

Werk

Label: Article Jahr: 1971

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0012|log10

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 12,1 (1971)

ON SOME CLASSES OF POINT ALGEBRAS Marshall SAADE, Athens

1. Introduction. In this note we give a characterization of the following classes of point algebras. (See [1], [2] for a general definition of point algebra even though it will not be needed here.) Let S be a nonempty set, m an integer ≥ 2 and k a positive integer such that $2k \leq m$. Define on $S^m (= 5 \times 5 \times ... \times 5, m S' n)$ the following binary operations:

(i)
$$(a_1, a_2, ..., a_m)(l_1, l_2, ..., l_m)$$

= $(l_{m-k+1}, ..., l_m, l_{k+1}, ..., l_{m-k}, l_1, ..., l_m)$,

(ii)
$$(a_1, a_2, \dots, a_m) (b_1, b_2, \dots, b_m)$$

= $(a_{m-k+1}, \dots, a_m, a_{k+1}, \dots, a_{m-k}, a_1, \dots, a_m)$,

where, if m = 2k, the right side of (i) is $(b_{k+1}, ..., b_m)$, $b_{k+1}, ..., b_k$). Similarly for the right side of (ii). In the remainder of this note we will denote the groupoid on S^m , where |S| = m, obtained by the binary operation in (i), by the symbol G(m, k, m) and the groupoid on S^m obtained by the binary operation in (ii), by the symbol H(m, k, m). It is the point algebras G(m, k, m) and

Ref.Z. 2.722.9

AMS, Primary 20199 Secondary 20110

H(m, M, w) that we characterize.

2. The characterizations. We first prove the following lemma which is also of independent interest.

Lemma. Let G and H be groupoids such that I_G and I_H denote the (possibly empty) sets of idempotents of G and H, respectively. If

- (i) each of G and H satisfies the identity $x \cdot ayx = x$ (or each of G and H satisfies $xy \cdot x = x$),
- (ii) | G| = | H| .,
- (iii) $|I_{\alpha}| = |I_{\mu}|$ and
- (iv) $|G I_G| = |H I_H|$, then $G \approx H$.

Proof. (In this proof we assume that each of G and H satisfies $x \cdot yx = x$. If each of G and H satisfies $xy \cdot z = x$ the proof is analogous.) Define a mapping θ from G into H as follows. If I_{G} , and hence I_{H} , is nonempty where $I_G = \{a_A\}_{A \in A}$ and $I_H = \{b_A\}_{A \in A}$ then for each $a_{\chi} \in I_{G}$ let $(a_{\chi}) \Theta = k_{\chi}$. Clearly $\Theta \mid I_{G}$ is 1-1 and onto I_{H} . Of course, if I_{G} , and thus I_{H} , is empty this step is omitted. Now suppose $G - I_G$, and thus H - IH, is nonempty. We note that if x & G - IG then $x^2 \in G - I_G$ and $x^2 \cdot x^2 = x$. Similarly for $y \in H - I_U$. Thus let Γ be an indexing set such that $A = \{\{x_x, x_x^2\} \mid y \in \Gamma\}$ and $B = \{\{y_x, y_x^2\} \mid y \in \Gamma\}$ are partitions of $G - I_G$ and $H - I_H$, respectively. If $\gamma \in \Gamma$ then let $x_{\gamma} \Theta = y_{\gamma}$ and $x_{\gamma}^2 \Theta = y_{\gamma}^2$. Then clearly $\Theta \mid G - I_G$ is 1-1 and onto $H - I_H$. Of course if $G - I_G$, and thus $H - I_H$, is empty we omit this step.

Thus Θ is a 1-1 mapping onto H. Here we note that for any $x \in G$, $x^2 \Theta = (x \Theta)^2$. Therefore if $x, y \in G$ then $(xy)\Theta = (x(y\cdot y^2))\Theta = y^2\Theta = (y \Theta)^2 = x\Theta(y\Theta(y\Theta)^2) = x\Theta y\Theta$. Hence Θ is an isomorphism.

One easily shows that G(m, k, w) satisfies the identity $x \cdot yz = z$ and that H(m, k, w) satisfies the identity $xy \cdot z = x$. Furthermore the idempotents of G(m, k, w) as well as of H(m, k, w) are precisely the elements in S^m of the norm, $(a_1, \dots, a_k, a_{k+1}, \dots, a_{m-k}, a_1, \dots, a_k)$, of which there are w^{m-k} . If w is finite then of course there are w^{m-k} ($w^{k}-1$) non-idempotents. If w is infinite then clearly there are w idempotents and w non-idempotents. Thus we have the following corollary.

Corollary. Let G be a groupoid of order u^m , where u is a cardinal and m is an integer ≥ 2 . Assume G satisfies the identity $x \cdot yz = x$ ($xy \cdot z = x$). Also assume G has u^{m-k} idempotents where k is a positive integer and $2k \leq m$. If u is infinite assume G has u non-idempotents, too. Then $G \approx G(m, k, u)$ (H(m, k, u)).

References

- [1] M. SAADE: Point algebras. Notices Amer.Math.Soc.16 (1969),94.
- [2] _____: Generating operations of point algebras.

 J.Combinatorial Theory (to appear).

University of Georgia Athens Georgia 30601 U.S.A.

(Oblatum 7.10.1970)