Werk Label: Article **Jahr:** 1971 **PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log12 ### **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen # Commentationes Mathematicae Universitatis Carolinae 12,1 (1971) THE LATTICE OF RADICAL FILTERS OF A COMMUTATIVE NOETHERIAN RING #### Ladislav BICAN, Praha As it was shown by V. Dlab [2], there is a one-to-one correspondence between all radical filters and some sets of prime ideals of a commutative Noetherian ring (namely, the set of all prime ideals contained in $\mathscr E$ corresponds to any radical filter $\mathscr E$). In this brief note, there is given a new one-to-one correspondence between all radical filters and some sets of prime ideals of a commutative Noetherian ring Λ and it is shown that the lattice $\mathscr L$ of all radical filters of Λ is distributive. Further, some necessary and sufficient conditions for Λ , under which the lattice $\mathscr L$ is complementary, are given. In what follows, Λ stands for an associative commutative Noetherian ring with unity. Recall that a (non-empty) family $\mathcal E$ of ideals of Λ is called a radical filter (commutativity is assumed!) if - (1) I $\epsilon \, \ell$, $I \subseteq J \Rightarrow J \epsilon \, \ell$, - (2) $I \subseteq J, J \in \mathcal{E}$ and $(I : \lambda) \in \mathcal{E}$ for any $\lambda \in J \Longrightarrow I \in \mathcal{E}$, where $(I : \lambda) = \{ \omega \in \Lambda, \omega \lambda \in I \}$. Let us denote by $\mathcal T$ the set of all prime ideals of AMS, Primary 13099 Ref. Z. 2.723.211 Λ and by $\mathcal M$ the set of all maximal ideals of Λ . We call a subset $\mathcal M$ of $\mathcal P$ a radical set, if any two elements of $\mathcal M$ are incomparable (in the order of the inclusion). Let $\mathcal L$ be any (non-empty) set of ideals of Λ . The maximal elements of the set of all prime ideals which are contained in some ideal from $\mathcal L$ form a radical set - the radical set belonging to $\mathcal L$. Lemma 1: Let $\mathcal{H}\subseteq\mathcal{P}$ be a radical set. Then the set $\mathcal{L}_{\mathcal{H}}=\{\text{ I},\text{ I} \notin \mathbb{N}, \text{ } \forall \text{ } N\in\mathcal{H}, \text{ I ideal in } \Lambda \text{ } \}$ is the radical filter. Proof: The property (1) is evident. Proving (2) indirectly we shall show (3) I $\notin \mathcal{E}_{n} = \forall J$, $J \in \mathcal{E}_{n}$, $I \subseteq J$, there exists $\lambda \in J$ with $(I:\lambda) \notin \mathcal{E}_{n}$. Let us suppose $I \notin \mathcal{E}_{n}$. Then there exists $N \in \mathcal{H}$ with $I \subseteq N$. For $J \in \mathcal{E}_{n}$ we have $J = N \neq \phi$, hence we can take $\lambda \in J = N$. Then $(I:\lambda) = \{ \mu \in \Lambda, \mu \lambda \in I \subseteq N \} \subseteq (N:\lambda)$. But $(N:\lambda) = N$ because N is a prime ideal and $\lambda \notin N$ which finishes the proof of (3). Lemma 2: Let \mathcal{H}_1 , \mathcal{H}_2 be two radical