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SOME FIXED POINT THEOREMS IN METRIC AND BANACH SPACES
Josef DANES, Praha

§ 0. Introduction. This paper is devoted to the study
of fixed points of some mappings in metric and normed spa-
ces. Notations and terminology are described in Section 1.
Section 2 contains some results near to those given by Kan- '
nan in [11) and Kirk in [13]. In Section 3 we study f-mcl,
mappings and the relation between Fréchet differentiability
and the measure of non-compactness. Section 4 is devoted to

an application of a theorem of Browder [4].

§ 1. Notations and terminology. Let (X ,d ) and(Y, e)
be two pseudometric spaces, C a subset of X and T a map-
ping of X into Y. Then T is said to be uniformly con-
tinuous on C with respect ta X , if for each positive o
there is a positive € such that if ¢ is in C and x in

X with d(e,x) % € ,then e(T(c),T(x)) & o .

Let M be a subset of X and define

(M) = {¢ >0 : M can be covered by a finite num-
ber of closed ¢ -balls in X }

‘and the measure of non-compactness of the set M by (M)«
=imf @ (M) (see Sadovskii [14]). For elementary proper-

ties of the measure of non-compactness and related topics
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see [3),081,(9]1,[15). T is called a % -mecl mapping if
2(T(M)) & %= 53 (M) for any subset M of X. T is
called a strictly Me-mel mapping 1 if x(T(M)) < e g M)
for any non-precompact bounded subset M of X , In this
terminology, T is concentrative if it is continuous and
a strictly 41-mel mapping. T is asymptotically regular
(see [5)), ife(T™x), T™'(x)) — 0 a8 m —+o,
for any x in X . It is easy to see that T is uniformly
continuous on ( with respect to X , respectively a
MR-mecl, mapping, if it is fe-Lipschitzian on ( with res-
pect to X (that is ¢ in C and x in X implies that
e(T(e), T(x)) & &.d(c,x) for some M = 0) respecti-
vely S -Lipschitzian on X .

Let (X,n2) and (Y, q) be pseudonormed linear spaces
and X1 and Y; their closed unit balls at the origin.
In what follows, "—> " and "—> " denote the convergen-
ce in the weak and strong (pseudonorm) topology, respecti-
vely. In (8] and [10] we computed the measure of non-com-
pactness of X1: x(x")- 0 or 41 if X/p”(O) haa
a finite or infinitq dimention. If T 4is-‘a linear mapping
of X into Y, denote by y (T) the number 7 (T (X, )).
It is easy to see that 1 is a pseudonorm on the space of
all linear bounded mappings from X into Y ; its kernel,
that is the set 7("4(0) , consists of precompact linear map-
pings of X into Y . Clearly, y(T)£ ATl for any 1i-
near Ts X—Y . '

1) M-mecl ia the abbreviation of "Lipschitzian in the
sense of the measure of non-compactness with constant k ".
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Now, let X and Y be normed linear spaces, C a sub-
set of X and T a mapping of C into Y, Then T is said
to be (a) demicontinuous if Xy —> X, in C implies
T(x,) — T(x,) in Y ; (b) weakly continuous ifx,—> x
in C implies T(x,) —~ T(x,) in Y ; (c) convex if
the functional £(x) = lx-T(x)ll and the set C are con-
vex; (d) Fréchet differentiable at a point  in C (see
(16]) ifz is in the interior of C and T(z + &)= T(z)+
+ T2 h +@(x,h) (heXN(C-2) 2, where T’ (=),
the Fréchet derivative of T at z ,is a linear continuous map=-

ping of X into ¥ and w (z,M ), the remainder of T atz,
o (2, )0 -0
il 2

(e) uniformly Fréchet differentiable on C (see [16]) if (]

is open, T is Fréchet differentiable at any z in C' and

satisfies the condition: ﬂm.h_'a

(z, )
“"'W,‘,_,o l_w'i':r = 0 uniformly for z in C ;(f) fee-

bly semicontractive if Y= X = a Banach space and there is
a mapping V of C x C into X such that T(x) = V(x,x)
for all x in C, 1V(x,2) - V(g,2)l & I x-q |
(X, 4,2 in C ) and the map x —» V' (+, x) is compact
from C to the space of maps of C to X with the uniform
metric. The kernel of ( is the set X(C)= {x e X: C is
starshaped with respect to x , that is, the closed segment
[x,z] is contained in C for any z in C ¥ .

