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ON PROBLEMS CONCERNING EXTENSION OF LINEAR OPERATIONS ON
LINEAR SPACES X’

FrantiZek CHARVAT, Praha

The aim of this paper is the formulation of the so-
called & -extensibility of linear operators (i.e. linear ,
transformations of a linear space into another one) which
is a generalization of the traditional extension of line-
ar operators, resp. functionals preserving the norm. A
necessary and sufficient condition for extensibility of
bounded linear operators is proved (it is the condition
analogous to that in [3]).

A theorem is proved on extension of complex linear
operators that is a generalization of the well known Sucho-
mlinoff’s result concerning the extension of complex line-
ar functionals preserving the norm (see [2]). We shall
call P, @ the linear space over a field X . The symbol

R denotes a subspace of the space P. The elements of
4

letters from the end of the alphabet x, 4, x etc., resp.

, resp. B , resp. X will be denoted by small Latin

- -

x) This paper is a more exact extension of the results in [4].
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from its beginning, i.e. a,.f, ¢ etc., resp. by small
Greek letters etc. Linear operators from P into @
operators only in the following will be marked by capital
letters A,B, C etc.

For the domains of operators the symbol def is
used, i.e. for example a space which is a domain of the
operator A  will be denoted def A .

Linear envelopes of subsets of a linear space will be de-
noted by brackets.

Definition 1. Let @ be a mapping from P into

. exfy Q (i.e. the set of all subsets of the linear space
@ ). We shall say the operator A ta be ¢ -admis-
sible, if the following condition is satisfied:

X 6 defA =) A(x)e $(x) .

Definition 2. Let ¢ be a mapping from P into @.

The operator A be called d -extensionable, if there is
an operator B  such that

def B =P |

X edef A =>A(x)=B(x),

X € P = B(x) e d(x) .

Definition i. Let § be a mapping from P into @ .
This mapping is called linearly covering P  in respect
to @ , if the following statement is satisfied: '

Let A be a ¢ -admissible operator, then there is
an element a € Q@ for every 4 € P so that

' A(.x’\:'}ac. a6 d(x+xy)
for all x e def A and < € K .

Theorem 1. Let @ be a mapping from P into @ .

Then the following statements are equivalent:
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(i) Every ¢ -admissible operator is a ¢ -exten-
sionable operator;

(ii) The mapping ¢ 1is linearly covering P in res-
pect to @ .

Proof. Let (i) be true. Let A be a ¢ -admissible
operator and o4 € P . From (i) it follows that A has
a @ -admissible extension B such that defB® = P .
Suppose that a = B(4). Then
AX)+xa =Bx)+xB(y)=Blx+xyle P(x+axqy)
and so (ii) is satisfied. '

Let (ii) be true. Let A be a $ -admissible ope-
rator. Let & be a set of all ¢ -admissible operators.
According to the assumption the set is not empty because
A e & . Let us introduce the relation of a pertial or-
der on & as follows:

D<E (D,E e &) if:
defD c defE, x € defD => D(x) = E(x)
is fulfilled. '
Such system s satisfies the assumption of Zorn’s Lemma
because if {F; %, ., I is a monotone subsystem of the
system & , then we define the operator F in the fol-
lowing way:

def F = &Lejx defF; |,

X € defF =>F(x) = F; (x) for such 4 that x € F; .

It is obvious that the definition is correct and that F; <
<F for L eI (obviously F e & ).

And so there ia B € & such that A < B and if B <

< C,then B = C , We shall prove by contradiction that
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defB = P. Let def B 4 P . It means that there is
such g € P that defB £ [defB uglc P .
Because B & & , there ia & € @ such that
B(x)+ xlre §(x + xpgy) for all xe defP and
« € K. It is possible to write every element
2 e [defB u i1 uniquely in the form

X+ xny, xedefB, «xeX .
We define the operator C on [defB u 4] by this way:
C(z)=B(x)+ &, where x = x+ <y , x € def B ,
«x € K . It is easy to see:
X e def B => C(x) = B(x) ,
2 6 defC => C(z) e $(x),
B+C.
Hence C € & ,B<C, B % C , however, it is a contra-
diction. Thus (ii) is satisfied and the proof is complete.

Convention. In the following K will denote the field
of real or complex numbers. Let P, @ be normed linear
spaces. We denote the norm on P by 1ll | , the norm
of @ by L I The symbol S (a4 €) is used
for the set .

