H(4))(x), &r=[H(g)I(x),
&' = [H(g’)1(x) . Choose an h: 1 — X . Evidently,
x=(H(h)I(a). If gotr =g's b, then & = &' If
9ol * g,'o,h, , there exists an £: 2 — 7Y with
goh =Lov? g'oh = Lo . Consequently, & =

17 1
=(H(g o h)l@)=(H®R o )] =[H(L o #! )]a) = [H(g o b)) = £,

II.4. Proposition: Let H be a functor, A,B c X, A n
NnDB =g . Then for every x e}-[(A)x A H(ZB)X the pair
{x, X)> is distinguished.

Proof: The proposition holds trivially for A= @ or
B =g. Let A B be non empty, let .er(A)xn
nH(.‘B)x . Consequently x=[CH (iA)](d) =[H(ig)I(B)
for some a e H(A) , & € H(B) , where Gt A= X,
in ¢ B — X are the inclusions. Choose a e A, e
€ B and denote by Co 1 — A or Cp:1—> B the

constant mappirgs onto a or & , respectively. Let «

4 ¢
: X—> A and )vb:.'X—-»B be mappings with /LAoi,A=
="dA’”'A"“a:ca,';'a’"’3°4'A=cb-°j‘A!”'3"‘.’3=‘:dn‘

Since 7 o 4, = s o = dy , We have 4 = [H(5 1x)=
=[H(G)1(a)= [H(;’B)](F).Then [H(ca’)J(@)-[H(ca‘-;'.))](E)-
= [H(x, 0 )% = [H(7 )] (x)=[H(n,4i)1(@)= Z ana
analogously [H(c,)1(y) =& . Let h : 2 — X. be the
mapping with “"A' Cp = htvf, 1", °Cp= h o v: . We
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have x = [H(ho v )1(g)=[H(h ov))1(g) . H(h) is
an injection and hence [H (w7))(g) = [H(w] )1 (g)
Thus, <4, 1> is distinguished. Since x= [HC(h o v])1(y),

<{x, X?> 1is also distinguished.

II.5. Definition. A distinguished pair {x, X' > of a func-
tor H will be called regular if there is an a € H(g)
with EH(q}x)](a,) = X . A functor H will be cal-
led regular if every its distinguished pair is regular.

II.6. Propotision: A functor H is regular iff H (A)x N
NnH(B), = H(ANB), forall X, AcX, B < X.
Proof: If AnD % @ , then every functor satisfies the

equality. If AnDP = ¢ , use the previous proposition.

III.
III.1. An equalizer of morphisma f, g will be denoted by
m = eg (f, g) .
Definition: A functor H is said to preserve sets of
fixed points if H(m) = eq (H(f), H(g)) whenever

m =eq(f,g) and f is a monomorphism.

IIT.2. Proposition: A functor H preserves equalizers iff x)
a) all H(fé‘x ) are injections;
b) H(A), = {2 e H(X); TH(H)(2) = [H(g )] (%)}
for every f,g : X — Y, where A={xe X; f(x)mg(x)}.
x) The functors preserving difference kernels are defined in
[10] as those that satisfy b). Thus, thia notion differs

from preserving equalizers defined purely categorially.
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Proof is evident.

ITI.3. Proposition: A functor H preserves sets of fixed
points iff

a) all H(??x) are injections;

b) if #: X=X, A={xe X3 f(x) = x} , then

H(A)x ={2eH(X); (H(#)])(z) =z § .

Proof: I. Let H preserve sets of fixed points. Then
a) evidently holds because it is easy to find mappings f ,
%, f nmonomorphism, with %, =eq (#,g) . If f: X —
— X isamapping , A= {xe lX; $(x) =x?, ©:

A —= X is the inclusion, then 4 = eg (f, d, ),

consequently H(i) = eq (H (+) ’wucx)) . This implies
H(.A)x = {zx eHX); [H(#)I(z) =2} .

II. Let H # C, satisfy a),b). Let f,g: X—=Y
be mappings, f a monomorphism. If X = ¢ then f = g9,
consequently H(eqy(f,gd) = eQ(H(f), H(g)) . Let X
be non-empty.

1) If either g (X) c f(X) or g is non-constant, we

can choose a mapping . : ¥ — X such that bh o £ = idx
and M o g(x) = x iff £(xX) = g(x).Put A = {x & X;
flx) =g (x)},B={2eH(X); [H(f)1(2) = [H(g)I(=x)} .

One can prove that H(A)x =B .

