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THE LATTICE OF RADICAL FILTERS OF A COMMUTATIVE NOETHERIAN
RING
Ladislav BICAN, Praha

As it was shown by V. Dlab (2], there is a one-to-one
correspondence between all radical filters and some sets of
prime ideals of a commutative Noetherian ring (namely, the
set of all prime ideals contained in € corresponds to any
radical filter € ). In this brief note, there is given a
new one-to-one correspondence between all radical filters and
some sets of prime ideals of a commutative Noetherian ring

A and it is shown that the lattice &£ of all radical
filters of A is distributive. Further, some necessary
and sufficient conditions for A , under which the latti-
ce & is complementary, are given.

In what follows, A stands for an associative commu-
tative Noetherian ring with unity. Recall that a (non-emp-
ty) family € of ideals of A is called a radical fil-
ter (commutativity is assumed!) if

1) le¥¢,1sJ = Jec ¢ ,

(2) "€J,)et and (1:A)6 € for any leJ=b
=»Jet where (I: AM)={r e, wAel}.

Let us denote by / +the set of all prime ideals of
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A and by 77 the set of all maximal ideala of A
We call a subset 2 of P a radical set, if any two ele-
ments of # are incomparable (in the order of the inclu-~
sion). Let & ©be any (non-empty) set of ideals of A .
The maximal elements of the set of all prime ideals which
are contained in some ideal from £ form a radical set
- the radical set belonging to & .

Lemma 1: Let 24 & P be a radical set. Then the
set %ﬂ-{l,liN, YNe? , I ideal in A}
is the radical filter.

Proof: The property (1) is evident.
Proving (2) indirectly we shall show

(3) I¢‘£n-V_T,Je ‘en , 1€ J , there exists

AeJ with (I:2)¢ ‘6,"

Let us suppose I ¢ ‘f,n . Then there exists N € 2 with
I €N, ForJe €, wehave J =N % ¢ ,
can take A € J « N, Then (I: A) ={fuw eA,urel=ENje
€ (N:A). But (N:A) = N because N is a prime ideal
an@ A ¢ N which finishes the proof of (3).

hence we

Lemma 2: Let 7, , 77, be two radical sets. Then %%, £

< ‘f,n if and only if to any Nz € 712 _there exists
2

N1 € 7&1 with Nz S N, . Consequently, ‘én’ = ‘6’!2 if and

only it N, = %, .

Proof: At first, suppose that the condition holds. Then
16‘5“1->;$N, YNe#t, =2 T¢N,YNe,=>1¢ @nz -
Conversely, if there exists N € nz which is not con-
tained in any N' ¢ 7% then N ¢ ¢ < %, , For the

1 ”, ",
proof of the last part let us note that if ¢, = €y >
4 2
then to any N, € 7, there exists N ¢ n and,
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further, N, « #, with N, s N € N] . ButN, = N,
for 712 being a radical sgt which implies 2, s 7!1 .
The inclusion ?'L1 s 712 follows by symmetrical argu-
ments.

Theorem 1: ZThere is a one-to-one correspondence bet-
ween all radical filters and all radical sets of prime i-
deals of A .

Proof: In view of Lemmas 1 and 2 it suffices to prove
that to any radical filter % , there exists a radical set

7 such that ¢ = ¢ . Let 7 be the set of all ma-
ximal elements of the set of all ideals which do not belong
to % . It is easy to see that it suffices to show that Z
contains the prime ideals only. One can easily show that an
ideal I is prime if and only if (I:A) = I for any '
Ae A =~ 1, Let us take I € ?4 arbitrarily, and let
us assume the existence of A ¢ A = I with (1: A) 2
% I . By hypothesis (maximality of I ) it is (I : Q) e
€ ¢ endJ={I,1} ¢ ¢ (J is the ideal genera-
tedin A by I and A ). Writing any element p € J
in the forn @ = A +B,x6 A, A6 1 , we have
-wP =oxwA+uPB 61 forany « €(Ll:A), hence
(I:2) €(1:@) for any ped. Then [ € € by (1)
and (2), which contradicts our hypothesis. Theorem 1 is-
therefore proved.

It is easy to see that the intersection of any set of
radical filters is a radical filter so that the radical
filters form a (complete) lattice which we denote by & .

Theorem 2: L&LJ'L,‘ . ﬂ’. be two radical sets of prime
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ideals. Then ‘!”1 A ‘an
dical set belonging to 2,

where 2 is the radical set belonging to the set
&={NAN , Nen N e#n3i .

