

Werk

Label: Article **Jahr:** 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae
12,1 (1971)

A REMARK ON THE THEORY OF DIOPHANTINE APPROXIMATIONS

Bohuslav DIVIŠ, Columbus

Břetislav NOVÁK, Praha

Let β be an irrational number and (ℓ_0 ; ℓ_1 , ℓ_2 ,...) its (simple) continued fraction expansion. For $t \ge 1$ let

$$\psi_{\beta}(t) = \min_{\substack{p_1, q_2 \text{ int.} \\ 0 < q_2 \le t}} |q_{\beta} - p_1|.$$

It is well known that $0 < t \psi_{\beta}(t) < 1$ for every $t \ge 1$. Let us set

$$\lambda (\beta) = \lim_{t \to +\infty} \inf t \psi_{\beta}(t), \quad \alpha(\beta) = \lim_{t \to +\infty} \sup t \psi_{\beta}(t).$$

The aim of this paper is to prove some theorems for the numbers $(u(\beta))$ which were announced in Preliminary communication [21.

First, we introduce some notation . For any positive integer N we denote by $\mathcal{L}(N)$ the set of all β for which $\lim_{k \to +\infty} \mathcal{L}_k = N$ (i.e. from certain suffix k_0 on is $\mathcal{L}_k \in N$ and $\mathcal{L}_k = N$ for infinitely many k). A number $\alpha = (a_0; a_1, a_2, ...)$ will be called equivalent to β if there exists an integer n such that $a_{k+n} = \mathcal{L}_k$ for all sufficiently large k. We use the symbol $\alpha \sim \beta$ or $\alpha \not\sim \beta$ according to whether α and β are equivalent or not. If $\alpha \sim \beta$ then obviously $\lambda(\alpha) = \lambda(\beta)$,

AMS, Primary 10F05, 10F20

Ref.Z. 1.93

Secondary

 $(\alpha) = (\alpha(\beta))$. We shall use a standard notation for the period of a continued fraction; e.g.

$$(\overline{1;2}) = (1;2,1,2,...) = \frac{1}{2}(1+\sqrt{3})$$
.

Let us start with the following simple

Lemma.

$$\alpha(\beta) = \frac{1}{1 + \frac{1}{R_{\beta}}},$$

where

$$(\frac{1}{R_{\beta}} = 0 \text{ for } R_{\beta} = +\infty).$$

It is sufficient to prove the lemma for $0 < \beta < 1$.

If $\frac{n_m}{2n}$ denotes the n-th convergent of β , then clearly

Now (see e.g. [1] chapter I, § 2)

where

 $\begin{array}{lll} \Theta_{m+1}=(0;\,k_{m+1},\,k_{m+2},\dots), & \mathcal{G}_{k}=\frac{\mathcal{G}_{k}}{2k_{k+1}}=(0;\,k_{m},\,k_{k-1},\dots,\,k_{1})\,. \\ & \text{Let} & \mathcal{M}(\,N\,) & \text{be the set of all} & R_{\beta} & \text{with} & \beta\in\mathcal{L}(\,N\,), \\ & \text{and let} & \mathcal{M}=\bigvee_{N=1}^{\infty}\,\mathcal{M}(\,N\,)\,\,. & \text{By the lemma we see immediately that} \end{array}$

 $\frac{1}{2} \leq \mu(\beta) \leq 1.$

Further $\mu(\beta) = 1$ if and only if the sequence $\ell_1, \ell_2, ...$ is unbounded, and thus $\mu(\beta) < 1$ if and only if $\beta \in \mathbb{R}$ $\ell \in \mathbb{R}$ $\ell \in \mathbb{R}$ $\ell \in \mathbb{R}$ will be studied.

Theorem 1. 1) Let

¹⁾ This theorem was first proved by J. Lesca [6]; it was proved by B. Diviš independently in 1968 (see [2]). See also [7].

