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THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC. I.

Marie HAJKOVA, Praha

Introduction.

A sufficiently strong theory J° can be described in"
itself. This fact was first exploited by K. Godel for proofs
of his incompleteness theorems (the method of arithmetiza-
tion of metamathematics). The notion "description" is expli-
cated by the exact metamathematical notion bi-numeration
(or strong representation). Suppose that a formula % (x)
bi-numerates in J° the set T of axioms of J . A formal
statement Cgm,,a expressing in a natural way the consis-
tency of §° can be constructed simply by copying the meta-
mathematical definitions involved. Starting from different
bi-numerations of T we obtain different sentences

Con . . The sentencesa C:_rn.,‘,“ 5 C‘?’"‘ez corresponding
to two bi-numerations. Ty Ty may differ not only as
expressions; they may have different strengths concerning
the provability or unprovability of implications ('ac.m,,z,2 —
— Cg'rv,e1 and Con, —> c'?""»rz in § . The Gddel’s
second incompleteness theorem is usually formulated as fol-

lows: if 7 is a sufficiently strong consistent theory

then Con . is not provable in T ( C?‘w,r means

AMS, Primary 02D99 Ref.Z. 2.664
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C‘?’"’z for a particular = ). Feferman [1] generali-
zed this theorem in the following way: if 7 is a suffi-
ciently strong consistent theory and % (x) is an RE -
formula which bi-numerates the axioms of J then Cgm,,:

is not provable in J . On the other hand, Feferman shows

in [1] that some limitation on = (x) is necessary for
sufficiently strong reflexive theories; for example, he

constructs a bi-numeration mr* (x) of the set of axioms

of Peano’s arithmetics & for which Con

, ON e is pro-

vable in 5 .

Let us consider for a moment the Peano’s arithmetic &
with the set of axioms P from the intuitive set-theore-
tical point of view. (The Peano’s arithmetic can be said to
be the subject of our main interest.) For every bi-numera-
tion g (x) of the axioms P , the formula Con . is
true in the natural model of arithmetic (i.e. in the model
of natural numbers). On the other hand, for each RE -bi-
numeration g (x) of P , the formula Com, is in-
dependent from J°, One could ask if it is possible to choo-
se a particular bi-numeration so that the formula an,r
should most adequately express the consistency of Peano’s
arithmetic; then one could add the last formula to P . It
would correspond to the aim of formulating axioms that des-
cribe the structure of natural numbers in a most faithful
way. ‘

In this paper, we restrict otiraelvee to the study of

PR -bi-numerations and corresponding consistency state-
merits. This restriction seems to be natural, because (1)

every primitive recursive set (in particular, the set of
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axioms of Peano’s arithmetic) is bi-numerable by PR -for-
mula, (2) every PR -farmula is an RE -formula and hen-
ce the PR -bi-numerations satisfy the Gédel s second
inccmpleteness theorem, (3) PR -formulas are syntacti-
cally simplest and, say, most natural descriptions of pri-
mitive recursive sets. Cne of PR -bi-numerations of. P
seems intuitively to be the most natural one. It results
by formal copying the usual definition of P as a list of

finitely many formulas plus the induction schema. On the

other hand, one can consider the structure <B«fm.p . ég, >
where Bim,a, is the set of all PR -bi-numerations of

P end «x €, 3 means , Com,; —> Cong .

(We define < following Feferman). We hypothesize that
no PR -bi-numeration is preferred from the point of view
of this structure.

This hypothesis will be not fully confirmed in this pa-
per. Nevertheless, we shall present several interesting pro-
perties of this structure, confirming more or less oar hy-
pothesis. In the present first part, after collecting some
preliminary results, we show that, for every theory A
which has in some sense similar properties as Peano’s arith-
metic, the ordering =, is dense and is not linear (in
fact, in every non-trivial interval there are many mutually »
incomparable elements). Further, we show that < Bin,, €, >
is a distributive lattice. In the second part [6] which will
be a direct continuaetion of the first part, we shall study
the problem of reducibility and the existence of relative
complements. We also obtain a partial "non-describability"

result, formulated in terms of a hierarchy for formulas of
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the lattice theory which is similar to Lévy’s hierarchy
for set theory (41.

I am obliged to P. Vopénka, wh6 gave the first impuls
to this worX, and to my husband P. Hdjek for the aid with
the formulation and organization of results. I should like
to thank them and also to B. Balcar for many valuable dis-

cussions and comments.

(a) Concerning the arithmetization of metamathematics.