2) Let g- be a constant mapping on g, € Y ~ f(X) . Then
1},‘ = eq (f,9 ) . We may suppose H connected. It is
sufficient to consider the following cases:

a) H is separating. Then necessarily L[H ($)J(H(X)) A
N [H(g)I(H(X)) = & . Consequently, H({\?«x)= D

X
= eq (H(f), H(gN.
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b) H has no nontrivial separating subfunctor. The equa-
lity H("l’x) = eq (H(f) , HCg)) will be proved
if we prove
«) [H(#)I(2) = [H(g)1(=) for at most one
poirit x e H(X) 3
A) H(B) + & .

oc) follows.easily from the fact that g factors
througl?n g'-x : X — 1 and H(+) is a monomorphism. To
prove /3 ), use the fact that there is a monotransformation
w : C:—-r H* . Consequently, the mapping H (2) has e.
fixed point, where v:2— 2, »(0) =1, (1) = 0. Thus,
g ={xe2; v(x)=x3,H(@g), ={xeH(2),
(H(v»))(x)=2} + @, consequently H(g) + &

III.4. Convention: The diagram
ﬂ/ \a;
N A’

7'y
will be designated by (,'’ %1y,
far 9

Definition: A functor H is said to preserve preimages
(or to preserve finite intersectiona ) if

(H(ﬁ‘) » H(g,)

: . - B
is a pullback diagram whenever [ ' * *7
H(fz) ’ H(Q-z)) . ( )

f21 %
is a pullback and %y 'ia 8 monomorphiem (or 9, end g,

are monomcrphisms, respectively).

ITI.5. Proposition: A functor H' preserves finite intersec-
sections iff
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a) all H( "’x) are monomorphisms;
b) H is regular.
Proof: Let H preserve finite interasections. If X

is a set, choose a set Y @ with X nY = ¢ and deno-

teby 4, : X—=+Xuv Y , 4, :¥Y— XuUY the inclu-
sions. Since ( %, & ) is a pull-back diagram,
&Y > é)’

(Hw,,) , Hedy)
H,), (i)

monomorphism and, choosing X =% ¢ , we see easily that eve-

) is, too. Consequently, H('t’x) is a

ry distinguished pair of H is regular. If H satisfies a),

b), it clearly preserves finite intersections.

IITI.6. Lemma: If f: X — Y  is an injection, B c Y ,
A= +1(3) , then every functor H preserving finite pro-
ducts satisfies H(A), = CH( I (H (B), ) ¢

Proof: It is evident.

III1.7. Proposition: The following properties of a functor

H are equivalent:

(i) H preserves preimages;

(ii) H preserves finite intersections and if £: X — Y

is a surjection, B ¢ Y , then Hw-‘(m)x-rmm-‘mus)y);

(iii) all H(#x) are monomorphisms and if + : x\—n’

is a mapping, B c Y, then H("(B)) = LH(#)I(H(B), ).
gr_og;: is easy. Use the well known fact that a diagram

N
St
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where 4 is an injection, is a pullback diagram iff «

is an injection and x (A) = 1 (»(B)) .

III.8. Definition: Let s be an infinite cardinal, H

a functor. We shall say that H preserves intersections
up to 44 if all H(a‘?x) are monomorphisms and H (Y), =
=,‘QAHCX¢))¢ whenever X, c X for all « € A,

Y=_M0X;, card A < .

III.9. Definition: A couple < X;{g . ; « € A¥)> is cal-
led a geparating system if all % are mappings with do-
main X and they are collectionwise monomorphic, i.e. for
every X, 4 € X, X # o there exists o« € A such that
G () * g () .

Dgfinifion: Let s Dbe an infinite cardinal. We shall
say that a functor H preserves separating systems (or
products) up to #+ if (H(X); {H(g); x e A}> is
a separating system (or product) whenever.caxd A < 44 and
(X;4{@, ; x€ A}> ia a separating system (or product,

respectively).

II1.10. Note: 1) Evidently, if H preserves products up to
44 , it preserves separating systems up to 4« .

2) The preserving of separating systems differs from
the preserving of subdirect products only in the value of
H at ¢ (see [10], Note 5,4).

3) We say that H presérves finite (or countable) pro-
ducts or separating systems instead of saying that it pre-

serves them up to %, (or up to s, respectively).
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III.11. Proposition: If a functor preserves finite intér-
sections and finite separating systems, it preserves equa-
lizers.

Proof: Let H ©be a functor which preserves finite
intersections and finite separating systems. Let £, ¢
: X — Y be mappings, m = eq (f,g ). Let
<X x };{lrx, :Yyi) be the product of X and Y. Let
o F =da,,

f;3: X — X > Y be the mappings with ar,

- . - . m , T
"'Y°Z=¢’“x’g""dx:”y"?’9'smce(m,§'-)

is a pull-back diigram and ¥, §, are injections,
H(m) , H(F)
(H(m) , H(g)
H(m)=eq(H(¥),H(g)) and, since {H(X xY); {H(m ),
H (:ﬂ'y Y})> is a separating system, H(m )= eq (H(£),H(g.)).