 $c_{j} = 1, \quad j = 0, 1, 2, \dots, \quad \infty_{o} = (c_{o}; c_{1}, c_{2}, \dots),$ $\alpha_{m} = (2; c_{1}, c_{2}, \dots, c_{2m-1}), \quad m = 1, 2, \dots.$ Then

a)
$$R_{\alpha_0} = \frac{1}{2} (3 + \sqrt{5})$$
,

b)
$$R_{\alpha_{j}} < R_{\alpha_{j+1}}$$
, $j = 0, 1, 2, ...$,

c)
$$\lim_{\dot{x}\to +\infty} R_{\alpha_{\dot{x}}} = 2 + \sqrt{5}$$
.

d) If $R_{\beta} < 2 + \sqrt{5}$ then there exists a non-negative integer j such that $\beta \sim \alpha_{j}$.

The proof may be found in [6].

Theorem 2. Let N be a positive integer, $\alpha = (\overline{1; N})$. If $\beta \in \mathcal{L}(N)$, then $R_{\beta} \ge R_{\alpha} = \alpha N + 1 = \frac{1}{2}(N + 2 + \sqrt{N^2 + 4N})$. 2)

Moreover, there exists a positive constant c_N depending only on N such that $R_\beta \ge R_\alpha + c_N$ whenever $\beta \in \mathcal{L}(N)$ and $\beta \not\sim \infty$.

<u>Proof.</u> We denote by c (in general different) positive constants which depend only on N. Without loss of generality we may restrict ourselves to the case $N \ge 2$ and $1 \le N_{\rm R} \le N$, $A = 1, 2, \ldots$. Notice that

Evidently, it is sufficient to prove that $R_{\beta} \geq R_{\infty} + c$ whenever $\beta \in \mathcal{L}(N)$ and $\beta \not\sim \infty$. Denote this statement by (T). We have that (T) holds:

²⁾ See also P. Flor, Inequalities among some real modular functions, Duke Math.J.26(1959),679-682 (added in proof).

- a) If for infinite number of positive integers & we have $\ell_{k} = N$, and $max(\ell_{k-1}, \ell_{k+1}) > 1$. (Obviously, $R_n > 2N > R_{\infty}$.)
 - b) If either

$$\ell_{n} = 1$$
, $\ell_{n+1} = N$, $\ell_{n+2} = 1$, $\ell_{n+3} = \alpha \leq \frac{1}{2} N$,

$$b_{i_{k}} = a \in \frac{1}{2} N$$
, $b_{i_{k+1}} = 1$, $b_{i_{k+2}} = N$, $b_{i_{k+3}} = 1$.

for an infinite number of positive integers & .

In this case obviously we have

$$R_{\beta} \ge (N; 1,...). (1; a,...) \ge (N; 1, \infty). (1; a, \infty)$$

i.e. $R_{\beta} \ge (N + \frac{\infty}{\alpha + 1}) (1 + \frac{\infty}{\alpha + 1})$.

According to (1), the difference

$$(N + \frac{\alpha}{\alpha + 1})(1 + \frac{\alpha}{\alpha + 1}) - (\alpha N + 1)$$

can be written as follows
$$\frac{1}{a \alpha + 1} (N - 2 \alpha + \frac{\alpha^2 + \alpha - 1}{\alpha + 1}).$$

The last expression is at least
$$\frac{\alpha^2}{(\alpha+1)(\alpha N+1)} = \frac{1}{N\alpha+N} = c$$
 because $\alpha \le \frac{1}{2}N$.

c) If either

$$b_{2k} = 1$$
, $b_{2k+1} = N$, $b_{2k+2} = 1$, $b_{2k+3} = b$, $b_{2k+4} = a$,

$$b_{n} = a$$
, $b_{n+4} = b$, $b_{n+2} = 1$, $b_{n+3} = N$, $b_{n+4} = 1$

with $k > \frac{1}{2}N$ and a > 1, for an infinite number of positive integers & .

With respect to a) it is sufficient to consider only the case $k_{\mathbf{k}} + N$ (i.e. N > 2). We have

$$R_{\beta} \geq (2;...).(\mathcal{L};1,N,1,...) > 2(\mathcal{L};1,N) = 2\mathcal{L} + \frac{2N}{N+1} .$$

Since $R_{\infty} < N+2$, $2 E \ge N+1$

we get
$$R_{\beta} - R_{\infty} > \frac{N-1}{N+1} = c$$
.