This paper is very closely related to the work of Fe-
ferman Arithmetization of metamathematics in general set-
ting [1]. We take as known the theory of primitive and ge~
neral recursive functions and relations (see e.g. [31).
The reader of the present paper is supposed to be familiar
with §§ 2 - 5 and with a part of § 7 of [1]. The mentioned
part of § 7 will be reproduced in Sect.II.of this paper.
We shall consequently use all definitions, theorems and
conventions from [1].

In this Section some supplements to [1] needed later
on will be given.—

Let Fo (@) = {fuy, co.,y? and let t,,..., ty,
be terms. If Ihere is no danger of misunderstanding, we shall

Wy eoey Mgy

write ¢ (t,,..., ty ) inastead of S.b'( @ .

to, ey ta
We shall add the following point (iv) to Lemma 3.5 [1]:
1.1. Lemma. (iv) Let @ be a formula of ' , let

t t

a3 ey be terms of . and let «,,..., «, be

variables. Then
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(¢ 1]

p (S ( %0777 “m ) g HS,&(:’""’“"")cp

PRSI ¥ o s 0ae sy Can
1.2. Definition. Let ¢ € kao. % ia said to be a

PR -formula in £ (RE -formula in 2 ) if there is a

PR -formula ( RE -formula) 3  such that p @ — ¥
We shall use Lemma 3.7 (1] in the following formulation:
1.3. Lemma. (i) If @ is a PR -formula in 2 , then

~ @ is a PR -formula in P .
(ii) If ¢ and y are PR -formulas in %, then
@ Ay end ¢ v ¥  are PR -formulas in 7.

(iii) If @ is a PR-formula in P, «, w variables
and w # w, then A (u < w — @) end V(u <wag)
are PR -formulas in P . ‘

(iv) If ¢ is a PR -formula in P, Feo (g) =

={u,°,...,u.“_1] anq tps ieey te_, are terms of M , then

(S& (“" 9 :"" ) @)™ is a PR -formula in 2.
tos. o-q
1.4. Def:m;tlon. Let 9 e Fm"‘ and let Fo (@) =

- {ar,“,..., »u,'.h'} .Then

3 S”(%""w‘w )P .For g e St, weset =5 .
g1 WMo
1.5. Lemma. Let @ e P’"“K, and let Fo (@) =

={u,, ..., 4, 3} .Then '_M?"at,"(é, ‘/‘\*_'97> F).

The lemma follows from the assertion in (11, p. 58, the
first line from above (let us remark that e A, T‘m‘ (mm,, )).
Theorem 5.4 [1] can be now reformulated as follows:

1.6. Theorem. Let @ € BPF . Then - ?”Puu $).

- 85 -



1.7. Corollary. (i) Let @ e meo and suppose that
there is 4 € BPF such that +, @ <> ¥ . Then
Fu @ —> Brgg, (§) .

(ii) Let @ ©be an RE -formula in P, Fo (p) =
=y yeen, 4y j.let A =<A, K> be an axiomatic theory,
PsA,x eFmKo and let oc bi-numerate A in .
Then

oy 9 — P (P .

Proof. (i) We can suppose Fu (@)= Fv (y) = {u,,..., 45 _ 3.

By 1.6, +k, y —> B"’EQJ (F) . From the assumption
g ¢ <> ¥  we have |—VqupmJ({U\°...‘{’\H(9<—*w)),
and therefore -, P-”’mz (@ &S . Let us re-
mark that f—, FTEY - & e % . We obtain
B (F o ¥, B, (§) Brpg, (#) and the-

refore Fp @ —> Brpg, ()
(ii) From 3.9 [1] it follows that there is % € BPF

such that Fv (y) = fu,,..., 4, ,} and "pﬁ,"'
“ée 4/°\u-4(9, «> y).By 4.4 [1], I';‘/H‘ bi-numerates P/Y—‘FA
in P and therefore ) .

Fp Brge (L ...u/’)‘_ffgvﬁ v .
This implies )—:p B, (M ) by 1l.5. Now we obtain
—a ¢ — Br (&) .

analogously as in (i).

1.8. Theorem. Let ¢ be a PR -formula in 7 , and
suppose that A = (A ,K) is an axiom system, ? = A ,
«x € Fmy and < bi-numeratea A in P

Then

—p (Com ABr, (F) — o .
Proof. In M , suppose Con. ,Fr, () and r\?y.
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By Lemma 1.3, ~ @ is a PR -formula in 2, We obtain
Pr, (~ @) by Corollary 1.7. Let us remark that
=4 ¥ % R '@ . We obtain Pr,( F) and further

~ Cq-n,m , Wwhich is a contradiction in M .