{bcﬂ;zla-bﬂﬁei,e>0 ‘
(e.g. a closed sphere in @ with the centre a and ra-
dius €& ).

Definition 4. Let 4 & 0. Let P, @ be normed
linear spaces. The linear space (@ is called . -producti-
vely centred in respect to P , if the following is satis-
fied:

Let A be such that
SCAx), & x +41) A SCA(x), R Mx+ g1 4 4
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for all x,, x, € def A and g € P, then

1
“C\“'AS(A(.X,),h Ix+nll) £ 2 for all 4 € P.

Theorem 2. Let 4% =2 0. Let P, @ be normed line-
ar spaces. Then the following statements are equivalent:
(i) The mapping ¢ from a linear space F to exp G
defined by

xeP = d(x)=1{a € §; Nal £ % "Mx?
is linearly covering P  in respect to @ ;
(ii) The linear space @ is JAe¢-productively centred in
respect to P .

Proof. Let (i) be valid. Let A be such that
SCAGx), de M+ 1) A S (A, R MNxy+ 4 1) % 2
for all X, ,X,edefA and gy e P .

From the relation

SCA(X), o Nx 1) A S€0,0) 4 F, xe def A
(in the previous relation we denote X=X, X, =gy=20
- zero in P ) it follows that

NA(x) € & 1x] , xedefA .
Thus the operator A is ¢ -admisasible. According to (i)
the condition is satisfied that there is a € @ for eve-
ry s € P such that
A+ xcal € nlix+ xngll for xedefA and € XK .
It follows from the last relation (denoting o = 1 ) that

- 4
a.cx.f;fAS(A(x),h Ix +yl) for all o € P

(generally for different o there are, of course, diffe-
rent — a ). Thus, it is true that

’ 1

x Chata SCAX), & "lx+aph) & 0
for all 4 e P and (ii) is satisfied.
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Let (ii) be true. Let A be ¢ -admissible. We
will show that
SCAlx), d M + 1) A SCACK), de o, + 4 1) + 2

for all X xzedef‘A and 4 € P .

149
It is sufficient to show that the sum of radiuses of such
two spheres is greater or equals the distance of their

centres which is correct under the assumption, because
1 4

S CUx g+ Mg+ g l) 2 30 Mx - x, 1 2
2 AA (x - x )= A (x) = Al .

So there is —a € @ for every 4 € P such that
—a e N S(Ax), &1 1)
oA x), Ix +y >

X &

in other words:

YA+ al & o x+gyl for xedet A .
From there it follows that for all <« € K , o« = 0 :
lecl- NA(Z)+all & lacl de M(E)+ g ll, xedef A
so that

hat)+xall € 4 tlx+ xyl,xedefA, x ek, <+ 0.
Since the last relation is trivial for « = 0 , (i) is sa-
tisfied and the proof i's complete.

Definition 5. The linear space @ is called produc-
tively centred in respect to P , if it is . -productive-
ly centred for every 4 = 0 .

Remark 1. As a result of Theorem 1.2 and Definition 5
there 'foll.‘owa the statement: Let P, @ be normed linear
spaces. Let @ be productively centred to P . Then eve-
ry bounded operator from P into & may be extended on

the whole P preserving the norm.
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Theorem 3. The linear space of real numbers is produc-
tively centred in respect to every normed linear space
over the field of real numbérs.

Proof. Theorem 3 is a result of a more general state-
ment for the linear space of real numbers: Let ¢ be an
arbitrary system of closed spheres in the linear space of
real numbers such that any two elements of this system ha-
ve a non empty intersection. Then the intersection of all
these spheres is a non empty set. The proof of this state-

ment is easy. We denote ¥'= {1, .} .y, Ia =<y, Qu?-

If we denote o= S fw, §= :.;,"ifu Qe , then it fol-
lows f1 € g . Suppose, on the contrary, that ;1 > g . Then
there is w,, «, such that ”“4 > q""z by another way
I“‘H s} Iﬂ- ﬂ, on 'ghe contrary to the hypothesis. Hence it
follows I=<f,q> and 1 c I,  for every w e N,

80 P{DN Iﬂ- * g and the proof is complete.

Remark 2. As the result of Remark 1 and Theorem 3,
there follows the Hahn-Banach theorem on extension of real
bounded linear functionals preserving the norm.

Convention. Let P be a normed linear space over the

field of complex numbers. By the symbol ,‘? we. denote the
linear space P as a normed linear space over the field
of real numbers, analogously for subspaces and linear enve-

lopes.