If $\beta \in \mathcal{L}(N)$ and $\beta \not\sim \infty$, then, according to a) and b), it is sufficient to consider only the case when the number N occurs infinitely many times in a group

where $\frac{1}{2}N < min(\alpha, \&) < N$. Hence, according to a), and c), it is sufficient to assume that the number N occurs infinitely many times in a group

$$1, a, 1, N, 1, k, 1, where \frac{1}{2}N < min(a, k) < N.$$

But then

$$R_{\beta} \ge (N, 1, \ell, 1, ...) \cdot (1, N-1, \alpha) \ge$$

$$\ge (N, 1, \ell, 1, \alpha) \cdot (1, N-1, \alpha) ,$$
where $N \ge \ell > \frac{1}{2} N .$
Since $(1, N-1, \alpha) = \frac{\alpha N + 1}{\alpha (N-1) + 1} ,$

it is sufficient to prove the inequality $(N; 1, \ell, 1, \alpha) > \alpha (N-1) + 1$

or, as we easily see, the inequality
$$\psi + \frac{\alpha}{\alpha + 1} > \frac{(N-1)(\alpha - 1)}{\alpha + N - \alpha N}$$

Since $\& > \frac{1}{2} N$, it is sufficient to show that

$$\frac{1}{2}N > \frac{\alpha(N-2)}{\alpha+1}$$

or

$$N + \infty (4 - N) > 0.$$

The last inequality is trivial for $N \leq 4$. For N > 4 we get

$$\alpha < \frac{N}{N-4} = 1 + \frac{4}{N-4} \quad ,$$

which is true.

Remark. Theorem 2 can also be formulated as follows: the minimal point of the set \mathcal{M} (N) is its isolated point. Also the following estimates of the constants c_N can be determined: $c_N \times \frac{\Lambda}{N}$.

Theorem 3. Let ∞ be as in Theorem 2. If $\beta \in \mathcal{L}(N)$, then

$$R_{\beta} \leq NR_{\alpha} = \frac{1}{2} N (N + 2 + \sqrt{N^2 + 4N})$$
. 2)

If N>1 and $\varepsilon>0$, then there exist uncountable sets \mathcal{H} , $\mathcal{H}_{\varepsilon}\subset\mathcal{L}(N)$ of mutually inequivalent numbers such that

$$\begin{split} \beta &\in \mathcal{H} \implies R_{\beta} = NR_{\alpha} \ , \\ \gamma &\neq \beta \ , \quad \gamma \ , \quad \beta \in \mathcal{H}_{\epsilon} \implies R_{\beta} \neq R_{\gamma} \ , \\ NR_{\alpha} &-\epsilon < R_{\beta} < NR_{\alpha} \ . \end{split}$$

<u>Proof.</u> Let $\beta \in \mathcal{L}(N)$; i.e. we may assume that $1 \leq \mathcal{L}_i \leq N$, i = 1, 2, Obviously

$$(l_{k_{1}}; l_{k_{1}-1}, l_{k_{1}-2}, ..., l_{1}). (l_{k_{1}+1}; l_{k_{1}+2}, ...) \leq$$

 $\leq (N; \overline{1, N}). (N; \overline{1, N}) = (N; \infty)^{2} = N(\infty N + 1) = NR_{\infty}.$

Let N>1. Since there are only countably many numbers equivalent to a given number, it is sufficient in both cases to prove existence of uncountable sets \mathcal{H} , $\mathcal{H}_{\varepsilon} \subset \mathcal{L}^{\varepsilon}(N)$ with the required properties.

Let \mathscr{C} be the set of all sequences on 1 and 2. For $A=\{a_j\}_{j=1}^{2^m}\in\mathscr{C}$ we define $A_m=(a_1,a_2,...,a_m),\ m=1,2,...$ We construct the elements of \mathscr{X} as follows: $\beta_A=(0;A_1,N,N,A_2,1,N,N,1,A_3,N,1,N,N,1,N,...)$ i.e. between A_m and A_{m+1} there is always a group of 2m numbers

 $\underbrace{1, N, 1, N, \dots, 1, N}_{m \text{ numbers}}, \underbrace{N, 1, N, 1, \dots, N, 1}_{m \text{ numbers}}$

for m even, and

$$\underbrace{N, 1, N, \dots, 1, N}_{n \text{ numbers}}$$
, $\underbrace{N, 1, N, 1, \dots, N, 1, N}_{n \text{ numbers}}$

for m odd.