(b) Independent formulas

Feferman considers the formula 2 (see Definition
5.2 in [1]). He proves, under certain assumptions,
H—4 Y (cf. Theorem 5.3 [11) and t—, Com, <= 2
(cf. Theorem 5.6 [1]). In this paper, we shall also use the
formula @, defined following Rosser and the formula (@
defined following Mostowski. In this Section we present some
results of Rosser and Mostowski in a version modified for
the purpose of this paper. In particular, we stress the fact
that our Theorem 1.18 is proved in [5] in a far more general
formulation.

1.9. Lemma. (5.1 [1D. Let % € Fm, and let
°

Fo () € {x3}. Then there is a ¢ € men such that
—a @ <> ¥ (P) .
1.10. Definition. Let o« € Fm, and let Far () = {x3.
L
Using Lemma 1.9 and Lemma 1.1 we define a formula @, € F'meo
= = 23]
such that b, @x(—-»/"\_[Exﬁc(@‘,ry_)—)z\t/“l’&ﬁ('.vp‘,z)] .
1.11. Remark. We have the following obvious fact
Fp @ < /&(]?mﬁc(@'”, y) —)z\!’y Enf,
We shall write R, (4 ) instead of Pxf, (@,., % ) —>

(~‘ax,z,)).

—’z\</'y_1?/cﬁc (@<, x) , so that we have —, © <> QRx(ry_).
Further, let us mention that R (4) is a PR -formula in

5’, whenever oc . is.
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1.12. Denotation. For arbitrary formulas @. € me
(i=0,...,m=1,m >0) we write 4‘2(:\1»9‘: instead of
PoAei APy, Similarly, &\i({p P; is an abbrevia-
tion for @, V... V @p_, -

1.13. Theorem. Let A = <A, X > be a consistent
axiomatic theory. If P € A, « € P’""K, and if « bi-
numerates A in 5 then

(1) -y Pux >

(i1) +—p ~ @x -

Proof. (i) Let —, @, and let d be A proof of

P in A . Then
—a z\ﬁz Baf, (., ).

By Lemma 3.1 [1], the last assertion is equivalent to the
following one:

(1) Hﬂmm#‘c«_«a,l’) .

Since A is consistent and +—, @, We have -y ~ P, .
Since o« bi-numerates A in P, Paf_, bi-numerates
Pxf, in P (by 4.4 [1)). It follows that Pxf,  bi-
numerates Pif , in A since A is a consistent exten-
sion of . Conseguently, A

(2) o )~ Bk (TP, T
-(1) and (2) give a contradiction in A . We obtain 4,4 @_ .

(ii) Suppose |—y4 ~ @, and let d be a proof of

~ @, in A ., Then

(3) —a &41 Prf, (B, ) i.e.
F—a mmﬁu (B, © ) .
Analogously as in (i) we obtain
(4) —a 95\4 ~ Bt (B, Z) .

- 88 -



(4) together with (3) is a contradiction in ., . We have
proved -, ~ . .

1.14. Theorem. Let A = {A,K > .be an axiomatic
theory such that #? & A4 and let x be a PR -formula
in  such that « bi-numerates A in J , Then

1) F—pPr, (F@g) = ~ Conx ,

(i1) b= Pr, () — ~ Con o .

Proof. Evidently, it is sufficient to show

(1)’ = P (V) =~ Con

H

(i1)° = P () — ~ c‘.’nx .

(i)” We proceed in M . Suppose Pr_ (¥ ©.) , i.e.
y2»4“(~ @« » %) . Further assume Con _ . By 1.7 we

PN AL PP, 0 o
have V' Paf, (Paf, (@, ,x)) .
Evidently b AL~ @ ABrf (TR, x) = Y Tafe (B, 4]

and so o By (Al~v g, Al?/(,ﬂ('vg)‘,.x)—??\‘/x Pt (0. , ¥ ).

Hence our assumption ]?)(,” (~ P«,) implies the following

in M (cf. Lemma 1.5):

Y B (V@ , XD A Bag OV, Bk (P, )

Using Theorem 1.8 and the assumption Comn we obtain

YIRS, (F@,, x)A ?\</“ Pef, (o2, %)
and consequently ~ Cpwm _ , which is a contradiction in M .
The proof of (ii) " is analogous.