- ‘!.n , where J7 is the ra-

v 912 and %n1 v ‘E”z = ‘Eﬁ

Proof: The proof for intersection is direct and we
shall omit it. Proving the part for join, let us have I €
c ‘eﬂ‘; , o= 1,2, ThenI$,N4 for any.N;Cﬂ‘,i-LZ
and therefore I ¢ N for any N € 2 which denotes ] €

€ ‘6“ and hence ¢ v in s ¢ Conversely, let

7, n -
"'91.’ be any radical filter containing ‘E'l" v an . Then
from ‘!n‘ < ‘£n, , “+ =1,2 and Lemma 2 it easily fol-

lows that to any N’ & 20’ there existN, ¢ %, , 4= 1,2
with N' € N .Nz . Hence N’ € N for some N € 2 o-
wing to the definition of # . Using Lemma 2 again, one
gets ‘tn € ¢,, as was to be shown.

Theorem 3: The lattice & is distributive,

Proof:We shall prove the "cancellation form" of dist-
ributivity indirectly, namely &£ ¢, a A L = a A c =
=) a v & % a v ¢ . Let us suppose we have three radi-

cal filters %ﬂ,’ !ﬂ‘ , 'tn’ satisfying 2“2 - ‘é'z, and

(4) ‘2”11\ ‘é'tzz ‘énq/\‘!“,-.-?”.
Let us put

AN, ,

WM,

A = iNedt, AMe W 3 NEMI
AP = iNem,, 3Me M, s NSMI
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N =4Nedt, IMed, ; NeM}

One can easily see (by using Theorem 2 and (4)) that 92:

and ?'L‘f' are disjoint and n; v = i=1,2,3 .

£7 (2K
In view of %” » ‘Zu two cases can arise:
2 3

a) There exists ‘Nz € ﬂz incomparable (in the in-
clusion) with any N, € %3 ,

b) there exists N, ¢ 7, , N, « a, with
N, % N’
(we omit the symmetrical two cases concerning #, and ).

. ’ ’ _

Ad a): For Nz € ?'Lz we have N, ¢ n, s

a contradiction. Hence N, @ 7‘12” , i.e. there exists M ¢

eﬂ’l,‘,N,EM.

At first, N, =M A N,, Me #%, , N e . implies
2 2 1 2 2

N, ¢ ‘5“1 v %“3 by Theorem 2. Secondly, N, N, A M, ,
Myeat, , M, ¢« @ implies N, s M,, M, € @&, -

- a contradiction provi N, « ¢ v ¢ .
P ng ] *, (e
Ad b) : It is easy to see that X, e %3’ gives N, =

= 1\[3 - a contradiction.

Hence N’ e 91_;’ y 1.e. there exists M & 74, satis-
fying N, € M . For s M AM, ,Medt , Me
we have N, § M, - a contradiction. Hence N, € %“1 v ¢, .
Finally, N,= Ma N,y Me %, gives rise to N’ ¢ ‘tn’y '!"’
which completes the proof of Theorem 3,

Theorem 4: An element ‘tn- has a complement in &
if and only if

a) N contains the maximal ideals only,

b) for any prime ideal P the set ﬂ? of all ideals
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from ! containing P satisfies either”l? = 4 or
m? la) n = @ .

Proof: It is clear that the unit element of & is i¢
and the zero element is %m .
conditions a) and b) are satisfied and let 2L’ = 290 = 7 .

Let us suppose that the

Then ¢, A ¢,, = ¢, by Theorem 2 and ¢ v €, , = ¢,
by b) and Theorem 2.

Conversely, let 2,“ have a complement ‘e'az’ in & .
If 24 contains an ideal N which is not in @t , then
there exists M € %% with N § M . For M ¢ 9’ we
have N € ‘&¢ -~ %n v ‘En, by Theorem 2 and for M ¢ 2L’
we have M e ‘&n A ‘Su, -~ ‘!«m - a contradiction proving
a). Finally, .2’ must be a complement of 24 in #. (in-
tersection). If there exists P s M A M’ , P orime,
Men ,M e 2’ then ?e‘émé‘ﬁnv"&“, - a
contradiction proving b).

Theorem 5: The lattice &£ is complementary if and on-
ly if any prime ideal in A is maximal.

Proof: If & is complementary, then by a) Theorem 4
and Lemma 1 any prime ideal in A is maximal. The conver-

se follows immediately from Theorem 4.
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