For distinct elements $A\in\mathcal{CL}$ we get different numbers $\beta=\beta_A\in\mathcal{L}(N)$ and, obviously, $R_{\beta}=NR_{\alpha}$.

For the proof of the second part of the theorem, let CL be the set of all $\beta \in (0,1) \cap \mathcal{L}(N)$ such that $1 \in \mathcal{L}_{j} \subseteq N$, j = 1,2,..., with the following property: if $\mathcal{L}_{j} = N$ for some j, then $\mathcal{L}_{j-1} = \mathcal{L}_{j+1} = 1$ (for j = 1) we set $\mathcal{L}_{2} = 1$). If m is a positive integer, we denote by A_{m} the following group of 4m + 6 numbers

$$1, 1, \underbrace{N, 1, N, 1, ..., N, 1}_{2m}, N, N, \underbrace{1, N, ..., 1, N, 1, N}_{2m}, 1, 1$$
.

To given β we order a number

$$\begin{split} \mathcal{G}_{m}\left(\beta\right) &= (0;\, k_{1}^{\prime},\, A_{m},\, k_{1}^{\prime},\, 1,\, k_{2}^{\prime},\, k_{1}^{\prime},\, A_{m},\, k_{1}^{\prime},\, k_{2}^{\prime},\, 1,\, \ldots\,,\\ &\ldots\, 1,\, k_{m}^{\prime},\, k_{m-1}^{\prime},\ldots,\, k_{1}^{\prime},\, A_{m},\, k_{1}^{\prime},\, k_{2}^{\prime},\ldots,\, k_{m}^{\prime},\, 1,\ldots) = (0;\, c_{1}^{\prime},\, c_{2}^{\prime},\ldots)\,. \end{split}$$
 Since (as can be shown by a direct computation)

 $(N,...)(1,...) \le (N, \infty) \cdot (1, \infty) < (N, N, \infty)^2 \le (N, ...)(N, ...)$ we have
$$\begin{split} R_{\mathcal{G}_{m}}(\beta) &= \lim_{l \to \infty} \sup \left(c_{k_{2}}; c_{k_{2}-1}, \ldots, c_{1} \right) \cdot \left(c_{k_{2}+1}; c_{k_{2}+2}, \ldots \right), \\ \text{where} \quad k_{1}, k_{2}, \ldots \quad \text{is the set of all positive integers } k \\ \text{for which} \quad c_{k_{2}} &= c_{k_{1}+1} = N \text{ . From this it follows that} \\ R_{\mathcal{G}_{m}}(\beta) &= \left(N; \underbrace{1, N, 1, N, \ldots, 1, N}_{2, m}, \underbrace{1, 1, \beta^{-1}}_{2, m} \right)^{2} < NR_{\infty} \text{ .} \end{split}$$

Now the set \mathscr{C} is uncountable, $\lim_{n\to\infty} \mathbb{R}_{\mathscr{G}_m(\beta)} = N\mathbb{R}_{\infty}$ for each fixed β , and, finally, $\mathbb{R}_{\mathscr{G}_m(\beta)}$ is a continuous and increasing function of β for each fixed m. This completes the proof of Theorem 3.

Remark. Thus, for N>1, the maximal point of the set $\mathfrak{M}(N)$ is its condensation point and it is assumed for uncountably many $\beta\in \mathcal{L}(N)$.

Remark. Analogous statements for the values $\mathcal{A}(\beta)$ are proved in [4] and in some other papers of the same author. For each positive integer N we denote by $\mathcal{M}_{1}(N)$ the set of all $\mathcal{A}(\beta)$ with $\beta \in \mathcal{B}(N)$. Then the maximal point of the set $\mathcal{M}_{1}(N)$ (which is its isolated point) is the number $(N^{2}+4)^{-\frac{1}{2}}$ and the minimal point of this set (which for N>1 is its point of condensation) is the number $(N^{2}+4N)^{-\frac{1}{2}}$.

Remark. A natural question that arises is that of studying the minimal condensation point of $\mathfrak{M}(N)$. This question will be the subject of a further paper.