§ 2. In this section we shall present some sufficient
conditions on the existence of fixed points of some mappings

in metric spaces. These results are related to those of

2) C-=z denotes the set fc~2z:c e C 3 .
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Kannan [11] and Kirk [13].

Theorem 1. Let (X, =) be a non-empty compact space
and d a non-negative real-valaed symmetric function-om
X x X such that d(x,4)= 0 implies x=ny (x,y & X).
Suppose that T1 and Tz are mappings of X into itself
satisfying the following conditions:

1) if TX)wx =y = T,(4) is not true, then

d (T, ), T, (x)) < 3 L (x, T, (x)) + ch(y, T, (u DI

(2) the function f(x,y) =d(x, T (x))+d(y,T,(y))
is lower semi-continuous on (X,7) x (X,z) .

Then the mappings '1; and Tz have a common fixed point
which is the unique fixed point of each of 'I; and '1;. .

Proof. If x and % are fixed points of '1; and ‘I;
respectively, with 2 = «r,then by (1) we have d.(I'(z),I;(«r)k
<g_- [0+0]1=0, @ conttadiction, proving the trivial part of
the theorem.

Since £(x,q) is a lower semi-continuous function on
the (non-empty) compact space (X,%) x (X,®) , there is a
point (zZ,w) inXx X at which ¥ attains its infimum.
It

(%) T (T, () = T,(w) = w
or
(% %) %= T (z) = T, (T, (2))

is true, then % or 2 ia a common fixed point qt..T1 and
T, . Hence it suffices to prove that at least one of ()
and (»##) is satisfied. Suppose not. Then, by (1)

(T, (0), T, (2)) = d(T,(w), T, (T, )+ (T, (2), Ty (T, (x)) =
= d (T, (T, (w)), T, (w)) + (T, (), T,(T,(z )<
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<4 R, TG v d e, a1+
+3ld (2T (z )+ d(T,(2), (T, (2))] =

= 5LfCz,w) + £CT, (w), T, (2],

that is, f(T,(w), T,(z)) < f(z,w) - a contradiction
to the minimality of £ at the point (z,w-) .

In the above theorem one can take, for instance, as o
a metric on X . Proofs of the following corollaries are si-
milar to those given in [7],[101. We can obtain further as-
sertions by taking T, = Tz = T .

Corollary 1, Let (X,T) be a non-empty compact space
and d a non-negative real-valued lower semi-continuous func-
tion on (X,%) x (X,%). Suppose that T, and T, are con-
tinuous mappings of X into itself satisfying the condition
(1) of Theorem 1. Then the conclusion of Theorem 1 remains
valid. ‘

Corollary 2. Let X be a non-empty weakly compact sub-
set of a normed linear space, ’R, and Tz weakly continuous
mappings of X into itself satisfying the condition (1) of
Theorem 1 with d(X,4) = lx-4 Il . Then the conclusion of
Theorem 1 remains valid.

Corollsry 3. Let X be a non-empty weakly compact con-
vex subset of a normed linear space, T., and Tz demiconti-
nuous mappings of X into itself ntilfying the condition
(1) of Theorem 1 with o (x,q )= lx-4 0. Let the function
¥ (see Theorem 1) be convex on X x X . Then the conlu-

sion of Theorem 1 remains valid.
Corollary 4. Let X, T, , T, and d be as in Corollary
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3. Suppose that 1~ T, and I~ T, are convex. ( I deno-
tes the identity mapping on X .) Then the conclusion of
Theorem 1 remains valid.

