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A REMARK ON THE THEORY OF DIOPHANTINE APPROXIMATIONS
Bohuslav DIVI8, Columbus
Bfetislav NOVAK, Praha

Let A be en irrational number and ( 4 ; &, 4,...)

its (simple) continued fraction expansion. For t & 1 1let

() = min | - )

Yo £yq imt. Lp -1
0<g =t

It is well known that 0 < t ¥y (t) < 1 for every t =

2 1. Let us set

A(B)Y= m ¢ (t = K
» Jm inf t ), ), @ (P %wtwﬂ(t)

The aim of this paper is to prove some theorems for the
numbers « () which were announced in Preliminary commu-
nication [21 .,

First, we introduce some notation . For any positive
integer N we denote by & (N) the set of all § for
which h.cgn*w A, = N (i.e. from certain suffix %, on
is 4 « N and 4 = N for infinitely many Je ). A num-
ber o =(a,; e, , a.z,,,,) will be called equivalent to }3
if there exists an integer m such that Ko™ ,bi._ for all
sufficiently large Jf , We use the symbcl o« ~ 3 or
< #« 3 according to whether o« and @ are equiva-

lent or not. If oc ~ 3 .then obviously A () = A(A) ,

AMS, Prizary 10F05, 10 F20 Ref.Z. 1.93
Secondary
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& (ec) = @ (3). We shall use a standard notation for the
périod of a continued fraction; e.g.
(152)=(4;2,4,2,..0= % (1+/3) .
Let us astart with the following simple

Lemma,

y = 1
S CE ey e
where #
Rp= lm sun (b s & o0, &) (B 3 Bhesa o)

(Fr =0 for Ry = % o).

It is sufficient to prove the lemma for 0 < B<i.

If z’: denotes the n-th convergent of 3 , then clear-

ly

@)= Lim vup Gu, 12pf= Pyl .
Now (see e.g. [1] chapter I, § 2)

st | A B-tpl= 1+ 8 g )",
where

e
o= (05 By, Hrgsene ), A= Cnes = 05 Yo Yigseen, &5 )
Let 727 (N) be the set of all Rp with 3 e & (N),
and let M = NE‘Z M (N) . By the lemma we see immedia-
tely that
L ewpmer.

Further « (fB) = 4 if and only if the sequence b, by,
is unbounded, and thus “(p) <1 if and only if B e
& "C:)‘ & (N) ., Now the structure of the sets #(N) and
e will be studied.

Theorem 1. 1 Let

1) This theorem was first proved by J. Lesca [6); it was pro-
ved by B. Divis independently in 1968 (see [2]). See also £73.
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c$=4, = 0,4,2’... ) &,8(60;54,C2,...) »

—

Xp=(25¢C,C,0003Cpn 4q)y M= 1, 2,... .

Then
1
a) R = 7 (3+V/5)
b) R,‘} < R‘;H s 9= 0,4,2,...,
) Mm Re, = 2+15 .

d) If R{l < 2 + V5 then there exists a non-negative
integer 7  such that (3 ~ oo

The proof may be found in [6].

Theorem 2. Let N Dbe a positive integer, ac = (1; N).
If Be & (N), then Ry 2R, =axN+1 =

o
=F(N+2+ W2+ 4N) . 2

Moreover, there exists a positive constant ¢ depending
only on N such that Ra = R, + ¢y whenever 3 &
e fr(N) end B 2 « .

Proof. We denote by ¢ (in general different) positi-
ve constants which depend only on N . Without loss of gene-
rality we may restrict ourselves to the case N = 2 and

12 &, €N, k=1,2,... . Notice that

(1) 2N = N + 1

Evidently, it is sufficient to prove that Rp 2Ry + e
whenever (3 & & (N) and 3 2 o« . Denote this state-
ment by (T) . We have that (T )  holda:

2) See also P. Flor, Inequalities among some real modular
functions, Duke Math.J.26(1959),679-682 (added in proof).
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a) If for infinite number of positive integers &

we have &z = N , and max (g )> 4, (Obviously,
Rﬂ > 2N > Rq‘ .)

b) If either

1%

1

&, = 1, l’bH:N’ ’e"h+2’4:’e’:ﬁ+3=a"éIN ’
or 4

‘b&,’“‘é'ﬁ:‘N) L =4:‘e’h+2"~’ Puss = 1.
for an infinite number of positive integers & .

