#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1970
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0011 | log71

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

11, 4 (1970)

APPROXIMATICN BY HILL FUNCTICNS x)

Ivo BABUSKA, College Park

Introduction

The finite element method has become a very effective
method for numerical solution of partial differential equa-
tions. See e.g.[1]1,[2],[3] and many others that deal with
the engineering or matheinatical aspects. In a series of pa-
pers we shall build up one variant of this method for boun-
dary value problems of partial differential equations espe-
cially of elliptic type. See e.g. [4] - [15] . The problem
of approximation in the fractional Sobolev spaces W“(Jlu)
is of special importance for this approach. The problem is
the following. To study functions w, (x) with compact
support such that for every f e W:(R”) and 1 >, >0
there exist C“ (e, 3), =(4e,.., &,), S integral
F=1,..., % such that

e . _ X- hAR
e (¢) lwf“,)g N Cx) -4§1 E Cu(&,j-)a‘(le‘pm‘)

& Clelyay 0%

provided 0 S B & b’ € fe, o« 2 , with

x) This research was supported in part by the National Sci-
ence Foundation under Grant No.NSF GU 2061 and in part by
the ’tonic Energv Commission under Contract No.AEC AT(40-1)
3443/3.
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@&=mim(w-f,x-pB) and C is not dependent on € and
S and A is a non singular matrix and that the support
of @ ($#) 1lies in an LA, neighborhood of the support of 4
with L independent of f and A . An approximation proper-
ty of this type will play a very basic and important role
in further papers (see e.g. £4] - [101).
In this paper we analyze some necessary and sufficient

conditions on @ (x) 1)

for the above approximation pro-
perty.

The name "hill functions" describes the fact that the sup-
port of the functions @ ( i ) is small (of order & ).
The special kinds of these "hill functions" have been stu-

died by different authors and called by different names.

l. Some results of the theory of the Fourier Transform
We shall quote here some known results of the theory

of Fourier Transform of generalized functiona without
proofs. For the proofs see e.g. K. Yosida [161] or Gelfand
f171.
We denote R, the m -dimensional Euclid space:
X=X 0, %), Ixi* = ;%1 (0 . Let
s (R, 2

functions (at co ) with the usual topology (see K. Yosida

be the totality of all rapidly decreasing

1) After finishing this paper I received information that
other authors received result very closed to that in this
paper, esp. Fix, Strang, De Guglielmo, see [181] - [21].

2) We shall very often write simply S instead of S(R,)
in this and analogous cases.
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{161, p.146).
The space of generalized functions over S(R ) will be de-
noted S'(R,) 1) | For any ¢ e S(R) we define Fou-
rier transform: F(P)(g) .
(1.1 FoNe) = §(@ = / &% g0 ax ,

g

with <x, 8> =,

M2
e
N

and the inverse transform
(1.2)  F (o1 = 2m™ Se K E O gy dx .

It is well known that the Fourier transform is a conti-
nuous mepping of § on S (See e.g. [17], vol.2,III.§ 1.1).
Let ¢ € S, then

(1.3) FLF(P) = 2m)™ P (- x) .

Let ¢ € s" . The Fourier transform of ¢ 6 i.e. F(4) will
be defined by the equation

(1.4) (F(f), F(§)) = (2™ (4,¢) .

Let f € L, © s’ with L, the space of all square inte-
grable functions on R, , then F(f)eL, and

(1.5) IFHE = Qm™ield .
2 2

Let A now denote a linear mapping R, on R, - let this
mapping be given by the matrix A of order m (which is
necessary nonsingular) 2). Let A”' be the inverse mapping.
1) If e L, then (f,¢)= .G”?Q dgx, des .

2) We shall denote the matrix and the mapping by the same
symbol.
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Let £ € L, ; and let us denote (A#)(x) = a0 €L, ,

(A"#)(x) = £(Ax) .  Nowlet feS’ thenAfeS’
with

(1.6) CAf, d) = 1Al (£, A1)

and 1Al be the determinant of the matrix A .
A generalized function # € S’ will be said to be pe-
riodic with the matrix of period A if and only if for e-

very ¢ € S and every = (M

49 *°° 3

), h’-_ integers
# =4,.0., m , we have
($,¢) = (¢, %)

with

Y(x) = 9o(x - Afe) ,
A closed set X will be said to be a support of fe S'
if and only if (¢, ¢) = 0 forallde S and ¢ =0
on some neighborhood of K 3 it will be written
K= sup ¢ 1),

A continuous function @ (x) will be said to be a
multiplier if g ¢ € S for every p € S and ¢, —0
if ¢,—> 0, »=4,2,... with the convergence in the
topology of 5 . A function £ € S’ will be said to be
a convolutor if

b = (£,C5), d(x+§)) = w(x)e S
for every ¢ € & and if ¢”—r 0 in topology of § then
fwd,, — 0 in the topology of 8§ . 1If ¢ (x) is a multi-

1) We emphasize that the support in our sense does not mean
the minimal support. In the literature very often the notion
support means the minimal support. But this is not our case.
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plier then F-1 () = f1 is a convolutor and
F(tud) = F(f) TF(f) .