) is also a pull-back diagram. Thus

IIT.12. Proposition: Let 4 be an infinite cardinal. Let
a functor H preserve finite intersections and separating
systems up to 4 . Then H preserves intersections up to
P

Proof: Let K cesp X, cavd T <= am . If Ye X,
denote by 4‘,), : Y — X the inclusion. Put I = YQ! Y
and denote by 1',1_ : I, — X the inclusion. Choose mappings
A9y X—> M, with 4 = eq(f , g,) . Let
<M 3 YeZi? be a product of the collection
{MY;Y§Z§,donoteby +,6 : X — M the map-~
pings with SfYOF -fy, I, 09 =g for all Y e
e Z . Then 1"1. -eq (£,9). Since H preserves equa-
lizers (see III.11), H(4,) = eq (H(#), H(g)) ,
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H(Ly) = eq (H(f) yHCgq )). Since <H(M); fH(m )
YeX3})> is a separating system, H (4,) 1is an equalizer
of the collection {<H(f),H(g,)>; Ye X 3.
Consequently ‘H(L), = yf.}H(Y)x ‘

Iv.

As recalled in I.15, every functor is a disjoint union
of a separating functor and a functor without non-trivial
separating subfunctor. Thus, the preserving properties may
be considered separatedly for separating functors and for
those functors without non-trivial separating subfunctor.

The latter is given in the present part.

IV.l. Lemma: Let »: I* — H™ be an epitransformation,
which is not a natural equivalence. Then H* = cr .

Proof: It is evident.

IV.2. Lemma: Let a functor H have no non-trivial separa-
ting subfunctor. Let there be an epitransformation » :
: Q,’("—b H*.If H preserves either preimages or equali-
zers or finite separating systems, then H* = C* .
Proof: If cand X = 1 , the statement is evident.
Let cand X >4, put a = ¥y (<dly ) . By Lemma IV.1
if £,9.: X — Y are constant mappings, then v, (f) =
=» (g) = Iry « Clearly, it is sufficient to prove
a = xrx .
a) Let H preserve preimages: let f: X — 2 be
the constant mappingontc 1 @ 2. Put B = {0} c 2 .

Then #'(B) = g, H(@)y = LH(h11(H (B),) . However,
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H(B)y = (8,3 and 4 = 2, (k) = », (h oid,) =
=0 (LAY (A)1(d, N=[H(/h)]I(a) and consequently
weH(ﬁ)x c {b;‘i .

b) Let H preserve equalizers: let f,,f, : X — 2
be the constant mappings on 0 or 4 , respectively. Then
B, = eq(,, %), consequently H(d)=eq(H{,) H(£)).
But [H(£,)1(a) = 1, (f)= £ = 0, (f)=CH({)](a) and
consequently a € H(g), « { & 3 .

c) Let H preserve finite separating systems: put

Y=XxX, let m, M,k Y — X be the projections.
Choose x ,x, € X , X, * X, . Let £,f,: X — ¥  be
the mappings with m e 1’1 = e fz = ¢dx , let AR 4‘-1

or :n;‘ ° fz be the constant mapping onto x_ or x res-

1 2
pectively. Put e = vy (-Q‘ ), c, = », sz) . Since
[H(::;,)J(c,‘)s si,(m;ﬂ’,):l;‘ = » (mof) = [H(m)II(c,)

and [H(n’z)](c,,) -.CH(:ra_)’J (e,) , then necessarily ¢, = c,.
Let £:Y — X be a mapping such that £ o f, is a con-

stant, £ o 4‘1 = id.x . Then

a,avk(»ﬂdx)-&flo'ﬁ'z) L'H(Z)J(cz) =

=[H(L) (e, ) = » (Lo f ) = I& .

IV.3. Note: The statement is false for functors, preserving

sets of fixed points only.

IV.4. Proposition: Let H have no non-trivial separating
aubfunctor‘\

If H pregerv;s either preimages or equalizers, then
He CM .

If H preserves finite separating systems, then H & Cﬁ_’ oy

- 156 ~



If H preservea finite products, then either H = C, or
H=C°,1 or H Q’C‘ ”
Proof: follows easily by IV.2.

v.
V.l. Now we recall a propésition from [9], needed later
(Lemma 3.1 in (9]):
Proposition: Let G, H be functors,w: G — H a
monotransformation, f: X ~— Y a mapping. If either X £ ¢

or G is regular, then no x € H(X) satisfies
(%) LHMII(x) € e, (G(Y)) - [H)] ((u.x(G(X))) .

An easy proof is given in [9].