In this case obviously we have

Rp 2(N;4,...0. (45a,..) 2 (N4, ). (152, «)
. o< o
i.e. RQB(N+W’(4+W)'

According to (1), the difference

< o
(N + pogre 1109 ¢ o) ~ (e N+1)
can be written as follows i
o +a ~1
vl N-2as =55 .

The last expression is at least
o« 1
= = C
4(cc+4)(ecN+4) N + N
because a £ 7 N .
¢) If either

o=, Ugpy =Ny Bpg =1, 83= 4, o, =2

or

Bp=a, ly =, D=1, y,,=N, by, =1
with o >11.N' end a > 1, for an infinite number of po-
sitive integers Jf ,
With respect to a) it is sufficient to consider only the ca-
se L, + N (i.e. N > 2 ). We have

Ry 2 (250 (b4, N, 4,..) > 2(& 5 4,N) =20 + ;{1 .

Since R, < N+2, 24 = N+ 1
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N-1

—_— =

we get Rﬂ~n&>N+4 .

If B e &(N) and 3 + o , then, according to a)
and b), it is sufficient to consider only the case when the

number N occurs infinitely many times in a group
a,1,N,1, » ,
where -%N < mmn (a, ) < N , Hence, according

to a), and c), it is sufficient to assume that the number N

occurs infinitely many times in a group

i 1, a, 1, N, 4, &, 1,
where 7N < min (a,#) < N .
But then

Rs

v

(Ny A, e 4, ) (1 Nl ) 2

v

(N-,4,b‘,4,oc).(4;.N—4,«-)
where N2b>-Z—N .

’

alN + 1

Since (4-,N-4,0¢)= m" y

it is sufficient to prove the inequality
(N; 4, 2,4, ) > c (N=1) + 1
or, as we easily see, the inequality

o« (N=1)(x =~ 1)
Rk o« +1 x+N-xN :

Using (1), this inequality can be rewritten in the form
s = (N-2) .
o + 1

Since 4 > -g-N , it is sufficient to show that

A a(N-2)
2N> x + 1

or
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N+eow(4-N)>10.
The last inequality is trivial for N < 4 , For N > 4
we get
N _ 4
N-¢ 't A

« <

which is true.

Remark. Theorem 2 can also be formulated as follows:

the minimal point of the set 2 (N ) is its isolated

point. Also the following estimates of the constants ¢

5 A
can be determined: cN & N .

N

Theorem 3. Let o« be as in Theorem 2. If B &€ & (N),
then

Ry € NR = AN N2+ /NT+ 600 Y

If N>1 end ¢ > 0, then there exist uncountable sets
n, %,
such that
pedl = Ry = NK, ,
3’*/3; 7, ﬂentgkn*Rr )
NR‘—L<Rﬂ<NK¢ .
Proof. Let -3 € & (N) ; i.e. we may assume that
1 £ 4 =N, i=4,2,.. .Obviously

c s (N) of mutually inequivalent numbers

i
By s Boys Biagrores ) (Mg s Mg, o) <

£ (N, T, N).(N; T,N) = (Nyec *=N(a N+ 1) = NR

%
Let N > 41, Since there are only countably many numbers

equivalent to a given number, it is sufficient in both ca~
ses to prove existence of uncountable sets 9L, % c ¥ (N)

with the required properties.
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Let ¥, ©be the set of all sequences on 1 and 2 . For

o s
A= {“’;'.};‘u € €L we define A = (a,,, @y,

We construct the elements of 2. as follows:

ﬂA= (05A4’N;‘N,A2, 4; N; N: 4’ A31N) 4: ‘N; Na 1, N)"' )

i.e. between A, and A, ., there is always a group of 2n

1), m=1,2,....

numbers (
A, N AN, .., 1, N N AN A,...,N, 1
‘.——!Tn\"f ) 2 @Y i B

for m even, and

Ny N, ooty LN, N!/l,.NM,,..,N,'f,N,

m mumbews m mumbeoes

for m odd.