sets. Then $\mathcal{L}_{\mathcal{H}_1} \subseteq \mathcal{L}_{\mathcal{H}_2}$ if and only if to any $N_2 \in \mathcal{H}_2$ there exists $N_1 \in \mathcal{H}_1$ with $N_2 \subseteq N_1$. Consequently, $\mathcal{L}_{\mathcal{H}_1} = \mathcal{L}_{\mathcal{H}_2}$ if and only if $\mathcal{H}_1 = \mathcal{H}_2$. <u>Proof:</u> At first, suppose that the condition holds. Then $\mathbf{I} \in \mathcal{L}_{n_1} \Rightarrow \mathbf{I} \neq \mathbf{N}$, $\forall \mathbf{N} \in \mathcal{H}_1 \Rightarrow \mathbf{I} \neq \mathbf{N}$, $\forall \mathbf{N} \in \mathcal{H}_2 \Rightarrow \mathbf{I} \in \mathcal{L}_{n_2}$. Conversely, if there exists $\mathbf{N} \in \mathcal{H}_2$ which is not contained in any $\mathbf{N}' \in \mathcal{H}_1$, then $\mathbf{N} \in \mathcal{L}_{n_1} \doteq \mathcal{L}_{n_2}$. For the proof of the last part let us note that if $\mathcal{L}_{n_1} = \mathcal{L}_{n_2}$, then to any $\mathbf{N}_2 \in \mathcal{H}_2$ there exists $\mathbf{N}_1 \in \mathcal{H}_1$ and, further, $N_2' \in \mathcal{N}_2$ with $N_2 \subseteq N_4 \subseteq N_2'$. But $N_2 = N_2'$ for \mathcal{N}_2 being a radical set which implies $\mathcal{N}_2 \subseteq \mathcal{N}_4$. The inclusion $\mathcal{N}_4 \subseteq \mathcal{N}_2$ follows by symmetrical arguments. Theorem 1: There is a one-to-one correspondence between all radical filters and all radical sets of prime ideals of Λ . Proof: In view of Lemmas 1 and 2 it suffices to prove that to any radical filter &, there exists a radical set \mathcal{H} such that $\mathcal{L} = \mathcal{L}_{\mathcal{H}}$. Let \mathcal{H} be the set of all maximal elements of the set of all ideals which do not belong to ${\mathcal E}$. It is easy to see that it suffices to show that ${\mathcal R}$ contains the prime ideals only. One can easily show that an ideal I is prime if and only if $(I:\lambda) = I$ for any $\lambda \in \Lambda - I$. Let us take $I \in \mathcal{H}$ arbitrarily, and let us assume the existence of $\lambda \in \Lambda - I$ with $(I : \lambda) \supseteq$ \supseteq I . By hypothesis (maximality of I) it is (I : λ) ϵ ϵ and $J = \{I, \lambda\} \epsilon$ (J is the ideal generated in Λ by I and λ). Writing any element $\varphi \in J$ in the form $\varphi = \alpha \lambda + \beta$, $\alpha \in \Lambda$, $\beta \in I$, we have $\mu \rho = \alpha \mu \lambda + \mu \beta \in I \quad \text{for any } \mu \in (I:\lambda) \text{, hence}$ $(I:\lambda)\subseteq (I:\rho)$ for any $\rho\in J$. Then $I\in \mathcal{E}$ by (1) and (2), which contradicts our hypothesis. Theorem 1 istherefore proved. It is easy to see that the intersection of any set of radical filters is a radical filter so that the radical filters form a (complete) lattice which we denote by $\mathcal L$. Theorem 2: Let M, M, be two radical sets of prime ideals. Then $\mathcal{E}_{n_1} \wedge \mathcal{E}_{n_2} = \mathcal{E}_n$, where \mathcal{H} is the radical set belonging to $\mathcal{H}_1 \cup \mathcal{H}_2$ and $\mathcal{E}_{n_1} \vee \mathcal{E}_{n_2} = \mathcal{E}_n$ where \mathcal{H} is the radical set belonging to the set $$\mathcal{R} = \{ N_1 \cap N_2 , N_1 \in \mathcal{N}_1 , N_2 \in \mathcal{N}_2 \} .