1.15. Remark. Since the implication

~Cm, = (B (o) AP, (Bo )
is evidently provable in P , we obtain in fact the follo-
wing

o ’

—p Bx, (T PL) <>~ Con
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Fp n (Bn) <> ~ Con

oy, ©
1.16. Definition. Let o« € Fm, , For(x) = {x}
(4

and let @, € St, for 4 = 0,..., % .Using Lemma'1.9 end

Lenma 1.1 we define a formula w, & Fim, such that

—p 6/,“(-—-;/\(\4‘(‘/‘”1?0{:,‘(97‘-—-’('7;:"}')_’

Bufy (G —— » @z, zNM .

2y Wes

1.17. Remark. The formula “o evidently depends on

the choice of the formulas ¢, , .
Soreery Phe

coy Pae - Therefore we
ought to write But we shall omit the in-
dices because there will be no danger of confusion. We have
the following obvious fact:

Fp g <> /\(‘L%“ Baf, (g, > ke, y) —

zYy. Mq P'&‘F“(?-I:—"N[“x, z)) .

We shall write M, (4) instead of

i P (BT &y = N K, B (F— Vg, 2 )
so that we have |, w, <> /"\_M“’('y_) .

Further, let us mention thet M, () as a PR -formula in
# whenever « isa.

1.18. Theorem. Let A =<A,X> be an axiomatic theo-
ry such that P c 4 and let o¢ be an element of FmK°
which bi-numerates A in f°. Further, let @; € St, and
let A, = A + f@;§ be a consiatent axiomatic theory for
4 = 0, , 4 . Let o Dbe defined as in Definition 1.16.
Then, for each < = 0,... , &,

(i) "7“_44 oy
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(ii) }'7“&*, ~ (""ac .

Remark. Under the conditions of Theorem 1.18 we shall
say that %o is defined with respect to the theories A;
(v =0,..., &)

Proof. (i) Let be "_—.ﬂ’" ((Lm , i.e. '__ﬂ ?’ - tﬂ,x,
for some 4 (0 < 4 < k). Under this assumption there ex-
ist numbers 1, and 12, such that 1, € b, Pufy (9""‘3 —
- «,., ,ﬂ:') and for arbitrary < = 0,..., 4 @and 4 it
follows d = whenever Prf, (@, — m, , d) ,

’

By 4.4. [1] Pnf, bi-numerates Prf 4 in /7 and,

consequently, we have
l——:p E}of‘x (m‘, 474') .
Further, we have
F4p, \c/«ﬁ, ey Bl (F0 D Vg, 2)
Using Lemma 3.1 [1], we have
—_—— —
'—-“M }’Ym it (>~ g, 7).

1 < botq
Prf, bi-numerates Prfy in Ap, sbecause A, is
a consistent extension of A . Consequently, there exist num-
bers > and /(,2
Prtfy, (9%,_ —> ~ @, #n, ) . Therefore we have

such that < n, "‘z = fe and

’-—A"z 1\*4’4 Wi Pl (e = s )

l——'&"‘z \‘x{,;‘ Befe (T =@, 7).
i< lotd

Using the same consideration as before, we can conclude that

there exist numbers Ay A, such that () = ,«,1 < 101 < 7, ,

0£»r £k and Buf, (@y, — g, », ) . On the

other hand, from the definition of ft, , e have that H, =

= Ay This is a contradiction and (i) is proved.
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(ii) Let ay Y & iees g 9 = v @,
for some 4 (0 = 4 < 4 ) . Let d be a proof in
A of the implication P —> NV @y - If we set x =
= d and x, = 3 we have me'ﬁ(ga,pz —> Ve, k).
We can continue exactly as in the end of the proof of (i).
The existence of numbers oy and 4, such that 4, = y.2
and P/p{-“ (?"’z — ., ,54) reduces case (ii) to

case (i).

(c) Concerning the lattice theory

We take as known the fundamental definitions and theo-
rems of the lattice theory (see e.g.[2]). In this section
we only list the notions we shall use and remember two simp-
le assertions that are closely related to the problems of
this paper.

Let X, = {”'4,0 y Rqq F4,2 . ﬁ’,gf . For arbit-
raryg,ostmK1 we set gznsmﬂorf,'rz'l,
§En=rn 0, fan=1 (E2], fun=1f T§,727.
We shall write § < 7, as an abbreviation of the farmula
§E2 nA~(ER 7).

Let S be a set containing the following formulas:

RAN(xny 2 ynx), /J}/ﬂ}(.xuay:dqux);

NxAaglaz Mxnlynzd), i\/'y\é\((.x vylvz D xulyuz));

AN
x

x>
O 2 >

(xA(xvy)x), Q/q\,(xu(xng,)zx);

QQ(N‘A‘,H“H’V”‘X) .
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The set S; contains in addition the following two

formulas :
/*\c:/‘\(xn(q,uz)z(.xny,)u(xnx)) .