For distinct elements A & %A we get different num-
bers 3=, € & (N) and, obviously, R = NR, .

For the proof of the second part of the theorem, let
€L be the set of all 3 € (0,1) A & (N) such that
1«4 &N, 4=14,2,... , with the following property:
if 4 =N for some 7, then Y=Ly, =1 (for g=1
we set lri =1 ). If m is a positive integer, we denote
by A, the following group of 4#m + 6 numbers

1,1, N, 4:”;:1:"':-’“1: N NN NN 4,4

Im 2m

To given 3 we order a number

9ﬂl(ﬁ)= (0;%,11,,_,14,4,!5,1;,,4,”,,&;,

201,
ooy Mgy Miggyoees B A 2, 1 ey s Doves Y m €05 €, €4 y0n) s

Since (as can be shown by a direct computation)
(Ny 2,0 € (Ny ) (f; ) < (N; N, )2 € (NG 0 (N; L)

we have
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R%(m =4@f;w (e, ; c’b;-ﬂ!"" e ) (Cpiras ck,+2’"' )s
where . ,4k,,... is the set of all positive integers %

for which ¢, = Chas = N . From this it follows that

R =Ny 4N, 4N, o) 1,N, 4,4, 87102 < NR .
~—
2m

Gy ()

Now the set <L  is uncountable, &m Re, 5 = NR,

for each fixed 3, and, finally, Rg,,(m is a continuous
and increasing function of B3  for each fixed m ., This com-
pletes the proof of Theorem 3.

Remark. Thus, for N > 4 , the maximal point of the
set W (N) is its condensation point and it is assumed
for uncountably many B3 € & (N) .

Remark. Analogous statements for the values A ([3) are
proved in [4] and in some other papérs of the same author.
For each positive integer N we denote by m1 (N) the
set of all A(AB) with B e & (N). Then the maximal
point of the set m1 (N) (which is its isolated point)
is the number (N2 + 4-)"i and the minimal point of this
set (which for N > 4 is its point of condensation) is
the number ( N? + ’rN)-i .

Remark. A na‘tural question that arises is that of stu-
dying the minimal condensation point of %7 (N). This que-
stion will be the subject of a further paper.

Using the results of [3], one can show that there ex-
ists a number A, ‘sg\ch that A (3) assumes every value
of the interval [ 0,\.&01 (see [1], p.44). An analogous

result is shown in
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Theorem 4. a) There exists a number R* such that
[R*Y, + @) c %L,
b) for all sufficiently large N (N = 5§) the set

2t (N) contains some interval,

"c) R*< K = 12+8VZ = 23,3136 ...

Proof. For each positive integer m  we denote by
F(m, 4) the set of all real numbers B3 = (&;; &, 4&,...)
for which 1;; =m, ,0; < 4 (4 = 1) . Marshall Hall Jr.
proved (see [3], Theorem 3.2,p.974) that for m = 41 each
number y € J, ,

Qo= [m2+ (I - m+$(3-2V0), M +4GT-NDm+12-8/21,
can be written in a form p = 3 . 3, , where 3 & F(m;4),

B3, € F(m; 4) . Similarly, each number o € X, ,

X, = Em.z-rﬁm-+;1—r, m?+ (4VZ~3)m +10-6V2 ]

can be written in a form J'= By .3, , where 3, & F(m; 4,
B,eF(m+4;4) .

= o0
Evidently, L (J,uk,) = C%:_i + % VE, +00 ) .

%% + 4 VT = 2%.11... can be

written in a form A = (a,; a,, a Y. (g b, by, L),

Thus an arbitrary A 2

g g
where L +12q 2 4, 2 5 anda,a-‘é4-,2/a£4—
for 3 2 1, We construct a number % = (d,; dy,dy,ees)

as follows:

% = (a’o"‘e’é’a‘ua'o:’e';,’eq:a'z1a'41 @y Yy, 25y g y-ee s

00y Qmy Apyggeeey 2y, a’g;%;b‘}:'”: ’b'm.-’ya ’e’nr"' ).

