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ON GENERALIiED LAMBERT SUMMABILITY

Patrick CASSENS and Francis REGAN
Oswego N.Y. - St.Louis,Mo.

Summability conditions on the sequence fa,”} from the

seriea

(1) F(z) = 5% a b —ZX

mzA M m 4_2,'””"“

where {a,w} and {9, ¥ are complex sequences with 1 the
least upper bound of { IR;,,lﬁm‘ ? have been studied in
(3] and [6]. This paper will prove an extension of Hardy’s
theorem ([61,pp.194-196) by showing that the (C,f) sum-
mability of X q,  implies summability of = a, in a
generalized Lambert method. The series (1) is a generalized
Lambert series; and we say F(x) is represented by the

F -series [4].

1. This section establishes the notation which will be
employed throughout the paper.

Let m be a natural number, ¢ and f be non-negati-
ve integers; and for a fixed natural number . define for

all integers m such that 0 € m = & -1 ,

m m
By = Zjeo %jom

and
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m

G, (e,f; x,4) = m®xf 4/ s

/-, "

Let a sequence fa‘f be given. For any real value of
n, S¥(a;) denotes the Cesaro sum of order 4 and AT
the binomial coefficient of order s

For g, & non-negative integer and g (x) differen-
tiable at least ¢ timea, define Hc’g(z) = (z d./d.z)g’q«(z),
where the operator (x d/dx )% is defined so that
(» d/dz)’g(x)=g &), (x d/dz)g)=2-dg(x)/dz and
for g =2 1, (zd/dx)? = z-d(H¥ g ) /dx .

The differences of order g, AT belonging to a gi-
ven sequence i@, 3 are given by A"a.,n =a, -a,,, and
for p =2, A, = A'a™"a,) .

Remark. For these differences the following hold

(1) e, = I, A0, = 2L, 1"C, 0y,
and

(1) B (a,dp) = Z55 Cp o

2 72
0%a, A Yprg -

2. Formulation of results. We state here the main theo-
rems which are to be proved.

Theorem 1. Let P(x) be repreasented by the F -seri-
es; let M be a pasitive integer for which there exiat %
non-negative integers 41«0, Ty s00s ’ﬂ'b-»f such that

[ 4 .
1. 2’-:4a.h,,/h;- A ()
N

7,
2. for bt = 4,2,..., k-1, S (#E) = olm *).

Then, if either 1);,‘é = 1 for every 4 = N and suit-
able N or ,0‘7, %= 41 for every 3 = N and suitable

N’ 2* is any primitive fu-th root of 4 and
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-n-g+3
Lim (1= )" HEPha*)=5.T. ¢! ,

-~ 1"

lfws olm

where J = 1 in the farmer case and J = (0 in the
latter case.

Theorem 2. Let

1. X aézfo (C,fx-) for some non-negative integer.f,

2. {JM_ (x)} be a sequence of functions of the
real variable x on the interval (0,4 ) for positive £
such that

(1) x%"’ J,(x)=¢, e a constant, for every
m=41,2.,.,N , for suitable N ,

3t . . n _

(ii) for all x in (0, &), ”gnn”np Jyx)= 0,

(iii) for all x in (0,-h), there exiats a K inde-
pendent of X such that

Em®I g, (x)) < K .
Then X q, I (x) converges for all x in (0,4 ) and
bmy Zay Jd, (x) = 6. J,(0%) .

X~ 0+
Comments. Theorem 1 is an extension of Hardy s theorem

that ( C, £#) summability of = a,, impliea Lambert sume
mability of Eww to the same sum. This is the restric-
tedcase 9 =0, & =1 for all » eand p, is a

fixed natural number for t = 0, 1, ..., %¢ =41 , The case
.where 81l &, are 1 has been considered previously [3]. Theo-
rem 2 is an extension of Bromwich’s theorem ([1],p.358) and
is useful in establishing Theorem 1.