V.2. Proposition: Let a regular functor G be a subfunctor
of a functor H .If H preserves either a) equalizers or
b) sets of fixed points or c) preimages or d) intersections
up to 4 or e) separating systems up ta 4 , then G also
preserves them.
Broof: Let .« : G — H be a monotramsformation.
For shortness we shall suppose that all &y are inclusiohs.
All G(nﬁx) are monomorphisms since all }t(qﬂx) are mono-
~morphisms. a) b) will be proved together: if m = eg (f,¢)
(or, moreover, ¥ is a monomorphism, respectively), f,g
i X— Y, put A=1{xeX; f(x)= g(x), B={x e G(X);
LG(fYI(z) = [G(g)I(z)?. Then G(A), <
cbdc G(.X)AH(A)X. If .xeG(X)r\H(A)x
then x e G(A)x by ().
c) Let f: X — Y be a mapping, B c A,A-f"’CB) "
(%) yields easily that G(A), = G(X) A H(A), ,
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G(B), = G(Y) n H(B), . Thus G(A), = [G(£)"(G(B),).
d) is also easy.

e) is trivial, the regularity of G need not be required.
V.3. Proposition: Let H be a functor. If every 3<“’X)
preserves either equalizers or sets of fixed points or pre-
images or intersections up to 4 , then H also preser-
ves them. '

Proof: If every H preserves equalizers, then

all H(d)x are monomo;;;x::ms. For, if EH(a&x Jl(a) = ¢ =
=[H (1})* J(&) for some a, &€ H( @) then, since
H<c’ X5 (19x) is a monomorphism, necessarily q = ¢, Now
let f,g: X — Y be mappings, A= {xe X ; f(x) =
=g(x)j, B=siz 6 H(X) ; [H(f)1(z)=[H(g))(2)}.
Then obviously H(A)X c B. If ze B, put G=H<z’ X -
Then ze ixe G(X); [G(f)I(x)=LG(g)I(x)} = G(A), € H(A), .
The proofs concerning the preservation of sets of fixed points
or preimages or intersections up to 4 are quite analogous.
Note: An analogous statement on separating system does

not hold.

VI.

In this part, some special functors will be investiga-
ted.
VI.1. First we define the category I of filters:
The category F’ : Objects are all pairs < M , >, where
either (M,f)sr (B,1{81> or & is a filter on a non-
void set M ; morphisms from <M, #> to (N, %) are all
mappings f : M — N with ¢1(G) e # for allG e Y.
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The category JF is a factor category of F’: F'@ = F&
and f,g € F'(<M, #>, <N, 9>) determine the

same morphism of F (denoted by f*+ or g% respectively)
iff */F = %/ for some F e ¥.

The category FF is studied in [4], where its concreteness
is proved. The following proposition is also given in [4]:
Proposition: A morphism f+ e F(<(M, #>, (N, ¢>)
is an epimorphism (or a monomorphism) of F iff §(F) e L4/
for all F € # (or iff there isa F e # such that ‘/1:- is

an injection, respectively).

VI.2. Definition: Let €: & — F be the full embedding
with E€(X) = <X, {X1) for every set X € $7 . Let
<M, %>ecF”, M+ @ . Denote by GMJ:S—» S

the functor QMJ'(-) =FWKM,F>,e(=)).

VI.3. Proposition: There is a l-l-correspondence between
transformations from QN",’_ to O'M_,F' and elements of
F(<CM, #>, CN,9>) . Monotransformations correspond
to epimorphisms, epitransformations to monomorphisms.

Proof: If g : QN,‘q. = QM,? is a transforma-
tion, take the mapping A: M — N with 9:(%"" )= AT,
It is easy to see that A™'(G) e # for all G e @ .

VI.4. Proposition: Every QM g Preserves equalizers.
1
Proof: is easy.

VI.5. Let 4 be an infinite cardinal. We recall that a fil-
ter # is said to be 4 -complete if xnzx 6 ¥ whenever
&
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all X are in & and card £ < uL .

Proposition: The following properties of a functor

Gm? are equivalent:

(i) GM pe preserves products up to x4
2

(ii) QM pe preserves separating systems up to  ;
’

(iii) @M,,. preserves intersections up to 4u ;

(iv) the filter # is . -complete.

Proof: (i) == (ii) is trivial, (ii) ==> (iii) follows
from III.12. (iii) ==> (iv): Denote H = O.M',., . Let X c
c F, %X + @,card £ < m . Put Y=,y X , denote by
ty: ¥ — M the inclusion. Obviously, (('d.M)"e HX),,
for all X € &£ , consequently (<d,)*e H(Y) . Then
necessarily ““m /p = by ® M/F‘ for some F € ¥ and x :

tM— Y. Thua, Fc Y and consequently Y € % .
(iv) ==> (i) is evident.
Corollary: Every O.M,,. preserves limits of finite

diagrams.

