

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log15

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

12,1 (1971)

ON INTERPRETABILITY IN SET THEORIES

Petr HAJEK, Praha

Denote by ZF the Zermelo-Fraenkel set theory (with regularity but without choice) and by GB the Gödel-Bernays set theory (the same restriction). Both theories are supposed to be formulated as formal systems with one sort of variables and one binary predicate ϵ . Every ZF-formula can be considered as a particular GB-formula by means of an obvious relative interpretation.

In a discussion with Professor G. Kreisel in summer 1969 I formulated the following

<u>Problem</u>: Does for every ZF-formula φ relative interpretability of (ZF, φ) in ZF imply relative interpretability of (GB, φ) in GB?

Denoting, for every theory T which is either an extension of ZF or an extension of GB, by \mathcal{I}_T the set of all ZF-formulas such that (T,φ) is relatively interpretable in T, our problem reads: Is $\mathcal{I}_{ZF}\subseteq\mathcal{I}_{GB}$?

We shall prove a theorem which implies the negative answer of our problem. The theorem also implies that \mathcal{I}_{ZF} is not recursively enumerable (whereas \mathcal{I}_{GB} is, which is easy to show). I discussed the problem with Professors G. Kreisel, J.R. Shoenfield and R. Solovay; I thank them for

AMS, Primary 02K05

their interest and for the encouraging advice to look for a counterexample. Discussions with my wife on her work [4] were not only an exciting pleasure for me but also helped me to find a solution.

First, let us recall some known facts on finitary relative consistency proofs useful in the sequel and yielding a background of our problem. Presupposed is the knowledge of the notion of a relative interpretation in the sense of Tarski [7] and some familiarity with Feferman's fundamental work [2].

Lemma 1. For every ZF-formula g, $ZF \vdash g$ iff $GB \vdash g$; equivalently, for every ZF-formula g, Con(ZF, g) iff Con(GB, g).

See [6] for a finitary proof; in fact, Shoenfield constructs a primitive recursive function associating with every ZF-formula φ and every GB-proof of φ a ZF-proof of φ .

Although we shall be dealing with set theories, we shall explicitly use only variables ranging over the set of natural numbers; the letters x, y, ... will be used for this purpose. $\{(x) \text{ is an arbitrary but fixed binumeration of the set of axioms of ZF in ZF. If <math>\varphi$ is a ZF-formula then $\{(x) \text{ if } \emptyset\}$ means the formula $\{(x) \text{ if } \emptyset\}$ which bi-numerates the axioms of (ZF, φ) in ZF.

Lemma 2. For each ZF-formula φ , $\varphi \in \mathcal{I}_{ZF}$ iff $ZF \mapsto Con_{\xi \cup \{S\} \setminus M}$ for every m.

See [2] Theorem 8.10 (and also 6.3, 6.9 and 5.9) for the proof of the implication \implies (cf. also [5], foot-

note 22). The converse implication is easy to prove using reflexivity of (ZF, φ) and observing that

 $ZF \vdash [(Con_{\S \cup \{g\} \land m})^* \rightarrow Con_{\S \cup \{g\} \land m}]$ (* denotes the image of the respective formula in the interpretation in question).

Hence, having proved $ZF \vdash Con_{SO(S) \land m}$ for every m, we have the following: (i) (ZF, \mathcal{G}) is relatively interpretable in ZF, (ii) consequently, \mathcal{G} is relatively consistent w.r.t. ZF and (iii) is relatively consistent w.r.t. GB. But the question remains whether (GB, \mathcal{G}) is relatively interpretable in GB and we are led to our problem whether $\mathcal{I}_{ZF} \subseteq \mathcal{I}_{GB}$.

A counterexample is a ZF-formula φ such that (ZF, φ) is relatively interpretable in ZF, but (GB, φ) is not relatively interpretable in GB. Such a φ is consistent with GB, and also $\neg \varphi$ is consistent with GB, for otherwise the identical interpretation of GB would be an interpretation of (GB, φ) in GB.