Using the results of [3], one can show that there exists a number λ_o such that λ (β) assumes every value of the interval [0, λ_o] (see [1], p.44). An analogous result is shown in

Theorem 4. a) There exists a number \mathbb{R}^* such that $[\mathbb{R}^*, +\infty) \subset \mathcal{W}$,

- b) for all sufficiently large $N (N \ge 5)$ the set $\mathfrak{M}(N)$ contains some interval,
 - c) $\mathbb{R}^* \leq \overline{\mathbb{R}} = 12 + 8\sqrt{2} = 23.3136...$

Proof. For each positive integer m we denote by F(m;4) the set of all real numbers $\beta=(k_0,k_1,k_2,...)$ for which $k_0=m$, $k_1 \le 4$ ($j \ge 1$). Marshall Hall Jr. proved (see [3], Theorem 3.2,p.974) that for $m \ge 1$ each number $\gamma \in \mathcal{I}_m$, $\mathcal{I}_m = \lceil m^2 + (\sqrt{2}-1)m + \frac{1}{4}(3-2\sqrt{2}), m^2 + 4(\sqrt{2}-1)m + 12 - 8\sqrt{2} \rceil$, can be written in a form $\gamma = \beta_1 \cdot \beta_2$, where $\beta_1 \in F(m;4)$, $\beta_2 \in F(m;4)$. Similarly, each number $\sigma \in K_m$, $K_m = \lceil m^2 + \sqrt{2}m + \frac{1}{4}, m^2 + (4\sqrt{2}-3)m + 10 - 6\sqrt{2} \rceil$ can be written in a form $\sigma = \beta_3 \cdot \beta_4$, where $\beta_3 \in F(m;4)$, $\beta_4 \in F(m+1;4)$. Evidently, $\sum_{m=1}^{\infty} (\beta_m \cup K_m) = \lceil \frac{83}{4} + \frac{9}{2}\sqrt{2}, +\infty \rangle$.

Thus an arbitrary $\lambda \geq \frac{83}{4} + \frac{g}{2}\sqrt{2} = 2\%.11...$ can be written in a form $\lambda = (a_0; a_1, a_2, ...).(\&_0; \&_1, \&_2, ...)$, where $\&_0 + 1 \geq a_0 \geq \&_0 \geq 5$ and $a_j \leq 4$, $\&_j \leq 4$ for $j \geq 1$. We construct a number $\& = (d_0; d_1, d_2, ...)$ as follows:

 $\mathbf{z} = (a_0; k_0, a_1, a_0, k_0, k_1, a_2, a_1, a_0, k_0, k_1, k_2, \dots, \\ \dots, a_m, a_{m-1}, \dots, a_1, a_0, k_0, k_1, \dots, k_{m-1}, k_m, \dots) .$

We claim that $R_{\infty}=\Lambda$. Let us put $s_{k}=(d_{k-1};d_{k-2},\ldots,d_1).(d_k;d_{k+1},\ldots)$. Then, by the lemma, $R_{\infty}=\lim_{k\to +\infty}s_{k}$. Now, for all positive integers m

$$d_{m^2} = k_0^r$$
, $d_{m^2-1} = a_0$,

and thus

 $\lim_{m \to +\infty} s_{m2} = \lim_{m \to +\infty} \sup_{m \to +\infty} (d_{m^2}; d_{m^2}, ..., d_1). (d_{m^2}; d_{m^2+1}, ...) =$

= $\lim_{m \to +\infty} (a_0; a_1, ..., a_{n-1}, k_{n-2}, ..., a_o).(k_0; k_1, k_2, ..., k_{n-1}, a_n, ...) =$

= $\lim_{n \to +\infty} \sup (a_0; a_1, ..., a_{n-1}) \cdot (l_0; l_1, ..., l_{n-1}) =$

= $\lim_{n \to +\infty} \sup (a_0; a_1, ..., a_{n-1}).(b_0; b_1, ..., b_{n-1}) = \lambda$.