VI.6. The following functors are considered, e.g., in [7],
(91,[12]:

The functor Nl: N(X) = {Z2c X; Z+ F1;irf: XY
is a mapping, NI ($): N (X)—> NI(Y) is the mapping with
[NMICZE) = £(2) .

The functor NI“ : If . > 2 is & cardinal, N, is a
subfunctor of N with N (X) = {Zc X ; Z + & ,
cand Z < a4 } .

The func;.g $:If X is a set, F(X) ia the set of all
filters on X ; if £+ X—> Y is & mapping, 7 & Fxy,
LPI(F) =4Z c¥; #71(Z)e F} or, equivalently,
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[HCFII(F) is the filter on Y with the base
{f(F); Fe Fi1.

The functor M3 : It is a subfunctor of §  such that
MBCX) is the set of all ultrafilters on X .

VI.7. Proposition: The functors IN , IN preserve in-

an
tersections and preimages. They do not preserve sets of fi-
xed points.

Proof: is easy.

VI.8. Proposition: The functor /8 preserves preimages and
sets of fixed points.

Proof': [3 evidently preserves preimages. The preser-
ving of sets of fixed points follows easily from the follo-
wing theorem, proved in [2],[3]: if #: X — X is a map-

ping, then X = X, v X“l v x2 v Xs where X .

2
(¢=0,..,3) are disjoint, X, ={xe X;f(x) =x{ and

F(X‘-’)n.x‘.‘=¢ for 1::'1,2,3-

VI.9. Lemma: Let N be the set of all natural numbers,
P=NxN-{<m,m>;, meNi, A; ,B;c N,
A, AB; =@, i=4,2,.00, & .
Then P-i‘L:J"’(AixB_‘;7=i=¢-
Proof: Suppose B; = N - A;. Put T= P-d,'L?J"(Ax),‘;).

For every m e N puth={1',;m—eA‘-‘}.Since Xp €
€ 14,2,..,%1 there are 1, g € N, n % g such that
Kﬁ-K%.Thus, {pn,qg>eT

VI.10. Proposition: The functor [3 doesa not preserve coun-

table intersections and equalizers.
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Proof: /3  evidently does not preserve countable -
intersections. We prove that 3 does not preserve equali-
zers. Let N be the set of all natural numbers, P =
aNxN-{<m,m>»,  meN}i, fqg:P>N,fm,nd) =m,
g({m,m>) = m . Then 2}, = eq (¥,¢) . We show
that ¥ *eq (B(+), A(g)). Let F be an ultrafilter

B<CP)
s fe
containing all sets P - 494 (A; < B;) , where ‘41: ,

B, cN, A, nB;, = $§ . It is easy to see that
[BIICF) =[RB(gIICF) .

VI.1l. Proposition: The functor & preserves pre-
images. It does not preserve countable intersections and

sets of fixed points.

Proof: is easy.

VII.
Here we give a characterization of functors preserving
preimages or equalizers. The connections between preserving
of pullback diagrams, preimages, finite products and equa-

lizers, sets of fixed points are clarified.

VII.1. Definition: Let § be a functor, <x, X?> be not dis-
tinguished. Put H*'* = {Ac X; xe H(A), } .

VII.2. Propogition: H*'* is a filter.

Proof: If A,BP € H* ¥ , then AnB 4 g since
Cx, X > is not distinguished (aee II.4). Then A N B €
6 H** aince H(AAB) = H(AY A H(B), .

VII.3.Proposition: If f: X— Y, [H(#)]1(x) = ¢4 ,
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(x,X>,<q,Y) are not distinguished, then +(A)e H¥*”~
for every A € H*X

Proof: is evident.

VII.4. Proposition: A functor H preserves intersections
up to # iff H 1is regular, all H('z}x ) are monomorph-
isms and if H*»¥ is # -complete for every non-dis-
tinguished <x, X > .

Proof: is easy.

VII.5. Proposition: The following properties of a separa-
ting functor H are equivalent:
(i) H preserves preimages;
(ii) if #+ X = ¥, [H(f)1(x) = 4 , then
L)1 (HMY) = ¥
(iii) the mappings g : H(X) = $(X), @ (x) = H¥¥ form
a natural transformation g : H— & ;
(iv) if #, ¢ : X =Y, [H(#)1(x) = [H(g)I(x) , then
[FCHITCH) = [P (gIT(H*Y) .
Proof: If H is separating, then all H (%) are

monomorphisms and H preaserves finite intersections.
(i) => (ii): Let f: X — Y be a mapping with
[HCFf)1(x) = o4 . We have to prove «) if B e HY , then
F1BYeH®Y , plift B cY, #'(B)e H*X | then
Be HYY

«) is an easy consequence of the fact that H preserves
preimages, (3) followa from VII.3.
(ii) w=ep (iii) is evident.
(1ii) == (iv) is evident.