2. Proof of Theorem 2. To simplify notation let &, ~de-
note J, (x) for x in (0, 4k) .
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From the properties of Cesaro sums of order f2 we aD-

tein
@) 27, 8/, 87 = 2, ST (o) 4™ty + 55 @) 825,
and

” 0 1 0
(3) z;:a a,’-,b; = zé-d sa' (“‘M)A‘b;*' s’"- m i -
If o+ ia a positive integre, iteration of (2) with (3)
establishes
m m o ned
Z’-"a Q.«"ﬂb; = Z’-_.a 53- (a.,m_)A 4&?"" Rw
where

Rn = z;:o 5»: (a,,,,,)AéIrm*,, .
From Remark (i)

Ro= =5, =2, -10FC; ; 85 (a0,

F,v m i Tnelea ‘

Since S¥(a,)= 0(n¥), 18%(a, )| < Km? for some

positive X , and

' i #
IR, = z,‘-o z&-ox'cg',i m ""5».41'«-&1‘
éKZ:ga Z}:DC,-_’; (m--t-«':-o-‘l)"lB““.‘*’, | .
But, (m+4'4+4)3'l£r“’4‘_1l—»0 a8 m — o© by hy-
pothesis and C;: =< C, : for 0 £ 4 %= po. There-

fore, R, = o(1) .

Consequently, from Remark (ii),

(4) El gl = Z2, 5 (a,,) A"y + 0 (1) .

}-0
Thus
and .
1
(6) = ST (a,) A~ 4y
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converge and diverge together.
Since S:Caf,m) ia 0 (3™,

=, 1 5 o) 4™y | = K 2, 4T 574y |

for some positive X . But,
30 87100y |
is convergent by hypothesis. Thus, series (6) converges.
This fact implies series (5) converges, and the first part
of the theorem is established.
Since the validity of (4) depends only on conditions
1 and 2(ii) of Theorem 2, the following lemme is easily ob-

tainable from (4) and the comment that in the special case

Q, = 1, a, =0 for m =2 4 we have for integral
£ 2 -1 that for all m , 58 (¢, ) =AL =C,. »,

Zﬂam=4 (C,@) and zq,mb'me% .
Lemma. Let { 4, (x)} satisfy condition 2(ii) of
Theorem 2. Then

.., C

]
3-,+4,_"'A J“(x)-%(x) .

[ -
420
Combining Z a,, 4, = &, , statement (4) and the

facts that series (%) and (6) are convergent we find that
(1) Saply,-s-ts = TS5 (ay)-4Cpp o 10™%;, .

But, if 4 is the Ceaaro limit in condition 1 of this

theorem,
s n -
MA_%LS”(Q%-)/CM,.&’“J )
and
om [ C /mP)=1/p!
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Thus, for every e > O , there exists an integer N,
such that for m > N¢ ’ '

188 )= Cpppm! <e-m™

and there exists a constant X such that for all m

IS:(a.,-)I <K:m™ and 161C, . , = X-a™ .
Hence,
®) | Zayb,-styl & ZL18TC)-5:C,,p 11877411
< 2K Z:';o (n+ 4)“!4””&,;!
IR SR Lt S

meNy +1 m

But,

n+1 : 4
0 (-4)‘”,,,,.. Carng = 8" 2,

and for all m £ N for N suitably large, Lm & = c
o . x4 0%

by hypothesis. Since Z’-.o (-1)%c. Cﬁ“,’-_

every m =« N and N suitably large, we have

tim 'y = 0.

= (4] s for

X~y 0% it
Consequently,
lw}-’wblz@”»b’w-ﬁ'%lée'l( ’
which implies
“%‘_E Za, by -s-Lyl=0 .

The conclusion of Theorem 2 follows.

3. Before proving Theorem 1 we note the following three
theorems.

Theorem A. ([5],p.100) If # = fo > -1 and Zq,
=» (C,p),then Za, =+ (C,x) .
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Theorem B. [2] Let # > ~41 and ¢ > 0.
1, If S:: (a.’-) = o(m*) for some positived ,
then 5:’9'(4,’-) = o(m®**% ) and Sﬂ’:"fw’-) = o(m%*) .

2. If 5: (h';") = o(m%) for some positive d ,
then Yemromm = o((em _m)d') where for a fixed positive

integer & we define, for all integers m  such that

Om&h-1, & =2 a,. .
Theorem C. 2] Let F(=z) be defined by the F -
series; let % be a positive integer such that there ex-
ists a positive d for which S: (/a"_'.") = o(m%) |,
for some fp > - 1 and all integers m satisfying
0 =m < &k - 41 . Let q be a positive integer,

M(g,1) =M(g,q) = 4 and for ¢ > 2 and2 4w £g-1,
Mg, w) = wM(g-1,w)+(g-w+ 1) M(g-1,w-1) .