Let 4+ € S have a compact support then F(f) is a
multiplier.

Lemma 1.1. Let o € §' and f, =ELIxl £a #=
=4,000,m ], suppn. @ c _Q.g‘ « Then F(w)(€) is
a function which could be continuated analytically in the
A =6 + 4Ty and for

r %3 ? >
every ¢ > 0 there exists C(e) > 0 and q(e) 2 0

complex space (b,” .

that

. Cn.lo-l.)lglq»...o-t%-y;)l—z |
L.DIF@)(E + i) & (1+181%) Ce ! -
See [17),v01.2,Ch.III.,§ 2.2.

Lemma 1.2. Let #(R), A =(h 0y My), A3 = 6 + L2
is an entire function of m complex variables such that for
every ¢ > 0 there exists C(e) > 0 and q(s) = 0 that
(a+8) i+ ¢ Ca +8)l2,)

(1.8) 181 £ CCeYU+1E1%) 2 7 * - ~

Then there exists w e S’ with supp.wc .ﬂ.& , & s(g1,...,a,.)
such that €(») is analytic continuation of F(@w)(€) in the
space of complex variables (4 ,...,4, )= 5,6 A;=6; +i2; .

? ?
See [17),v01.2,Ch.III,§ 4.

2. The net function

Definition 2.1. The set Le R, ,L = E[&-(k‘,,.,.,h@),
A,}- integer] will be said to be a nornal net. Let A be a
linear mapping R, on R, by a matrix A , Then the set
LA = AL will be said to be a A -net.
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Theorem 2.1. Let a function g € S’ with compact sup-
port be given. Further let ¢ (4,,..., &2, ) be a function de-
fined on the normal net L, and let there exist 0 £ y < o

and C > 0 with |c ()% CNsed? , Defining
(2.1) + '&ELG(-‘!’?(-K“A&)‘S' 3
the sum is convergent in the usual sense of the theory of

generalized functions and the Fourier transform F(#) is

A<ASe, XY
(2.2) F(f)-r(y)’z‘bctﬁ.)e

with ¥(g) as a multiplier. The sum in (2.2) is conver-
gent in the sense of the theory of generalized functions.

Proof. 1. Because @ € S’ has by assumption a compact

support, the series (2.1) converges obviously in the sense
of generalized functions.

2. Because g has compact support F(g_) is a multi-
plicator (see [17], vol.2,Ch.3, § 3,p.4 and p.7). The series
in (2.2) obviously converges as a generalized function.

Let % € S 4 then

(ch)(ﬁ) gc(&)¢i(Aﬁv£>, 1‘/‘5)) =
= (ic(&)e“‘b"), Fl@i) v (x)) =
= E e e T vk =

= EC(RIFQI(x), A8 ()

Now put Qa.f"‘ (¢) . We have
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F-‘ (G““Ah">v(ﬁ Y =

- -i<§, > -¢ 2.
-(2ﬂ)“{”e“‘e°“"’w(x)da¢ -P(E+AR) -

So we have

(Fig)x) § et 4% Feon =

=(2m™ E c(R)(g(8), W(E+A%))

and so

(2.3) F(#) = Fg) E e (&) et ABBY

. The spaces

Definition 3.1. The space W:(R”) , « =20 will be
the space of all functions f e S’ that

(3.1) IF(#12 A+ 12 1) 6 L, (R,,)
and
" 2 - 2 2e
(3.2)  (2a) llflw:“”, HIF()IT(1+lx) )!Ik‘“‘) .

The spaces W;_‘ (R, are the fractional Sobolev spaces.
Obviously WS(R,) 3 wl(R,) for 0 £ &« & 3 and
w, (Ry) = L,(R,). The norm introduced in (3.2) is e-

quivalent with the more common norm used in W: (R,

(3.3) n«.n:,‘mﬁczm"‘/mu\l‘ A+1%51M% dx .
2 '
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4. Some approximation theorems

Lefinition 4.1. The function 4 (&) will be said to
be a trigonometrical p_olynomial with periodicity matrix
B=AT 20 1}

tion 7 (x) as a finite sum

if it is possible to write the func-

168) = £ acse VAl K
= (b, ..