(iv) ==> (i): Let H do not preserve preimages. Then
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there is (see III.7) a surjection £: X — Y, a set B c

cY and a point a € [H()1 (H(B),) - H(A), , where

A = £~1(B) . Choose an injection £ : Y — X with

$ ol = id.y . Put Ir=[H(f)1(a), c=CH(L)I(&) . Then

[H(Lef)l(a)=c, [H(f)1(a)=[H(f)1(c) = & and,

since £(B) ¢ A, ¢ is an element of H(A), . Let

1: A— X be the inclusion, ~ : X—» A be a mapping

with % o i = <d,. Since c € H(A), , we have

[H(i on)lCe)=c . We have [H(G)1(e) = ¢ for

g=4demofof,Put g =Ffog . ThenlH($)]l(a)=L=

=(H(g)I(a) . But LHHIIH™ ) # 0 (gIT (H™X) ,

For, B> g (X) and hence BEE(P(Q)](H“’X); but

B¢ LPcs)] (X )y because the converse implies

£y e HX , i.e. @ € H(A), which is a contradiction.
Corollary: A functor G preserves preimages iff G =

x CMVH , where H is separating and satisfies (ii) - (iv)

from the proposition.

 VII.6. Proposition: Let » : Qx — H be a transforma-

tion, Y (iad.x) = x, (x, X > be not distinguished. Let

f,g: X — Y be mappinga with fﬁ = g'/A for some
X9 X ’

A eH .+ Then » () = » (g) .

Proof: is evident.

VII.7. Proposition: The following properties of separating

functors H are equivalent:

(i) H preserves equalizers;

(11) if 4,¢: X = Y, LH(#)1(x) = LH(g)1(x) then ¥/ =%

for some A € H*X

(1i1)  H, s, = GX,H,’x for every set X and
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every x € H(X) ;
(iv) H = Mo G, , where J is a class and for every
L e J there is an (M_, %) e FY with szam“,?‘:.
Proof: H is supposed to be separating, consequent-
ly all H('ﬂx ) are monomarphisms.
(1) => (ii): Put A={xe X; f(x) =g (x)}. Then x e
efxe H(X); [H(#)I(x) = [H(g)I(z)} = H(A), and
consequently A e H* X .
(ii) = (iii): The natural transformation»: @ ., x— H, .,
with », (id.; ) = x is obviously a natural equivalence.’
(iii) = (iv) is evident.
(iv) == (i) follows by VI.4, V.2 and V.3.
Corollary: A functor G preserves equalizers iff
G = CM v H where H is separating and satisfies

(ii) - (iv) from the proposition.

VII.8. Proposition: If a functor preserves equalizers then
it preserves preimages.

Proof: If a functor G preserves equalizers, then
G >~ C, vH where H is separating and satisfies (ii)

from VII.7. Consequently H satisfies (iv) from VII.5.

VII.9. Proposition: The following properties of H

are equivalent:

(i) H preserves limits of finite diagrams;

(ii) H is connected and preserves pullback diagrams;

(iii). H  preserves finite products and H # C,, .
Proof:The implications (i) ==> (ii), (ii) == (iii)

are easy, (iii) == (i) followa from IV.4 and III.1l.
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VII.1C. Remark: 1) Consequently the following assertions"

about a functor H are equivalent:

(i) H preserves pullback diagrams;
i) B= Yt
ducts and HL * Co,q .

every Hu preserves finite pro-

2) One can prove easily the equivalence of the follo-
wing assertions:
(i) H preserves limits of all diagrams up to # ;

(ii) H preserves products up to # and H ¥ Co,1 i

VII.1l. The connection between preserving of pullback dia-
grams, preimages, equalizers etc. is indicated in the fol-

lowing picture:

) / \ 4 / \\ T/ \
mono’ monco’
7~ . ~~ A
~_7 \} - \/
o € n ot
where
o ... means preserving of pullback diagrams;
/3 coe W W " preimages;
T ... . " " finite intersections;
o e " o " equaligers;
£ .. L " " @sets of fixed points;
N e " " " equalizers of pairs of mono-

morphisms.
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The indicated implications and their compositions are
true, and there are no others valig.

The implications o = B = = , I'=> e == 7 are
trivial, o == 0~ followa from VII.1lQ and VII.9, o ==> 13
follows from VII.8. Now we prove 9 = 7 : let a func-
tor H preserve equalizers of pairs of monomorphisms and
do not preserve finite intersections; there is necessarily
a ce H(A), nH(B) - H(AAB), for some A, Bc X.
But then A A B = @ . Choose monomorphisms #,g: X — Y
with q}x = eq (¥, g) ., Then, since <c, X > is distin-
guished, [H (f)](c) = [H(g)]l(c) . Consequently c €

€ H (¢)x , which is a contradiction.