/x\/';/z\(.xu,(ynz)z(.xuq.)n(xuz)) .

The theory & = (S, K,> is called the lattice theory
and the theory &, = <§,, ](4 > 1is called the distributive
lattice theory. We shall use the Tarski’s notions of satis-

faction and model in the same way as Feferman does (ef.[1]).
A structure M = <M,G> which is a model of ¥ =
= <S,K'1) is called a lattice (similarly for distributi-

ve lattices). We write also <M, < N, U> instead of
{M,G)>, where = is G(€), N is G(mA) and U
is G(w) .

Suppocse @ € Fm‘1 ; an ordered & -tuple <a,,...
o vy a,h_4) of elements of M is said to satisfy @ in

M (denotation: M k= @ La,, -+ 5 Qg _43 ) if
every assignment W such that W(<i,) =a, for m =
=0,...,% -1 satisfiea ¢ in M , where Fo (@) =
= e, vy Y, 1y < vos < Tpo_, -
The notions of a sublattice and of an isomorphism have
there usual meanings. If M =<M,G > is a lattice and if
a,&eM , a= 48, then we define the segment

{aj & ? determined by a, £ putting <a; &> =

= {,u,sM-,a,é‘wé!r‘ .
Evidently,.a segment {a ; &> determines a sublatti-
ce of M . This lattice will be denoted also by <aj £ >
if there will be no danger of confusion. If M is distri-
butive then < a3 &) is alsa distributive.
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1.19. Theorem. ([2],p. 70). Let M = <M, <, N, U>
be a distributive lattice and let a, &, ¢, d  be elements
of M such that a < &, cn d = a and ¢ v ad = L,
Then the function f(x) = d U x is an isomorphism of
<aj;e) and <dj; &)>.

1.20. Theorem. Let M and M’ be lattices and let
£ be an isomorphism of M and M’ . Let ¢ € Fm

1

} and let (a,o,,.., a, _,) be

Fo (@) =Av ,..., % _,
an m -tuple of elements of M . Then MF ¢ [a,,...,a,_,]
if and only if )

W= glfla),..., fla, ,)] .

This holds for arbitrary relational structures. The

proof is done by induction on formulas.

II. The lattice of bi-numerations of arithmetic

2.1. Assumptions. In this section, A =<A,K > deno~
tes an arbitrary fixed axiomatic theory such that

(1) A is primitive recursive,

(2) A ia consiatent,

3) 2 A .

Evidently, the set P of axioms of Peano arithmetic

P is primitive recursive and consequently A = P satis-
fies the assumptions (1) and (3).

We restrict ourselves to the study of PR -bi-numera-
tions of. A (cf. the Introduction). We recall Theorem 3.1l
[1] from which follows that a set is primitive recursive if
and only if it is bi-numerable in“ ] by a PR -formula.
Moreover it followas that it is immaterial whether we speak

of PR -bi-numerations in G or in a consistent extencion
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7 of G . Hence we can simply speak of PR -bi-numera-
tions.

2.2. Definition. Bim is the set of all PR -for-
mulas in ? Dbi-numerating A4 .

Evidently B.im is non-empty.

2.3. Definition (7.1 [1]). Let B =<B,X>, K, € X

and suppose that «, «’ € F’mK, , Fvr () = For (?) = {x} .

We put

(i) « £, o’ if g ton, — Com ; 5

(i1) o <, o’ if « =5 o’ but o’ £n < ;

(iii) o =, if simultaneously o £, o’ and

kd
w’ £, o« .

2.4. Definition. Bim = <KBim , £, =, > ; i.e.
Bim is the structure with the field Bim and two
binary relations =, and = , .

Obviously, Bim is a (partially) ordered set with

non-absolute equality. An ordered set in the usual sense
results by factorisation:

2.5. Definition. Let o € Bim . We denote by [0
the set of all 2 € Bim such that o« =4 3 .

let <, B € Bim . Weput [x] =, [3] if

o =, B . (This denotation cannot cause any confusion.)

[LBPim ] is a set of all (<] where o« € Bim ,

[Bim] = <[Bim], =, > .

[ B&m ] is a (partially) ordered set. We shall freely
use both the B.inm symbolism and the [Bim ] symbolism,
because they are closely related, as it is well known.

Feferman proved that Bim has neither a minimal nor

—a-maximal element:



2.6. Theorem (7.4 [1)). Suppose that A is reflexive.
Then for every o« € Bin there is an «’ € Bim  such
that

x’ <, x .