Theorem 2. Let (X,d) be a complete metric space, C
a non-empty compact subset of X and T a (not necessari-
ly continuous) mapping of X into itself which is uniform-
ly continuous on C with respect to X . Let (T, x) be a
subset of X , for any x € X . Suppose that:

1) x?; d(x,T(x)) = 0,

(2 x(T,x) NC = g for each x in X ;

(3) d(y,T(y)) € (d(x,T(x))) for each 4 €
€ v(T,x),x € X , where o (t) is a function defined on
(0,+c0) withr(e)—> 0 as ¢ — 0+ .

Then T has a fixed point in X (even in C ).

Proof. Let ¢ > 0 be given. Then, by (1),there exists
a point x in X such that d(x,T(x)) < € ; by (2),
there are 4 in o« (T,x) and ¢ in C withd(g,c)< €.
Thus, by (3), we have

d(e,T(c)) & dlc,y)+ dly, T(yN+d(T(y),Tk)) &

£ €+n(e)+d )= () ,

vhere d'(¢) = aup{dl(T(2), T(w)):ze X,we(,d(z,w) £ &}
is the modul of uniform eontinuity of T on C with respect
to X, The fact 7 (e) —> (0 as ¢ —>» 0+ implies that

.,‘:‘{ d(e,TCc)) = 0 . The continuity of T on the non-
empty compact subset C ensures the. existence of a point

% in C such that d(x,,T(x,) = inf d(c,T(c) = 0 ,
and X, is a fixed point of T .
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Remark. The condition (1) of Theorem 2 is satisfied if
(x,d.) is a bounded complete subset of a normed linear space
and T is a nonexpansive mapping of X into itself and the
kernel of X intersects the range of T, XK(X)NR(T) » &
(see [10],Proposition 4), or if T is asymptotically regu-
lar, d (T™(x), T™%x)) —> 0 as m —> + o0 ,for any x
in X . In many cases we can take = (T,x) ¢ {T™(x Yinwg s 0T
x(T,x) ceo{T™x): m =0,4,... } ,if X ias a subset of a
linear space (cf. Kirk [13],Cor.2.1).

§ 3. k-mcL mappings and Fréchet differentiable mappings.

Proposition 1. Let (X, 1) and (Y, q) be pseudonormed
linear spaces and T a linear mapping of X into Y . Then:

(1) T is continuous if and only if 3 (T) < + o0 ;5

(2) T is precompact (that is, it maps bounded subsets
of X onto precompact subsets of Y ) if and only ify(T)=10,

(3) if T is continuous then it is a z(T)-meL mapping;

(4) if T is not precompact, then T is not a fe-mecl map-
ping for any & < 3 (T) .

Proof. (1) and (2) follow at once from the definition of
2(T) and Lemma 1, (2) and (3) in [9]. The same considera-
tions as in the proof of Theorem 8 in [10] prove (3). The
part (4) of the theorem is a consequence of the equality
AT = (TX)) = g(T)- (X, ). (Note that x(T) > 0
impliee that the dimension of the quotient space X /pn~*(0)
is infinite and z (X,) = 4, cf. Proposition 6 in [10].)

Eroposition 2. Let (X,d) and (Y, e) be pseudometric
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spaces and { T, }:.1 a sequence of fe-mcl mappings
of X into Y which converges, uniformly on bounded sub-
sets of X, to a mapping T of X inta Y. Then T is a
Se-mel mapping.

Proof. Let € > 0 be given and let M be a bounded
subset of X . Then there exists m, such that ‘('1;;‘,("‘) ’
T(x)) £ € for all x in M . Hence the Hausdorff distan-
ce (with respect to e ) of I;s, (M) and T(M) is not
greater than € and, using [31,§ 3, Lemma, or [8], Theo-
rem 1.11, respectively (9),Lemma 1, (8), we obtain that
|7L(‘I;,‘°(M)) -x(TM)| £ € . Hence 3 (T(M) & x(Tﬂb(M))-c-

+e % Mo-x(M)+ e . Since ¢ >0 was arbitrary, we
have z(T(M)) & fe g (M) .