Theorem. Suppose that ZF is ω -consistent. Let $\mathbb W$ be a recursively enumerable set of ZF-formulas such that, for every $\mathcal G$, $\mathcal G$ $\in \mathbb W$ implies $Con(ZF,\mathcal G)$. Then there is a $\mathcal G$ such that $\mathcal G$ $\in \mathcal I_{ZF} - \mathbb W$. In fact, there is a primitive recursive function associating with every RE-formula $\mathcal G$ (x) a formula $\mathcal G$ such that, if $\mathbb W$ is the set numerated by $\mathcal G$ (x) in ZF and if every element of $\mathbb W$ is a ZF-formula consistent with ZF, then $\mathcal G$ $\mathcal G_{ZF} - \mathbb W$.

Proof. Let $W = \{m, (\exists m) \land (m, m)\}$ where A is primitive recursive. Let $\alpha(x, y)$ be a PR-formula

such that $\sigma(x, y)$ bi-numerates A in ZF and $\bigvee_{x} \sigma(x, y)$ numerates W in ZF. (Cf.[2] 3.11.) Using the diagonal lemma 5.1 [2] we can construct a ZF-formula φ such that

 $ZF \vdash g \leftrightarrow \bigwedge_{x} (\alpha(x, \bar{\varphi}) \rightarrow \neg Con_{\{u \in \bar{\varphi}\} \land x}).$

- (a) Con (ZF, g). Otherwise we have $ZF \vdash \bigvee_{x} c(x, \overline{g})$ and therefore $g \in W$, which implies Con(ZF, g).
- (b) $g \notin W$. Otherwise we have A(m, g) for some m; then $ZF \vdash \alpha(\overline{m}, \overline{g})$ and $(ZF, g) \vdash \neg Con_{\{\omega(\overline{g}\} \land \overline{m}\}}$. But since (ZF, g) is consistent and reflexive (see [2], p.89) we have $(ZF, g) \vdash Con_{\{\omega(\overline{g}\} \land \overline{m}\}}$ which contradicts the consistency of (ZF, g).
- (c) $g \in \mathcal{I}_{ZF}$. We show $ZF \vdash Con_{S \cup \{\overline{\varphi}\} \land \overline{m}}$ for every m; then $g \in \mathcal{I}_{ZF}$ by Lemma 2. Since $(ZF, g) \vdash Con_{S \cup \{\overline{\varphi}\} \land \overline{m}}$ by the reflexivity, it suffices to show $(ZF, \neg g) \vdash Con_{S \cup \{\overline{\varphi}\} \land \overline{m}}$. But $\neg g$ is equivalent in ZF to $\bigvee_{X} (\propto (x, \overline{g}) & Con_{S \cup \{\overline{\varphi}\} \land X}$. Now for each m we have $ZF \vdash \neg \propto (\overline{m}, \overline{g})$ since $g \notin W$ by (b) and since ∞ bi-numerates A in ZF. Hence we have

 $(ZF, \neg \varphi) \vdash \bigvee_{x} (x > \overline{m} \& Con_{\{u \in \overline{\varphi}, h \times x\}})$ for each m, which implies $(ZF, \neg \varphi) \vdash Con_{\{u \in \overline{\varphi}, h \in \overline{m}\}}$. This completes the proof.

Corollary 1. If ZF is ω -consistent then $\mathcal{I}_{ZF} - \mathcal{I}_{GB} \neq 0$. For, evidently, $g \in \mathcal{I}_{GB}$ implies Con(ZF, g) and \mathcal{I}_{GB} is recursively enumerable. (A formula g belongs to \mathcal{I}_{GB} iff there are two GB-formulas defining classes and membership in the sense of the interpretations and,

in addition, GB-proofs of the interpretations of all the finitely many - 15, say - axioms of (GB, φ) .