Similarly,

 $\lim_{m \to +\infty} \sup_{m^2-1} \sup_{m \to +\infty} (d_{2}; d_{2}, ..., d_{1}). (d_{m^2-1}; d_{2}, ...) =$

= $\lim_{m \to +\infty} \sup \left(\frac{d_{2}}{m^{2}}; \frac{d_{2}}{m^{2}}; \dots, \frac{d_{1}}{m} \right) \cdot \left(a_{0}; b_{0}, \frac{d_{m^{2}+1}}{m^{2}}; \dots \right) \leq$

 $\leq (\overline{4;1}).(a_0; b_0) < 5(a_0 + \frac{1}{b_0}) \leq b_0(a_0 + \frac{1}{b_0}) < \lambda$.

Analogously, we have

 $\lim_{m \to +\infty} \sup_{m_{+1}^2} s_{m}^2 = \lim_{m \to +\infty} \sup_{m} (d_{m_{+1}^2}, \dots, d_{1}) \cdot (d_{m_{+1}^2}, d_{m_{+2}^2}, \dots) =$

= $\lim_{n \to +\infty} \sup (b_0; a_0, d_{n^2-2}, ..., d_1) \cdot (d_{m^2+1}; d_{m^2+2}, ...) \leq (b_0; a_0) \cdot (\overline{4; 1}) < \lambda$.

Finally, let & be a positive integer, $|k-m^2| \ge 2$ for m=1,2,... Then

 $S_{k} = (d_{k-1}; d_{k-2},...).(d_{k}; d_{k+1},...) < 5.5 < \lambda$. Hence $R_{se} = \lim_{k \to +\infty} \sup_{n \to +\infty} S_{k} = \lim_{n \to +\infty} \sup_{n \to +\infty} S_{n}^{2} = \lambda$.

Thus, we have proved that for $N \ge 5$

$$J_N \subset 207(N)$$
, $K_N \subset 207(N+1)$

and

$$\underset{m=5}{\overset{\infty}{\smile}} (\Im_m \cup K_m) = \left[\frac{83}{4} + \frac{9}{2} \sqrt{2}, + \infty \right) \subset \mathscr{W} ;$$

in particular, $R^* = \frac{83}{4} + \frac{9}{2} \sqrt{2} = 27.11 \dots$

It remains for us to prove the last part of Theorem 4, namely, that even $\mathbb{R}^* \leq \overline{\mathbb{R}} = 12 + 8\sqrt{2} = 23.3136...$

Let us denote by F(5,1,3;4) the set of all $\beta = (N_0;N_1,N_2,...)$ for which

 $k_0=5$, $k_1=1$, $k_2=3$ and $k_j \le 4$ $(j\ge 3)$. From the proof of the above mentioned statement of Marshall Hall Jr. ([3], Theorem 3.2,p.974), it immediately follows that each number $\gamma \in \mathbb{L}_1$, where

 $L_4 = 1 \text{ min } F(5, 1, 3; 4) \cdot \text{min } F(4; 4),$ $max F(5, 1, 3; 4) \cdot max F(4; 4)$

can be written in a form $\gamma = \beta_1$. β_2 , where $\beta_1 \in \Gamma(5,1,3;4)$, $\beta_2 \in \Gamma(4,4)$. By a direct computation, we get that $L_1 = [20+3\sqrt{2},11+12\sqrt{2}] = [24.24.2...,27.97...].$

Thus an arbitrary $\lambda \in L$ can be written in a form $\lambda = (a_0; a_1, a_2, \dots) \cdot (k_0; k_1, k_2, \dots)$,

where $a_0 = 5$, $a_1 = 1$, $a_2 = 3$, $a_{\underline{j}} \in 4$ $(\underline{j} \ge 3)$, $k_0 = 4$, $k_{\underline{j}} \in 4$ $(\underline{j} \ge 1)$.

Now, let $\mathscr{R} = (d_0; d_1, d_2, \dots)$ be constructed as follows:

 $\mathfrak{A} = (a_0; k_0, a_1, a_0, k_0, k_1, ..., a_m, a_{m-1}, ..., a_1, a_0, k_0, k_1, ..., k_{m-1}, k_m, ...) \, .$ We claim that $R_{\infty} = \Lambda$.

By the lemma, we have

Roe = lim sup so,

where $b_{k} = (d_{k-1}; d_{k-2}, ..., d_{1}) \cdot (d_{k}; d_{k+1}, ...)$.