Theorem 3. Let X and Y be normed linear spaces, C
an open non-empty subset of X and T a mapping of C in-
to Y possessing the Fréchet derivative at a point z of C.
= , x(T(z+e X,)) . 1

en “""i-»m y exists and equala to
(T (z)) .
Proof. There is an ¢, > (0 such that the closed €, -

ball at 2 is contained in C . We can write

Tixem)eT@)+T(2)h+w(z,h) (Ihisge, heX) ,

(z, )
'hquJ_(e )-uquiLv'iT-—': heX,0<inl & e f converges

thue tenda toe 0 . Further,
V‘Hz‘%-lx,) € Tx)+ Tz)NeX)+@(2,8X) (0<eke),
T e XD e T@)= T(z+6X )+ (z,8X,) ,

hence.
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T(z;s&) c Téz)+ T’(z)(X,)+w(z’:x1)
(0<es g,)
. T(z) TG+eXy) o(z,eXy) °
T2)(X,) c T2 122830, 2 %80y
Thus
T(z+eX,) _T(z) "
e S+ T'@)X)+dE)X,
(0<ese,)
Te)X) c T _T=reX) g6y,
that is ¢ .
| AT+ kX)) x(T’(2))| £ o(e)(0<e®m ¢,),

€
and the theorem follows.

Remark. A direct consequence of the proof is that if T

is uniformly Fréchet differentiable on ( , then
L (T(z+eX,)

€
formly for 2z in C .

converges to x (T'(z)) as € — 0, uni--

Corollary 1. Let X and Y be normed linear spaces,
C an open non-empty subset of X and T a mapping of C
into Y possessing the Fréchet derivative at a point = in
C.If T is a -mcL mapping, then so is its Fréchet de-
rivative T’(z ), that is 3 (T'(2)) & 4 .

Proof. The proof is a direct consequence of Theorem 3
and [101,Proposition 6, respectively [ 8], Theorem 1.7.

Lemma 1. Let X and Y be normed linear spaces, C a
non-empty bounded subset of X which is starshaped with
respect to the origin of X and T an a -homogeneous
mapping of C into Y for some @ & 4 (that is T(tx) =
=t*T(x) ift > 0 and x,tx e C ) and a fe-mecL map-
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ping on C N X, for some S = (. Then T is a (strict-
ly) -mel. mappingon C .

Proof. We can restrict our consideration to the case
when T is a #-mcL mapping on CNX,. Let M be a boun-
ded subset of ( and denote M, = M N X, and M, = M.N
NEX N\ X1). Then there is a ¢ > 41  such that ¢+7 M, is
contained in X, . Then 1 (T(M,)) = x (¢* T(¢t'M,)) =
=t (TH'M,) € t¥. s . x (M,) . Therefore

LTM) = L (TM) 0 TM, ) = mac{x(TM,) ,

LCTM,D3 & max S 3, (M,), fooq (M)3=de g (M) .

§ 4. An application of a Browder ‘s _theorem. Recently,
Browder [4) has proved the following important theorem:

Let X be a Banach space, C a closed bounded convex
subset of X having the origin of X in its interior, T
a mapping of C into X such that for each x in the boun-
dary of C, Tx = Ax for any A > 4 . Suppose that for
a given constant f¢ € 4 and a mapping ¥V of C x ¢ in-
to X, T(x) = Y(x,x) for all x in C while

WV (x,2)=V(yg,2)l & fe Hx-ql (x,g €C)
and the map x —> V (., x) is compact from C to the
space of maps from C to X with the uniform metric. Then:

(a) If e < 41, T has a fixed point in C . .

(b) If S € 4 and (1-T)(C) ie closed in X , then
T has a fixed point in C . i

By'nnnn of this theorem, Browder [4] derived a fixed
point theorem for semicontractive mappings in uniformly con-

vex Banach spaces, and Kirk [ 12) made this for strongly
- 46 -



semicontractive mappings in reflexive Banach spaces. Our
purpose in this section is to give a fixed point theorem
for concentrative feebly semicontractive mappings in Banach
spaces. In the part (b) of the Browder s theorem, the pro-
blem is to prove that (I- T)(C) is closed in X .