$$ Proof: The proof for intersection is direct and we shall omit it. Proving the part for join, let us have I \in \mathcal{E}_{n_i} , i=1,2. Then I \notin N_i for any $N_i \in \mathcal{N}_i$, i=1,2 and therefore I \notin N for any $N \in \mathcal{H}$ which denotes I \in \mathcal{E}_{n_i} and hence $\mathcal{E}_{n_i} \vee \mathcal{E}_{n_i} \subseteq \mathcal{E}_{n_i}$. Conversely, let \mathcal{E}_{n_i} be any radical filter containing $\mathcal{E}_{n_i} \cup \mathcal{E}_{n_i}$. Then from $\mathcal{E}_{n_i} \subseteq \mathcal{E}_{n_i}$, i=1,2 and Lemma 2 it easily follows that to any $N' \in \mathcal{H}'$ there exist $N_i \in \mathcal{N}_i$, i=1,2 with $N' \subseteq N_i \cap N_i$. Hence $N' \subseteq N_i$ for some $N \in \mathcal{H}$ owing to the definition of \mathcal{H} . Using Lemma 2 again, one gets $\mathcal{E}_{n_i} \subseteq \mathcal{E}_{n_i}$, as was to be shown. Theorem 3: The lattice & is distributive, Proof: We shall prove the "cancellation form" of distributivity indirectly, namely $v \neq c$, $a \land v = a \land c \Rightarrow a \lor v \neq a \lor c$. Let us suppose we have three radical filters \mathcal{E}_{x_1} , \mathcal{E}_{x_2} , \mathcal{E}_{x_3} satisfying $\mathcal{E}_{x_2} + \mathcal{E}_{x_3}$ and (4) $\mathcal{E}_{x_4} \land \mathcal{E}_{x_3} = \mathcal{E}_{x_4} \land \mathcal{E}_{x_3} = \mathcal{E}_{x_4} .$ Let us put $$\mathcal{N}'_{1} = \mathcal{N} \wedge \mathcal{N}_{1}$$, $\mathcal{N}'_{2} = \mathcal{N}'_{3} = \mathcal{N} + \mathcal{N}'_{1}$, $\mathcal{N}''_{1} = \{ N \in \mathcal{N}_{1}, \beta M \in \mathcal{N}'_{2}, N \subseteq M \}$, $\mathcal{N}''_{3} = \{ N \in \mathcal{N}_{2}, \beta M \in \mathcal{N}_{1}, N \subseteq M \}$, $\mathcal{H}_{a}^{"} = \{ N \in \mathcal{H}_{a}, \exists M \in \mathcal{H}_{a}; N \subseteq M \}$. One can easily see (by using Theorem 2 and (4)) that \mathcal{X}_{i}^{\prime} and $\mathcal{H}_{i}^{"}$ are disjoint and $\mathcal{H}_{i}^{'}\cup\mathcal{H}_{i}^{"}=\mathcal{H}_{i}$, i=1,2,3 . - In view of $\mathcal{E}_{\mathcal{H}_2}$ + $\mathcal{E}_{\mathcal{H}_3}$ two cases can arise: a) There exists N_2 ϵ \mathcal{H}_2 incomparable (in the inclusion) with any N_2 \in \mathfrak{A}_2 , - b) there exists $N_2 \in \mathcal{H}_2$, $N_3 \in \mathcal{H}_3$ (we omit the symmetrical two cases concerning $\mathcal{H}_{\mathbf{z}}$ and $\mathcal{H}_{\mathbf{z}}$)... Ad a): For $N_2 \in \mathcal{H}_2'$ we have $N_2 \in \mathcal{H}_3' \subseteq \mathcal{H}_3$ a contradiction. Hence N_2 & \mathcal{H}_2 ", i.e. there exists M & $\epsilon n_1, N_2 \subseteq M$. At first, $N_2 = M \cap N_2$, $M \in \mathcal{H}_1$, $N_2 \in \mathcal{H}_2$ implies $N_2 \neq \mathcal{L}_{\mathfrak{M}_4} \vee \mathcal{L}_{\mathfrak{M}_2}$ by Theorem 