Then for x| < 4 ,

HYF(x) = 2% M(@w) Sy 27, Qs G (@03 052 -

4. Proof of Theorem 1. Let gq be a positive integer;
let v Dbe an integer and f» 2 g, for all integers t sa-
tisfying 0 = t = & - 1 5 then, from Theorems A
and B we may replace each 17, by 4o . From Theorem C

HYP(x) = 25, M(q,w) Z07 22 ap o Gagom w5 420

Since 221 M(g,w) = ¢! for all integers g =1
([31,p.431), this theorem will be demonstrated if the fol-

lowing are true:
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(a) For any integer w satisfying 1 = w = ¢ ,

e - 14q, ) * - ) .
Jaom_ (1=n) Z’.Ha,.’.Cii(g,w,b;mz Y=4J ;

(*) For all integers w and ¢ satiafying
1€ w = q and 1 £t £ 4 -1 ,
y 12 5@ ; * .
L U=n)"" 2,  Ogjs G‘q’-t (g w; ¥, nx*) =0
Proof of (a). For integral w such that 1 £ w £ g
» © ,
Z,.Ha.*’.Gh’.(g,w;b;nz*)= Zi (h3)e; Gy (g w; &n)
. : * s : : s -
for e; = a&’._/(h;) since =z is a primitive fe-th root
of 1 .
Because

m_:(4-1;)‘*’*;;“*/(4_,,}."*‘1 -1,

Lm [C1-n) " Z7 (dle; Gy, (g w; 40)]

1"
(1_,‘h)10’g .1+ q Mw*’l
(9) = tim ZZ e 8 &
ks T3 R (4. ARE) TR

provided the limit in (9) exists. To prove the existence of

this limit we let e = x* ~

3 () = g Sz MR e
? T Thig (,1_%"-,'4)44-1
’ -

and show Z c;'J* (x) satisfies the conditions of Theo-
rem 2.

Condition 1 of Theorem 2 is satisfied by hypothesis.
For those gz for which Ir“’. =1, J; (0*) = 1 , while
if 4 is such that bh;’ - 1, J5 (0*) = 0 ., Therefore,
by restricting all lrh;. for some initial segment of
(""'3 3, $4=41,2,... to either be 1 or different
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from 41 , condition 2(i) of Theorem 2 1s satisried.

For h > 0 and x in (0, #2) we have

. W L @eped ~wNg
(10) 14 J’.(.x)l él&él;g" eV *F » o(1)

since w =21, 4 =21 and l%l-‘-'f, and condi-
tion 2(ii) holds.
Previous techniques ([3] and [6]) for establishing con-

ditions similar to 2(iii) require expansion of

[lr:; e‘““""’)"t"l / Le*? - Ir‘.‘ 11+% into partial frac-
tions in e*# This can be done only for ,Ov". a con-
stant. Then, if lr*_é is a real constant, K , the trans-
formation e.""’e = K- e %% reduces our problem
to that in [3]. If Irh?- is complex, the sequence

{ A“M J’ (x)}% contains complex expressions; and it is

not possible to establish 2(iii) by the methods given here.
Consequently, we impose ,?ﬁ- o (m."”"'**”) which

implies there exists a constant X such that
(11) |1’,;.,| < X- M-mﬂun

From (10) and (i) of the remark we have

(12)  mFIA™ g ) < 2R S0 Cy | ey

for m sufficiently large. From (11) and (12) there exists
a constant XK' independent of X such that
Za™ 4™y, (x) < K! . and (a) is proved.

Proof of (b). For all integers w and t eatisfying

16w £ g and 1 & t £ 4k -1 we show

’

; 148 <00
(13) nx_:»:_ (1-x) z‘-,,, ah;‘-tGJc;'d (,w; L nz*) =0 .
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It follows from Thearem B that.s,f: (b;) = a(m™)
implies ah,'-t = o ((kZ - t)™) , and there exists a

constant XK, such that
. ™
(14) '“’A;-e‘ < K, (kG -t) 7
But, for all values of # and Z
hj-t 14
- *
L4 l"t;'-t Cnz*) 2|

is bounded from zero since lb‘;.-tl €1, =* is a pri-
mitive & -th root of 4 and 41 & t £ 4 -1 . Therefore,
for all 7 and for all 4 < 1, |xx*|l < 4, and there

exists a constant M > (0 such that
(15) lay, s Guzs (@ ;2% < Miay, Ildg, , 1" CeG- )% .

From (11),(14) and I‘tg.‘_’_t | & 1 we find the left
side of (15) is less than
MoK, U=t 1" X- Uej =)™ 2, (g 602K - K (- £)7°

Hence (b) is proved. This completes the proof of Theorem 1.
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