2.7. Corollary. If A 1is reflexive then [Bim 1 is
infinite.

2.8. Theorem (7.5 [11). Suppose that A is « -consis-
tent. Then for every « € Bim  there iz o’ € Bim
such that

o <, o’ .

2.9. Corollary. If A is @ -consistent then [Bin 1]
is infinite.

Considering the proofs of Theorems 2.6 and 2.8 one could
conjecture that « =, o’ if and only if 4 Dl (x)—
— &7 (x)). If —, Q (x (x) —> oc’(x)) then reglly
< £, o’ . But we show in the following example that the
converse is not true. In fact, we define formulas o’, «” ¢
e Bim  such that

x” <, o’ ,
g (A ®” (x) — o’ (x)) .

2.10. Example. Suppose that A is <« -consistent and
let e, «’ be elements of Bim  such that o <, o’
and —, N (x(x) — «’(x)) (the existence
is guaranteed by the proof of 7.5[1]). Put B = A+ilon 3,
By=A +{~Cm A Com . Both B and 7, are consis-
tent. Let w, be defined with respect to 5, and B, (cf.
1.18). Further, put

'8}

«”(x) = ot.(x)v’\!x'v)d‘fa’)/\(x B, A, & ryt’_) .
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. Evidently oc” € Bim . Since g, C.o‘n,x, -
— Py, (FR,,) and F—p N (B (x) = P, (x)),
we have +—, c‘-’nw—""’]?m-c(ﬁ:_») , which implies
F—p Con, — Con_, . On the other hand, —j, (Con A
Aa) — Com ., and iy, (v Con,, A Com )= ~ wy
and consequently H~, Con_, — Com,_, . We have proved

«”<,oc’ . Further, we have

o (Com, A~ ) > (~ B, (R) AR, (B0,)).
Since |+, Con,., —> @ we have H—4 By, (B )+
— Br_, (©,) , which implies H—,4 N\ (o«”(x)— o’ (x)).

On the other hand, we have the following:

2.11. Theorem. For each «, B3 € Bim , x =, f3
if and only if there is a 3’ € Bim such that

1) B =4 0,

(2) b=y L (e (x) = B (x)) .

Proof. Let o , 3 € Bim  and suppose « =4 3. It
is sufficient to set

A (x) = ® (x) v Em M (0 ANy B (TR, )

The converse is trivial.

Let us ask if the set Bum is ordered by =, dense-
ly. The positive answer is given by the following:

2.12. Theorem. For each o, , x, € Bim if e <, o,
then there ia' an « € Bim  such that X, <y K <gp X, .
Proof. Let B = A + 1~ Com Aquq_“'} and put

. xz

Blx)=aal(x) v X % ~ C,qnxz A Con“" . Evidently, 3
1
is a PR -formula in # and bi-numerates the set B =

= Au{~Con_ ACon_3.The assumption «, <, o, implies
v e L 1 2
that B = (B, X > .8 consistent. Let @, be defined by

1.10. We have
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Q) g (v Comge, A b ) = £5
(2) H—p (~ Cong, A quv‘1) —~ @, -
Put (o) = &g (0w B AN, Ry ) ABE ¢ 0= 1, q4y).

Evidently, o« € Bim and oo, =, o =4 <, . Further,

by the definition of « ,
(3) +—p (~ anxz/\'vpn)—’fv Com, ,

(4) —p (Comy A @) —> Com -

<y

(3) and (1) imply H~4 Comn, —> Cong, i.e.
<y ﬁﬁ- < ,

(4) and (2) imply -, C9"’x,, — Con, |, i.e.

x £,4 0 .

It is well known that every countable, linearly and
densely ordered set M without maximal and minimal ele-
ments is homogeneous (i.e. for each X, 4 € M  there is an
automorphism of M  which maps x to 4 ). If [Bin ] were
linearly ordered, the problem of "indescribability" (assu-
ming reflexivity and < -conaistency of A ) would be com-
pletely settled. But in [ Bim ] there are i‘ncomparable
elements.

' 2.13. Definition. Let o« , 3 & Bim . We put ocll_‘ﬂ
and el iyl {Jj if simultaneously o« £, [ and
B *4 «< .

2.14. Theorem. Let A be reflexive and cv -consistent.

Then for each oc € Bim there is an «’ € Bin such that
o lly, <’ .