VII.1l2. Examples:

" =& o example: the factorfunctor of Q; v 0;' (whe-
re Q; - 0; are two different copies of @, ) given by
the relation (x, x M o~ Cx,x .

T, B=~7,€,d, v example: all the functora N, , N .
¥, € = 3, example: the factorfunctor of as given by
the relation <, o,y >~ <z, 4,4’ .

€ &> d°, example: the functor /8 or the factorfunctor
of Gs given by the relation (x, g, 4>~ (g, x, 4.
M ==> ¢ , example: the factorfunctor of @, given by

the relation <x ,6x,, x,, Ky goor DV CX Xy X)) Xy y Xy yoee? e

VII.13. Some further implications are valid under certain
assumptions, for example: if a functor preserves finite

sums then it preserves preimages and sets of fixed points.
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ViI.14. We say that a functor H ia generated by finite

sets if H (X) -hhj-vx LHC(F)I (H(M)) , or, equi-
M finite
valently, if H is a factorfunctor of Iﬂm.."}/: GM , whe-
o

re J is a set and all M_ are finite sets.

Proposition: Let H be a functor generated by finite
sets. If H preserves equalizers of pairs of monomorphisms
then it preserves sets of fixed points.

Proof: 1) Let H be a functor generated by finite
sets and let H preserve equalizers of pairs of monomorph-
isms. Then all H('&")x are monomorphisma. If H does not
preserve sets of fixed points, then there ia f: X — X
and a € H(X)-H(A), with [H(f)](a) = a , where
A= {x€ X3 f(x) = x 3. Denote by L, :A— X the in-
clusion. Choose M finite, m € H (M), ¢: M — X with
[H(®)l(m)= a . Denate by » : GM ~> H the transforma-
tion with », (éd,M)- m . Clearly, if g@’': M — X ,
P (@) = % (¢') then g’ does not factor ~- through t,.

2) Put R = ¢(M) U e @(M), denote by ¢

R 3
: R = X  the inclusion. Choose a mapping ¢ : R -» R
such that @ (z) = f(z) whenever z 6 ¢ (M), g (x)e
e (M)A §71(2) whenever z € fo (M) - @ (M) .
Denote by % : M— R  the mapping defined by R°Y =9
Then Ly, o g e ¥ = f o @ , consequently

[HC )Y (D (o)) m 2, (@)= B, (feog@)=m[H(L)OY(gey)). This
yielda », (y) = », (g o y) . Put Bxix 6R; g(x) = x}§,
let L, +B—> R be the inclusion. Clearly B c A, and
consequently g © bp factors through ¢ A’

If ¥+ M— R, % (y) = (y’), then 3%’ cannot

. factor through Ly bccmn. e
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through v, . For, », (Lpe ') = Y Clg o) - (p).
3) Let C ' be the set of all points of all cycles of
the mapping g (i.e. C is the greatest subset of R with

glc)=¢c ), let C—+ R be the inclusion. Since

¢ H
R is finite, there is a natural number 4+ auch that

9,""- L= L then there is a mapping E: R— C with

ce™ ¢
9!"- (o @ - Let h:C — C be the mapping with t..coh-

=g oy .Put 7 = ©oy , consequently [HC )0, (h og )=
=%lehog) =d(geg e og) = %™, y) =

- vl(Qﬂ'. 1") =r ;’R ("C. p o V) = EH(OG)J (i,c (z})
which implies 2 (he )= % (1) . PutD=1{xel;h(x)=xi,
let LD:D—P C be the inclusion. Since D « B, (, o ¢

c >

factors through ., . The mapping & is not an identity

]
because 7 does not factor through b - For, aince
Ve lw) = 3 (gTe y) = » (G o1), & ° 1 cannot factor
through ty . But 4 is an injection and [H (4h)] (2, ()=
=n(x), »(x) e H(D)c , which is a contradiction.

VIII.
Now, we describe the functors preserving separating

systems up to .44 or products up to 4 .

VIII.1l. Lemma: Let Of: (M, T>— (M, >, <m=1,2,
be epimorphisms in F . Then there is a pullback-pushout
disgram in F , say

A/:7<M¢, %> \61':
(Z 2> _ - M, 7>
BNy, g

2



)l;" and Jl; are epimorphisms. If .”;’ and % are
A4 -complete, so is & .
Proof: Put Z = f(m1,m2) €M1 xMz; G,,(m,’)= 6}(""'2,’ 3,
A, (Komg,m>)=rm, , ©=4,2 ; let £ be the filter with
- 4
the base {AJ'(F ) n A, (F,) ; B e Z,F, € % }. Then
CZ,&>; A} , A} have the required properties.
VIII.2. Lemma: Let H=G u G, be a functor such that
G = 6“1'11 y G = QM,.,S; » 6 A G = Gy » .Then thers ex-
ists a monotransformation of H into some @ If ¥

2,8’ 17 ?