For sufficiently large integer n we have

 $d_{m^2} = b_0 = 4$, $d_{m^2-1} = a_0 = 5$, $d_{m^2-2} = a_1 = 1$, $d_{m^2-3} = a_2 = 3$. Thus we have

 $\lim_{m \to +\infty} \sup_{m^2} \; s_2 = \lim_{m \to +\infty} \sup_{m^2 \to +\infty} (d_2, \ldots, d_1). (d_2; d_2, \ldots) = \\ = \lim_{m \to +\infty} (a_0; a_1, a_2, \ldots). (b_0; b_1, b_2, \ldots) = \lambda .$

Further,

lim sup $s_2 = \lim_{m \to +\infty} \sup_{m=1} (1; 3, d_2, ..., d_q). (5; 4, d_2, ...) < 2.6 < <math>\lambda$. Finally, for each positive integer k, $k \neq m^2$, $k \neq m^2 - 1$ $(m \ge 1)$ we have

 $R_{\rm loc} < (4;1).(4;1,5) = 5.\frac{29}{6} = 24.166 \dots < \Lambda .$ Hence we have

 $R_{\infty} = \lim_{k \to +\infty} \sup_{n \to +\infty} s_{k} = \lim_{n \to +\infty} \sup_{n^{2}} s_{n^{2}} = \lambda,$ thus proving $R^{*} \leq 20 + 3\sqrt{2} = 24.242...$

In the last part of the proof, let us denote by $F(5,2;4) \quad \text{the set of all} \quad \beta = (k_0; k_1, k_2, \dots) \text{ for which}$ $k_0 = 5, k_1 = 2, k_2 \leq 4 \ (j \geq 2).$

Analogously, from the proof of the Hall's assertion mentioned above, it follows immediately that each number $\gamma \in L_2$, where

 $L_2 = [\min F(5, 2; 4) \cdot \min F(4; 4)],$ $\max F(5, 2; 4) \cdot \max F(4; 4)]$

can be written in a form $\gamma = \beta_1 . \beta_2$, where $\beta_1 \in F(5, 2; 4)$, $\beta_2 \in F(4; 4)$. By a direct computation, we find that $L_2 = [\frac{1}{8}(1+2+2*\sqrt{2}), \frac{1}{7}(7+7+8\sqrt{2})] = [23.1819..., 26.3297...]$. Thus, if we take an arbitrary $\lambda \in L_2$, $\lambda \geq \overline{R}$, we can write it in a form $\lambda = (a_0; a_1, a_2, ...) . (b_0; b_1, b_2, ...)$, where $a_0 = 5$, $a_1 = 2$, $a_2 = 4(j \geq 2)$, $b_0 = 4$, $b_2 = 4(j \geq 1)$. Let $\mathcal{R} = (d_0; d_1, d_2, ...)$ be constructed as follows: $\mathcal{R} = (a_0; b_0, a_1, a_0, b_0, b_1, ..., a_m, a_{m-1}, ..., a_1, a_0, b_0, b_1, ..., b_m, ...)$. We claim that $R_{\mathcal{R}} = \lambda$.

By the lemma, $R_{\infty}=\lim_{k\to+\infty}\sup_{k\to+\infty}s_{k}$, where $s_k=(d_{k-1};d_{k-2},\dots)\cdot(d_k;d_{k+1},\dots)$.

By the construction of % , for sufficiently large positive integers n we have

 $d_{m^2} = b_0 = 4$, $d_{m^2-1} = a_0 = 5$, $d_{m^2-2} = a_1 = 2$.

Thus lim sup sp =

 $= \lim_{m \to +\infty} \sup \left(d_{m^{2}-2}^{2}; d_{m^{2}-2}, \ldots \right) \cdot \left(d_{m^{2}}^{2}; d_{m^{2}+1}^{2}, \ldots \right) =$

 $= \lim_{\substack{n \to +\infty}} \sup \; (a_o; a_1, a_2, \dots) \cdot (k_o; k_1, k_2, \dots) = \; \lambda \; .$

Further we have

 $\lim_{n \to +\infty} \sup_{n-1} \sup_{m \to +\infty} (d_{n^2-2}; d_{n^2-3}, ..., d_1). (d_{n^2-1}; d_{n^2}, ...) =$

= $\lim_{m \to +\infty} \sup (2; d_{m^2,1},..., d_q).(5; d_{m^2,...}) < 3.6 < \lambda$.