We claim that R” = A,
Let us pUt bh = (dh—1” dh-ﬁ,"”’ d-q)u (d-h; db"'-f"“ ) .

Then, by the lemma, Ru = ht_:u‘»»+gu4» Pp o
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Now, for all positive integers m
d'ﬂl-" = b; s d'"“_1 = a'ﬂ >
and thus

Um rupy .0 ",,f‘."’.";"“"’ (d.”‘_’; dm".a""’ a,). (dﬂl; d”,“ yered=

mn >+ o oo

:‘%:WL(QD; R:,,..., qu’%_z,.u,a_').(ll"; 4‘{,,»&2,..., %_4, a,u,...)=

= Lm sup (a,; Qppoony U g Ve (g5 Hyyonsy By ) =

m =¥+ 0

= m sup (ay; 0y, @y ). (g5 e, &y ) = A,

m-r+ oo neq

Similarly,

Umynup hy = Uimsup(d, ;d, »"':d'7'(d“n_45‘f;,z:"')=

ny + o0 m4 my+ 0 mta’ mits 4

- MLM(d.m’_"; d“‘_’,...,d- ) (0-0; 1{,, d'm’-wi"“ ) £

ny+ o0 1
€FTT). (0 ) < 5 (ape ) £ &y (ay+ 4 ) < A
Analogously, we have

“%gm A3, o= lim bun (dmz; dn‘-1'"" a). (‘5;’«5 dm,“ yored =

=bm pupn (&, a.,,ctﬂe_g,...,d‘,).(d@,” 3 g g gee.) &

N+ oo
£ (8 a). (b, 4) < A
Finally, let % be a positive integer, |-m2| = 2  for
m =4,2,.. . Then

Pp = (g o5 g gyues) e (dly gy, o) < 5.5 < A
Hence R, = Um sup vy = Lmsun o, = A,

® T 4+ m -y 400 m

Thus, we have proved that for N 2 §
I € @N), Ky @LIN+ )

and

« 83
nL.J‘(J“uK”)-[T'P'z'ﬁ,+m) c  ;
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in particular, R* £ '%2 + % VZ = 2%.144 ...

It remains for us to prove the last part of Theorem 4,
namely, that even K*é R=12+8VT = 23.3436... .

Let us denote by F (5,4,3; 4) the set of all
B= (4,6.,1(;’,6;,,,,) for which

b=5 =1, & =3 and by £4 (3 23).
From the proof of the above mentioned statement of Marshall
Hall Jr. ([3], Theorem 3.2,p.974), it immediately follows
that each number ¥ e L, , where

L, = Lmim F(5,4,3;4), min F(4; ¥) ,

max F(5,1,3;4) . mac F(4;4)1]

can be written in a form y= /3 .3, , where e F(5,1,3;4),
(3, € F(4,4). By a direct computation, we get that
L,=(20+3V2, M+12/21 = [24.24.2..., 2¥.9%...7 .
Thus an arbitrary A € L can be written in a form
A= (a5 0,0,,..).(8; &, 0,,..) ,
where a,= 5, a =1, a,=3,a; £ 4 (3 2 3), X = 4, & E4(421).
Now, let % = (d,;,4,,d,,... ) be constructed as fol-
lows:
®=(a;4,a,a,4,0,.., Cs o gyeees Ry Bpy Ly U poney By By yun?)
We claim that X, = 2.
By the lemma, we have
Ree = Jiyoun 5y,
where 5, = (g 15 pggreeey @y e (dp i ygggroes ) s
For sufficiently large integ__er M, we have

d'w" sb{,: 4, d.”"-‘-' aQ =5, d”}.z=~w“- 1, 4”’_‘3 a, = 3.
Thus we have '
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nl:'m:gufv Sp = Jim i (%’-1.’ d'm‘.z’"" 4 (e dﬂ»‘ﬂ e
-um (ap; @y, @gyere ) e (s Xy, 2y yeee Y= A
Further,

i nu, = ti mu (13, oy )2 (5 iy 1)< 2.6 < A
Finally, for each positive integer Je, Ao =+ m*, de & m’-1
(m 2 1) we have

A< (b3 1) (434,50 = 5.2 = 24,166 ... < 2 .