32" are 4 -camplete, so is & .

Proof: follows easily from the previous lemma and VI.3.

VIII.3. Proposition: Let . be an infinite cardinal. The
following properties of H are equivalent:

(i) H  preserves separating systems up to s ;

(ii) H = Cm% v G where G = ‘.L.JaG-u J is a
class and

) for e ] o h F

a) for every L e J, G, GM“{ where &
is 44 -complete;

b) for every ¢, ,(, € J, G"_’ A G"2 = (’LC%’"G’% G s

¢) if e 7, ca;cd.J’<4u.,L§Ja, G « GA' n G‘-n .
then there is a (, € J with Ko G © G"3 c GL1 ) G"z.

Proof: (i) == (ii): If H preserves separating sys-
tems up to 4 , then H = (C, = v G , where G ia
separating, preserves equalizers and intersections up to 4
(see IV.4, ITI.11, III.12). Denote by J the class of all
L=(x, X)> where x € G(X) and put G_ = Geuw, xy -
Tt}en G, = Gx' % for the 44 -complete filter F = a%X

(see V.2, VII.7, VI.5). One can verify that Gb have all
~-1%¥0 -



the required properties.

(ii) = (i): Let H satiafy the assumptions of (ii). It
is sufficient to prove that G preserves separating sys-
tems up to 4 ., Let ¢ X; {9’4:5 c € A} be a separating

system, caxel A < s . Suppoase there are a,, 2, € G(X)

with [G(g)1(a ) = & = [G(g)1(a,) for all

122 7

a, € GcZCX)' Then there is a ¢, € J with & e G‘_a(J()
for all < € A and Go,C G% A sz. Let X=X, v K, be

o« € A. Choose (., € J such that a, € GL‘,(}\’),

a functor and »: K ~— G‘L1 v G"z be an epitransforma-
tion such that the domain-range-restrictions »?: K,, =5 GL‘, .
»2 Kz — G‘a ; »? ; K,, N Kz — G"a are natural equiva-
lences. Put Ksa K4 N Kz , choose ¢. € K«C (X ) with
»(e;)=a,, £=4,2 ; choose d, € XK, (X) such that
e (d,) = &, forall x & A . Since K is embeddable

into some @ with & # -complete (see VIII.2),

Z, %
it preserves separating systems up to 4 . Consequently

e, = ¢, because [K(g,)1(c)) = d = [Kig)lle,) -

2
Thua’ a = a.2

VIII.4. Note: If the class J from VIII.3 is a set, then,

of course, the functor G is small. The problem, whether
there is a big functor which preserves separating systems
up to 44 ,is easy under the assumption of an existence of
a proper class of measurable cardinals. (We recall that a
cardinal s > #, ie called measurable if there is a
non-trivial f -coﬁplete ultrafilter on the set 2 .)
Then, take for every cardinal 4 2 .44 a couple < P, P>
where 7 is a non-trivial 4 -complete ultrafilter on a

86t P and put G = 1‘_&;.)“-‘ G"’;i where G, = G»v' » and



for every f, ', 1 % n’ ,the intersection G, n G,
is naturally equivalent to I (i.e. all GP' » ere glued
along the diagonal).

Without any set-theoretical assumption: even an exie-
tence of a big equalizer-preserving functor seems to be un-

known.

VIII.5. Proposition: Let 4 be an infinite cardinal. The
following properties of H are equivalent:
(i) H preserves products up to 4« ;
(ii) either H = C, or}!-’a‘-c‘H or H = ¢ ar H =
y 1
= U H where J ia a clasa and
Lea v

a) for every ¢ € J, H = G,M“,: where 5: is m-
complete;

b) if ¥ c J, ecard J’ < u , then there exists
L € J with L,Q‘JJ, Hu c HL .

Proof: (i) ==» (ii): If H preserves products up to
#4 o then either H = C, or H = C‘M or H = C or
H is separating, preserves equalizers and intersections
up to 4 (see IV.4, III.11, III.12). Denote by J the
class of all L = (x, X>, x € H(X) andputH = He, x,.
(ii) === (i): Let H -"%J: H_ satisfy a) b) from (ii).
Let {X,3x € A} be a collection of sets, <X ; (m
< € A?) its product, card A < 4 . Choose X, €
€ H(.'X") for all o« € A . Then there exists a L e J
such that x_ e G (X_) for all « e A . Since G,
preserves products up te 44 , there exists an X e G“ X)
with [G (m )]l (x) = X . If [H(m )1l(a) =
: [H(m )I(&) forall « € A and some a, & €

€ H(X), one can cheose L & J such that
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a, & e G, (X). Then, necessarily, a = & .

t
f21
(31
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