M- By 2.6, there is an o, ¢ Bim such that <, <y
<4 *.Put B =A+{Cmn 3} and B =R+ {~Cm, AC97L‘13.
Both B and B, are consistent. Let @, be defined with
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respect to B, and \'32 . Put
<) = ey () v Em® ) A N~ M ()

Evidently o’ € Bim . We shall prove o’ Mg =< . Since
Fp (e A an“1) — Con, and by (~ Con A an“')—»w o
we have -~y Con,, — Con_ , i.e. £, o’ . Since
e~ @, — ~ C?nx, and A, an‘ — (%, , We have
H-p Com  — Con

The following theorem is a simultaneous generalization
of 2.12 and 2.14:

yicee x’ £, x .

’

2.15. ‘Theorem.let m € @, Byseey By € Bim, %, , %, € Bim
and o« </ *, . Suppose 3, *4 o, and @3, F, <,

= 1,...,m . Then there is an o« ¢ Bin such that

for 2 =

(1) Ky <4 X <, o, and
(2) Bi ly o foreach <= 4,..., m .

Proof. Let -'Diéﬁ.-f{('»?n‘q/\—ngn,n‘} (£ = 1,...,m)

’

-‘.DM%:.ﬂﬂ-{Cpnp‘A»v C;m‘z}({=4,...,m,) and J =

2m +4

= A+ {~ Cyn.‘z/\ Cqm“, 3 . Evidently, each Dy (G =1,..
+¢2y2m + 1) is consistent. Define (g, With respect
to the theories &; (4 = 1,..., 2m +1). We have
(1) HL‘(Cyn,“,/\rv Cg-mn‘)—rvv “x, (L=4,..., m),
(2) H-a (Cmy, A~C¢n,_z)—> “x, (A=d,...,m),
(3) H~4 (~ Cgm.‘z,\ anq.'q) diady Py
(4) ey (~ Cgm,“ A an“1) — o,
Put .

) ——
% (x) = o (x)v Emé (x)AW\'/ﬁ<“f“'M‘_’(M:,)/\Pﬁﬁ‘(O~ 1,%)).
Evidently, « € Bim and K, £, 0 £, e, . We have
(5)  —p (Comg, A “,) = Com .,
(6) i—-’(f\aC?n,“A»v(g“q)—pNCon“.
{1) and (5) give ity Cong —> Com ie. B, 4 o,

o‘n4'
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for each 4 = 41,..., m . (2) and (6) give

Ha Gny, — Com, , i.e. « %, 3; , for each

i =4,..., m . The inequalities e, <4 &« <, o,

can be proved using (3) and (4) as in the proof of 2.12.
2.16. Corollary. Let A be reflexive and @ -con-

sistent. Then for each m € « and arbitrary 43,, ---

.et5 3, € Bim  there is an o € Bin such that

« l, B; foreach i = 4,..., m

Proof. Put

oc; (x) = B, (x)A... A B, (x)

x;(x) = B (x) v...v B, (x)

Evidently, oc; , oc'z € Bim and eo; £, B, £4 x,
for each i = 41,..., m . Choose an «, <, o; (it ex-
ists by 2.6) and an «, >, «.-:r.’2 (it exists by 2.8). Theo-

rem 2.15 gives the result.

2.17. Corollary. Under conditions of Corollary 2.16,
each (B3 e Bim belongs to some infinite set of mutually
incomparable elements.

Proof. We put B, = 3. If fB,..., By are defi-
ned, we define [3,,;_,“ in the same way as o« was defined
in the preceding corollary.

In the proof of 2.16 we used the fact that in Bim
every m -tuple of elements has upper and lower boundaries.
Now we ask whether suprema and infima exist. Theorems 2.19
and 2.21 answer this question affirmatively. One could hy-
pothesize that, given. «,, o, € Bim , o, v «

1 2

is the supremum and <, A o, is the infimum. The next

example shows that the hypothesis is false. We construct
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x,, x, € Bin such that o =, o

2 2 but
4 c‘-’"‘ec., —_ CQ’L;C_,vxz . In other words,
Ky VK, Sy, =y X, =, supn (o, x,) .
2.18. Example. Let A be « -consistent and suppose

« & Bin .Let B=Au(C_on¢} and let B(x) = o (x) Vv
VX R cT;-n,: Evidently, B = (B,X >
B (x)
Put

is consistent and
is a PR -formula in $ bi-numerating B

—— M)

o, (x) = “‘(‘x)vq—\éx [~Ry(y)n(x 8 ~ 0 Aty B, Y41,

: —_— (M)
o, (x)= oc(\x)vgx( [~ Rp (g)n(x22 B A, 22 n:z,,_) J.
Evidently, o, , %, € Bim . We have —, anxH»VP,)cx (@)
and F—,4 Con,, «> ~ B, (@) Hence oc =4 or, =,
=4 %, . Since 4 an“'—p @n and F—a ~ @p —
_,(E,,_“1 (~'_‘a‘_)/\1?/¢,‘2('{a;)) , e obtain -+, Com,  —>
—> Con,

v ety vy ¢
One also could construct x,, X, € Bim such that
x, =4 x, but & A o, <

3 2 <p %y Sg X, =4 imflax,, x,).
2.19. Theorem. In [Bim ] every pair [ec,1, [cczl has
the infimum.