Hence we have
R =n."-",”12“"’”"h ’Mlﬁ'*’,’lg“fb 5" B oy
thus proving R* < 20 + 3/2 = 24.242...
In the last part of the proof, let us denote by
F(5,2;4) the set of all f3 = (& lﬁ,lﬁ,...) for which
=5, & =2, lra-_é‘t(3'22) .
Analogously, from the proof of the Hall’s assertion mentioned
above, it follows immediately that each number ¢y € L, ,whe-
re
L= [minF(5,2;4). min Flk; 4) ,
max F(5,2;4) . mae F(k; #)]

can be written in a form g'= (3, .3, , where 3 € F(5,2; 4),

"B, € F(h; k). By a direct computation, we find that

Ly CF (142+ 2800, & (¥4 + 780021 = [23.1819...,26.929%...7 .

Thus, if we take an arbitrary A e L,,2 2K , we can wri-

te it in a form A=(aya,q,,...). (&; 4, 0,,...) ,

-~ where q,=5,a =2, a; £ 4(322), =4, by £4(321).
Let 2 = (d.o; 4, dy, e ) be constructed as follows:

®=(ay, 4,0,,2,,4;, lf;,-...,afu,%p...,a,“ab,!r;,,b",..., 7 e B

We claim that R, = A,
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By the lemma, '.R’e =hm§“ﬂ' g
where o, = (d_ 5 dg ;000 (A5 Aaggqroee) -

By the construction of #¢ , for sufficiently large po-
sitive integers m we have

d =lf°-4',dm,.1=a. =5,d-m,_z=a,=2.

-2 ) 1
Thus M—Uz_'r'n'_gqv o =
n-v-o-:m(d"'a.’ d., ,.,.)-(d.”u; dm’u"") =
= fim pun Cagyay, ay,). (5 5, 2y, o) = A
Further we have
Jim, g by = lim pin oy sedy @) (g ) =

.

= Um sup (2 dﬂz_’,...,d‘,).(S;dn,_,...) < 3.6 < A.

ﬂl- -+ 00
Similarly,

) =

]

l(/nv/l;bﬂ, = A w(d/y&}ﬁ’.‘g""'d")'(d

- + "y ot miy d“"*z""

;&qm(4 5,ds NETL Rk (d,4,...,d.,“m_1,2,5,...) <
< ‘P,—"). Ur;’l) =R = A ’
since for sufficiently large m q d,# £ 4 when

M+l 23 £ns2m-2,

By an analogous argument,

Lo, e b = Jom ity (g s g ey ly) iy 5 g (yene) =

1
»
3

-y
= JKom, mup. (d,,a_, Ao sy (250, ,..)<5.3<A.

Finally, if s is a positive integer, | fe-m2| = 2

)
e mi-2(m 21) and m2+ 1<k <m?+2m-~-1 for so-

me positive integer m = 2 , eay, then

M= (g g5 g gy @) (dy sy, ) =
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m+

< (. (&) £ a ,

= ey 5oy G 45 @) (dysunnda ) 2,5,0.) <

because d; & 4  when m*+d e 4 £mPar2m -2 .
Hence

R = Jim aufv #y = Jim sun £, = A
which concludes the proof of Theorem 4.

Remark. One could easily show that the sets L (N)
for N 2 § contain essentially bigger intervals than es-
tablished in Theorem 4. Also, by a modification of Hall's
proof, one could show that the set %Y (4) already con-
tains a certain interval.

Remark. Using the lemma, all the above theorems can be

formulated in terms of w () . We have chosen the above
formulation because of the simpler expressions for the va-
lues Rp .

Remark. Some interesting results concerning the solva-

bility of the inequalities
1
0<g<ect, Igp-pl<g

with n and g integer may be derived from a more detai-
led conaideration of the quantitiea Rn +« These questions

will be atudied in a subsequent paper.
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