Similarly,

 $\lim_{m \to +\infty} \sup_{n+1} s_{n+1}^2 = \lim_{m \to +\infty} \sup_{m^2 \to +\infty} (d_2; d_{n^2-1}, ..., d_1) \cdot (d_{m^2+1}; d_{m^2+2}, ...) =$

= $\lim_{m \to +\infty} \sup (4; 5, d_{\frac{1}{2}}, ..., d_{\frac{1}{2}}).(d_{\frac{1}{m+1}}, ..., d_{\frac{1}{m^2+2m-2}}, 2, 5, ...) < (4; 1).(4; 1) = R = A,$

since for sufficiently large m, $d_j \leq 4$ when $m^2 + 1 \leq j \leq m^2 + 2m - 2$.

By an analogous argument,

 $\lim_{m \to +\infty} \sup_{m^2 = 2} \sup_{m \to +\infty} (d_{n^2 3}; d_{n^2 4}, ..., d_{n}) \cdot (d_{n^2 2}; d_{n^2 1}, ...) =$ $= \lim_{m \to +\infty} \sup_{m^2 3} (d_{n^2 3}; d_{n^2 4}, ..., d_{n}) \cdot (2; d_{n^2 3}, ...) < 5 \cdot 3 < \lambda.$

Finally, if k is a positive integer, $|k-m^2| \ge 2$, $k + m^2 - 2$ ($m \ge 1$) and $m^2 + 1 < k < m^2 + 2m - 1$ for some positive integer $m \ge 2$, say, then

 $S_{k} = (d_{k-1}; d_{k-2}, ..., d_1) \cdot (d_k; d_{k+1}, ...) =$

$$= (d_{m-1}; ..., d_{m^{2}+1}, 4, 5, ..., d_{1}) \cdot (d_{m}; ..., d_{n+2m-2}, 2, 5, ...) < (4; 1) \cdot (4; 1) \leq \lambda,$$

because $d_{j} \le 4$ when $m^{2}+1 \le j \le m^{2}+2m-2$. Hence

 $R_{2e} = \lim_{k \to +\infty} \sup_{n \to +\infty} s_{ke} = \lim_{n \to +\infty} \sup_{n \to +\infty} s_{n^2} = \lambda$ which concludes the proof of Theorem 4.

Remark. One could easily show that the sets $\mathcal{M}(N)$ for $N \geq 5$ contain essentially bigger intervals than established in Theorem 4. Also, by a modification of Hall's proof, one could show that the set $\mathcal{M}(4)$ already contains a certain interval.

Remark. Using the lemma, all the above theorems can be formulated in terms of $(\omega(\beta))$. We have chosen the above formulation because of the simpler expressions for the values R_{α} .

Remark. Some interesting results concerning the solvability of the inequalities

$$0 < q < ct$$
, $|q\beta - p| < \frac{1}{t}$

with μ and q integer may be derived from a more detailed consideration of the quantities R_{μ} . These questions will be studied in a subsequent paper.

References

- [1] J.W.S. CASSELS: An introduction to Diophantine approximations. Cambridge University Press 1957.
- [2] B. DIVIS, B. NOVÁK: A remark on the theory of Diophantine approximations. Comment.Math.Univ.Caro-

linae 11(1970),589-592.

- [3] M. HALL Jr.: On the sum and product of continued fractions. Ann.Math., Princeton (2)48(1947), 966-993.
- [4] P.G. KOGONIJA: O točkach sguščenija množestva čisel Markova, DAN SSSR 118(1958),632-635.
- [5] J.F. KOKSMA: Diophantische Approximationen. Berlin und Leipzig 1936.
- [6] J. LESCA: Sur les approximations diophantiennes à une dimension. University of Grenoble 1968 mimeographed.
- [7] S. MORIMOTO: Zur Theorie der Approximation einer irrationalen Zahl durch rationale Zahlen. Tohoku Math.Journal 45(1938),177-187.

Ohio State University
Department of Mathematics
231 W.18th Avenue
Columbus, Ohio, U.S.A.

Matematicko-fyzikální fakulta, Karlova universita Sokolovská 83 Praha 8, Československo

(Oblatum 11.8.1970)

6