Proof. Let o, , o, € Bim . We put

o (x) = e, (x) vEmé‘f"(x)A'v\‘/x Bk, (O 1, y),
o, (%) = o, (x) v Em#) (x) A'v\</x Ppf,, (01, 4) .
Evidently, oc; " «,; € Bim

?
and ¢1 =, x1
=4 x, . Set

x (x) = <’(X) A o<y, (x) .
prove that [ec] is the infimum of [oc1J

and x”_ =40
We shall

and [ec,]. Evident-
1y « €4 «, and &« €, x, and therefore

—a (69"&.," Cm%"?—p Con__ .Conversely,
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F—g (~ qux1A~ Cqmaz) - A anx , because

M)
—a (~ c""’««""’c‘?"«z"’q‘{ ’/‘\”FWK (%)= (o (x) A ot} (x)).
let BeBim, 3 =, %, [ =4 x, and suppose

x £45 B. Then p—4 (Con, €« Con, ) , i.e

o« =, 3 , because j—, Con , (Cgma"v Cgm,xa).
By the proof of Theorem 2.19, the following holds.
2.20. Corollary. For each o, x,, < € Bim ,

[ax] is the infimum of [ec,1 and [x,] if and only

if 4, G, < (anq_, v Cqun) .

2.21. Theorem. In [Bim ] every pair of elements of

Bim has the supremum.

Proof. Let oc, , x, € Bim and let «’ € Bim
such that o’ €4 o, and o’ <, oc, . Put

e (x)= oc’ () vF.‘m":”(x) A"\'/<“ P_A,-F“,(oz 1,4 v 1?!.4“’.(5” 1,04).

We shall prove that [« ] is the supremum. Evidentiy,

x € Bim , o =, o<, and « =, e, and therefore

g Con, — <09wx1 A anx‘) .On the other hand,

—a ((‘q'na_' A an.‘t) — Con__ , because we have

—a (Cgrn‘11\ Cp‘n“z)—* Qo (x) > «’(x)) and 4 (Cq-n,x" —

—;and,).Latfsaum,[sadaq,/szﬂxz and

suppose (3 &, o . Then , (Cony > Con ) ,i.e.

(3 =4 x , because |—, Con, <« ccgm,,,t’ A an‘z) .
By the proof of Theorem 2.21, the following holds:
2.22. Corollary. For each *,, X, , € Bim ,

[ ] is the supremum of L], [ec, 1 if and only if

l‘—_‘ Cp'n,‘é—b (Cvn,x" A CQ"L". 5 .

2.23. Denotation. The supremum of (o], [x,1€ [Bim]
will be denoted by Lec,1 0 [cc,_] 5 the infimum by
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[e,1 AL och . This is a correct denotation, since

[Bom ] is a partially ordered set and therefore supre-

ma and infima are uniquely determined.

We shall now modify (extend) Definition 2.5. In the
remainder of the paper, the symbol [Bim ] will be used
in the sense of the following definition.

2.24. Definition. [Bim ] = <LBiml, =, ,N,U >,
where N and U are defined as in 2.23. )

By Theorems 2.19, 2.21, 2.6 and 2.8, we have the follo-
" wing:

2.25. Theorem. [Bim ] is a lattice. If A is re-
flexive, then the lattice [Bim 1 has no least element,
if A is  -consistent, then the lattice [Bim ] has .
no greatest element.

2.26. Definition. For each @ e S{:,< let [g] be the

set of all ¥ e St for which +—, @ <> 3 . Let
P, ¥y eSt, . Weput [@] €, [y] if —y vy — @ .
We define [glulyl=[gAay]l,leglnly]l =[gpvyl
[St 1={lgl; g€ St ¥ and [Al= LSt 1,=,,n

It is well known that [A] is a Boolean algebra.

?

VD AN

2.27. Theorem. The function which associates with every
lc]l € LBin] the class [Com 1 1is an isomorphical em-
bedding of the lattice [ Bim ] into the Boolean algebra

(A1 .

Proof. By Definitions 2.24 and 2.26 and Corollaries
2.20 and 2.22.

2.28. Corollary. [ Bimn ]l is a distributive lattice.

(To bs continued.)
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