Definition 6. ILet 0 be a linear space over the field

of complex numbers. We call this linear space a pure com-

plex linear space, if:

1. There is introduced a so-called involution(see [1]) on a
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linear space & , i.e. a mapping J from & into @&

such that N

J(txa + &) = £JCa) +3J (&)
J(JCa)) = a ,

’

i

2. on the linear space @ there is introduced a norm such

that

NIl = Hal

’

Yol = mwf’lkea,.mt+bna..mtﬂ
e

(A is a set of real numbers).

By the symbol Re @ , resp. Im a we denote the so-
called real part, resp. imaginary part of the element a .
Every element o € & may be written uniquely in the form

Re a + i Im a,Rea, Imae€Re G
- is a subspace of the space ma. for every its element
it follows J(a) = (a) .

Theorem 4. Let P be a normed linear space over the
field of complex numbers. Let @ be a pure complex line-
ar space. Let 4 & 0. Let a mapping P from P in-
to exp Re @ defined by the following
xe,P=> d(x)wfaeReQ;Mal € 4 Mxl}
be the linearly covering xP in respect toc Re Q@ .
Then the mapping ¢ from P into exfp @ defined by
X €P = Q(x) = {aecQ;Mal § 4 Mxl}
is linearly covering P in respect to Q .

Proof. At first we shall prowe the following lemmas.

Lemma 1. Let. P be a linear space over the field of

comples numbers. Let @ be a pure complex linear space.
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Then
‘(i) for an arbitrary operator A it follows that
x € def A => Im A(x)=-Re A(ix), Re A is the opera-
tor from ,P inte @ ; .
(ii) if B is the operator from P into Re @ then
A(x) = B(x)~4B(ix), xe def B the operator
from P into @ 4is defined and B = Re A .
The proof is
Lemma 2. Let P be a normed linear space over the &
field of complex numbers. Let Q& be a pure complex line-
ar space. Let % = 0. Then:
if xedefC = 2IC ()l £ s MMxt
then x € ,def C ==> 2I1Re C(x)I & 4 x|,
and inversely.
Proof. This statement is trividal in regard to the
first direction, see Definition 6.
Let x e , def C . Then we have
2iRe C(x) & 4 "M x| . Because x. e *f ¢ poef C
for all real t , it follows
Re C(x) covt - Re C (i) mimth de . €= fo Ml
for all real £ and so

21¢ (o) =tm\.ﬁx, 2fRe C(x)ecoot + Im C (x) nintl =

[ 1
=/mac 2Re C(x) eost -Re C (ix) mintl & s THxll
and the proof is complete.

Lemma 3. Let P be & linear space over the field of

complex numbers. Then it followa

R ln LRUBIU 4gl=(Rungyl.
The proof is easy.
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Now we prove Theorem 4.

Let A be ¢ -admissible. From the lemma it follows
that Re A is , ¢ -admisaible, i.e. there is a, €
€ Re @ for every 4 € P such that

xedef A=>2Re Alx)+Ba,l € 'lix+ Byl
for all real (3 .
Re A(x) + B a, is an "Q -admissible operator on
pldef AUy 1 into Re @ , i.e. for every i  the-
re is a, e« Re G such that
% &  def A=p 2IRe A(X)+ Bay+7a,l& slix+py+vigl
for all real (3, o .

Re A(X)+ f3a,+ ya, is the ,J -admissible
operator on n [ def Av.4 ] uigl into Re @ .

We define the operator B as follows:

def B =LcdefA ungl,
if x2=x+ (B+iyla ,xec€defA, (B+iy)e X , then

Bl2) = Ax) + (B+iy) (ay - day) . '
It follows that Re B(z) = Re A(x) + fBa, + 74, -
According to the preceding we have that

zxeldef Augle=d 2IB(2)IE R |
in other words,

YA()rxal € S Mx+ aqgl for all x ¢ def A

and « 6 K (a = a,-4a,) .

So § is linearly covering P i\n respect to @ ,
q.e.d.

Theorem 5. Let P be a normed linear space over the
field of complex numbers. Let @ be a pure complex linear
space. Let Re @ be productively centred in respect to

"P ., Then every operator from P into & is extension-
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able on the whole P preserving the norm.

Proof. This theorem is an easy result of Theorem
1, 2,.4.

Remark 3. Theorem 5 is a generalization of the well
known Suchomlinoff’s resu’t concerned with the extension

of complex linear functionals preserving the norm.
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