Corollary 2. Let GB₄ be a consistent finitely axiomatized extension of GB (for example, by adding the axiom of existence of measurable cardinals, assuming that this extension is consistent). If ZF is ω -consistent then $\Im_{\rm ZF} - \Im_{\rm GB_4} \neq 0$.

Corollary 3. If ZF is ω -consistent then $\mathcal{I}_{\mathbb{Z}_F}$ is not recursively enumerable. (By the theorem, every recursively enumerable subset of $\mathcal{I}_{\mathbb{Z}_F}$ is a proper subset.)

Discussion. (1) A historical remark. The Cohen's pioneering proof of the independence of the continuum hypothesis (CH) can be understood as a proof that, for every m, ZF - Con guin CH 3 N TE (see [1]) and therefore yields a relative interpretation of (ZF, ¬CH) in ZF. But it follows from our theorem that a relative interpretation of (ZF, ¬CH) in ZF does not automatically yield an interpretation of (GB, ¬CH) in GB. Such an interpretation was constructed in [8] by exploring the Cohen's proof (see also various relative interpretations of GB + additional axiom in GB constructed in [9] using the motion of Boolean valued models). It can be said that construction of a relative interpretation is the most matural kind of a relative consistency proof; but perhaps it is the matter of one's taste. (In fact, Vopěnka constructed a parametrical relatiwe interpretation called a parametric syntactic model in [3]; but if (GB, φ) has a parametric relative interpretation in GB such that the range of parameters is described

- by a ZF-formula, then (GB, g) has a (non-parametric) relative interpretation in GB, see [3], Theorem 4.)
- (2) Is $\mathfrak{I}_{GB}\subseteq \mathfrak{I}_{ZF}$? It is true that if (GB, \mathscr{G}) has a "nice" relative interpretation in GB then $\mathscr{G}\in \mathfrak{I}_{ZF}$.

 E.g. it suffices that M^* is absolute from below (i.e. $GB \vdash M^*(X) \longrightarrow M(X)$) and, in addition, both $M^*(a)$ and $M^*(a)$ & $M^*(a)$ & $a \in \mathscr{V}$ are equivalent in GB to some ZF-formulas. (Here X is a class variable and a, \mathscr{V} are set variables.) One can formulate more general conditions, but the problem in full generality seems to be open.
- (3) By Lemma 2, \mathcal{I}_{ZF} is a Π_2^0 set and by Corollary 3, it is not a Σ_1^0 set. I do not know whether \mathcal{I}_{ZF} is a Π_A^0 set and/or a Δ_2^0 set.

References

- [1] P.J. Cohen: The independence of continuum hypothesis,
 Proc.Nat.Acad.Sci.U.S.A.50(1963),1143-1148 and
 51(1964),105-110.
- [2] S. FEFERMAN: Arithmetization of mathematics in a general setting, Fund.Math.49(1960),36-92.
- [3] P. HAJEK: Syntactic models of axiomatic theories, Bull.
 Acad. Polon. Sci. XIII (1965), 273-278.
- [4] M. HÁJKOVÁ: The lattice of bi-numerations of arithmetic, Comment.Math.Univ.Carolinae 12(1971), 81-104.
- [5] G. KREISEL: A survey of proof theory, Journ.Symb.Logic 33(1968),321-388.
- [6] J.R. SHOENFIELD: A relative consistency proof, Journ. Symb.Logic 19(1954).21-28.

- [7] A. TARSKI, A. MOSTOWSKI, R.M. ROBINSON: Undecidable theories (North Holland Publ.Comp., Amsterdam 1953).
- [8] P. VOPENKA: Nezavisimost' kontinuum-gipotezy, Comment.

 Math.Univ.Carolinae 5(1964), Supplementum.
- [9] P. VOPENKA: General theory of ∇ -models, Comment. Math.Univ.Carolinae 8(1967),145-170.

Matematický ústav ČSAV Žitná 25 Praha 1 Československo

(Oblatum 8.10.1970)

*

•