2. Secondly, $N_2 \subseteq M_4 \cap M_2$, $M_1 \in \mathcal{H}_1$, $M_3 \in \mathcal{H}_3$ implies $N_2 \subseteq M_3$, $M_3 \in \mathcal{H}_3$ - a contradiction proving N_2 • \mathcal{E}_{n_1} \vee \mathcal{E}_{n_2} . Ad b): It is easy to see that $N_2 \in \mathcal{H}_2$ gives $N_2 =$ $= N_q - a$ contradiction. Hence $N_3 \in \mathcal{H}_3$, i.e. there exists $M \in \mathcal{H}_4$ satisfying $N_3 \subseteq M$. For $N_3 \subseteq M_1 \cap M_2$, $M_1 \in \mathcal{H}_1$, $M_2 \in \mathcal{H}_2$ we have $N_2 \subseteq M_2$ - a contradiction. Hence $N_2 \in \mathcal{L}_{M_2} \vee \mathcal{L}_{M_2}$ Finally, $N_3 = M \cap N_3$, $M \in \mathcal{H}_1$ gives rise to $N_3 \notin \mathcal{H}_1 \vee \mathcal{H}_2$ which completes the proof of Theorem 3, Theorem 4: An element \mathcal{E}_{n} has a complement in \mathcal{L} if and only if - a) n contains the maximal ideals only, - b) for any prime ideal P the set Wtp of all ideals from ${\mathfrak M}$ containing P satisfies either ${\mathfrak M}_p \subseteq {\mathfrak N}$ or ${\mathfrak M}_p \cap {\mathfrak N} = \phi$. <u>Proof</u>: It is clear that the unit element of $\mathcal L$ is $\mathcal E_\phi$ and the zero element is $\mathcal E_{\rm syn}$. Let us suppose that the conditions a) and b) are satisfied and let $\mathcal N'=\mathcal M \to \mathcal M$. Then $\mathcal E_{\mathcal N} \wedge \mathcal E_{\mathcal N} = \mathcal E_{\mathcal M}$ by Theorem 2 and $\mathcal E_{\mathcal N} \vee \mathcal E_{\mathcal N} = \mathcal E_\phi$ by b) and Theorem 2. Conversely, let $\mathcal{E}_{\mathfrak{N}}$ have a complement $\mathcal{E}_{\mathfrak{N}}$, in \mathcal{X} . If \mathcal{H} contains an ideal N which is not in \mathcal{M} , then there exists $M \in \mathcal{M}$ with $N \subsetneq M$. For $M \in \mathcal{H}'$ we have $N \in \mathcal{E}_{\mathfrak{N}} \hookrightarrow \mathcal{E}_{\mathfrak{N}}$, by Theorem 2 and for $M \notin \mathcal{H}'$ we have $M \in \mathcal{E}_{\mathfrak{N}} \land \mathcal{E}_{\mathfrak{N}}, \dot{-} \mathcal{E}_{\mathfrak{M}}$ - a contradiction proving a). Finally, \mathcal{H}' must be a complement of \mathcal{H} in \mathcal{M} (intersection). If there exists $P \subseteq M \cap M'$, P prime, $M \in \mathcal{H}$, $M' \in \mathcal{H}'$, then $P \in \mathcal{E}_{\mathfrak{M}} \dot{-} \mathcal{E}_{\mathfrak{N}} \vee \mathcal{E}_{\mathfrak{N}}$, - a contradiction proving b). Theorem 5: The lattice $\mathscr L$ is complementary if and only if any prime ideal in Λ is maximal. <u>Proof</u>: If \mathcal{L} is complementary, then by a) Theorem 4 and Lemma 1 any prime ideal in Λ is maximal. The converse follows immediately from Theorem 4. #### References - [1] A.P. MIŠINA, L.A. SKORNJAKOV: Abelevy gruppy i mouli. Moskva 1969, - [2] V. DLAB: Distinguished sets of ideals of a ring. Czech. Math.J.18(93)(1968),560-567. Matematicko-fyzikální fakulta Karlova Universita P_raha 8 Karlín Sokolovská 83 Československo (Oblatum 13.5.1970) .