Lemma 2. Let X be a normed linear space, C a com-
plete subset of X and T a concentrative mapping of C
into X . Then the mapping I - T maps bounded closed sub-
sets of C into bounded closed subsets of X ( I deno-
tes the identity mapping of C into C ). .

Proof. Let M be a closed and bounded subset of X .
Since T 1is concentrative, we have y(T(M)) € (M) <+ oo
and hence T (M) is bounded. Now, the inclusion(Il-T)(M)c
cM~-T(M) implies the boundedness of (I-T)(M). Let
{4, 3., be a sequence in (I-T) (M) converging (strong-
ly) to a point 74, in X . Then there are points X, in M
such that x, ~ T(x,) = 4, . Denote A= {x, :m=1,2,.. }%
and B={y, :m =4, 2,...3 . Then, clearly, Ac T(A) +B
end T(A) €« A-B . Thus, B being precompact (the
underlying set of a convergent sequence), we have
1(A) & A(TAN+(B)= 2 (T(AN & x(A)+ x(B)= g (A) ,
that is, y(T(A)) = x(A) , and hence A ie‘precompact.
Then A is a compact subset of C ., There exists a subse-
quence {‘x"‘h; of {x,} such that Xpp—> X, for some x,
in C . we have T(x,%) —> T(x,) since T is continu-
ous. Hence X, — T(x,) =-n, and %Y, is in(I-T)(C) which
proves the lemma.

Lemma 3. Let X be a normed linear space, C a comple-

te subset of X and T a concentrative mapping of C .intoX.
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If X, — X, snd gy, = x - T(x,) —> ¢, for some
fx, 3cC, x, e C and y, € X, then g, = %, ~ T (x,) .

Proof. Denoting A = {x_ 3} and B = {4, ? and using
AcT(A)+B, T(A) c A-B , we have, by the same
argument as in the proof of the preceding lemma, (A)=0.
Hence I is compact and K== X, in A implies
X, —> X, .Therefore, o, = Xg = 'If(x,) .

Theorem 4. Let X be a Banach space, ( a closed boun-
ded convex subset of X having the origin of X in its in-
terior, T a concentrative feebly semicontractive mapping
of C into X satisfying the Leray-Schauder condition:
for each X in the boundary of C and for each A > 1,
Tx #= Ax . Then T has a fixed point in C .

Proof. By Lemma 2, (I -T) (C) is closed,and using
the Browder s theorem mentioned at the beginning of this
section, our theorem follows.

Corollary 1. Let X and C be as in the theorem. Let
T be a concentrative nonexpansive mapping of C into X
satisfying the Leray-Schauder condition (see Theorem 4).
Then T has a fixed point in C .

Corollary 2. Let X and C be as in the theorem. Let
T : be the sum of a concentrative nonexpansive mapping and
a compact mapping of C into X , Suppose that T satis-
fies the Leray-Schauder condition (see Theorem 4). Then T
has a fixed point in C .

Lemma 4. Let X be a normed linear space and {ag,} a
sequence in X weakly converging to X, and let &€ be a
real number greater than y({x, t m = 4,2,...3). Then
there is m, such that for each m = m, X, lies in the
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2e -ball at x, .
Proof. Suppose not. Then there is a subsequence {x,,,‘}
of {.x@} which is disjoint from the 2 € -ball at X, .

is covered by a finite num-

Now, {x_ 3 , and hence {x“hi ;

ber of closed € -balls. Hence there exist a point x in X
and a subsequence {.x,,‘*%? of fx,,“i’ contained in the clo-
sed € -ball at 2 . Since the closed g -ball at =z is
convex and x“"’i—& X, ,the point x  1lies in the closed
€ -ball at =z . Thus, f.x,",“‘l being contained in the elo.-
sed g -ball at = , it is contained in the closed 2 € -ball

at X, , a contradiction.
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