Theorem 4.1. Let us have W (X)) €S h=4,2,...
vee N ’with compact support. Further let a regular matrixA

be given. Let there exist trigonometric polynomials A »

H o= A . Kk with periodicity matrix B = (AT~ 72a
such that
3
(4.1) A(x) =%, A (x) 7(,5(5)
with
A«a-_-' F(&})
has the following properties
1)
(4.2) AcCO) % 0
2)
. - Ty-1
(4.3) IA(x -2 (AT T8 ) 1 & Z (I UxME, ¢ 2 9

for all x such that

C (4.4) I & VAT Y.

1) AT nmeans A transposed.
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and &/ = (4,
3)

(4.5) 522(&)-"&”1;=D<w,

seeey Ap ), S integers

< = 0.

Then there exists an operator A (4) which maps Wzl’(xn)

into WE(R ), 0 éa «& £ 3 , such that

1)
X -hAf
.6 = . (B0
(4.6) Alh) () = 2 T c;(h, f, ) (=——=)
2)
4.7) 1= AP o ) € KB4 0
2 R 2 (R
where
(4.8) (u,=mu'm,(t-<£’ B-o) and

X does not depend on Hh .
3) There exists a constant I, such that if @ is the
compact support of + € W:(R“) then ACh)f  has com-
PR * ;
pact support @* such that @* c Qu“ where Qu‘ is the
L4 neighborhood of & .

Proof. 1) 1. Let
1
#, (x) = Re fa#%-1 for Ix £ 1
=0 for Ixl = 1

and R is chosen in such a way that

(4-) ‘( = .
| 9 ..n/'mu,‘ Xldx = 1

1) In all that follows C will be a general constant, with
different values on different places.
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Flacing ¢,(x) = F(se,) we have ¢ (x) € 3
and because of (4.9) we have d, )= 1 . Now let
P(x) be a trigonometrical polynomial with the periodi-

city matrix 2ar (AT)"1 such that we have

(4.10) Ip(x)-41 € Clx® for Uxl & 1
with

(4.11) P(x)= ¢, (x)P(x) .

Obviously we have ¢ (x)e S . Let us put
wx)=F'¢ .
Because s, (x) has compact support, o (x) has a com-
pact support, too.
Now let f e Wf(xn) and let @ be the support of f.

Let us denote
(4.12) f,=F(F&.0(xh) .

Then fh also has compact support which is in K. neigh-
borhood of @ , where X is a proper constant indepen-
dent of & .

Let us show now that

(4.13) ey - F1 £Cn“isl

wz‘ (xﬂl) sz (R,)

where « is given by (4.8). In fact we have

(4.14) 14, - F1)

I =) LIF@ M-l mIP A+ 151 dx .
wg‘cﬂn) R, ¢ X =

We may write

(4.15) LIF()12 M-S (x P U+Ix1*S)dge S .+ [ ...
Ry Ightés Ixhl>1
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Because of (4.10) we have also

(x)-11& ClxH* for every 0 € » £ t
and Ixl € 1.
Therefore putting 4 = @ , Wwe have

.16 . &C 3y P22 0e Ix 2 dx &
(4.16 "{"ﬂ C SIFE)N2 1k 1**n Ix 1*%)dx

20 2 ’“fzﬁ e 2
& CRA/IFOE U+ Ix dag € Ch TNy cn,)
because 2 + 2w £ 203 .

So we have

(4-17) oo ‘ C 2o l|¢ ﬂ" o
l;£n¢4 h wp (R,

Because ¢ (x) -1 is bounded we have

( ) eC / IFeRU+Ix1*%) g 1™ dx €
.18 -
A !;l{nu Nxhi24 & ™ -
2ee 2
€Ch "”wfcn,) s

2. Let us now select a trigonometric polynomial B, (x)

(with matrix of periodicity 2s (AT)™" ) such that
(4.19) IA(X)B (x) -11 & CAxN®

for all x, Nx M & NATY 'Harm™ .

Let us now put
(4.20) I b2~ K AT M 20m) - B (XM

where § = FF- dlxn) =Féy .
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Because ¢ € § the series is obviously convergent in

"
I.2 (!24 ) where

(4.21) n:*=gc5,A"5=<x1,...,xmw, Ix, | & b

iy

and ¢,  is periodic with matrix of periodicity
1 -1
RATY 2 .

Let us write

1 -1
(4.22) Sn= B(xh) L r B ) fu(x- 5 (A S 2m)]

=P (xnI[§, + FFX 7T .

Let us now show that

(4.23) 2 GO+ 1x 1% dx & CRAI“NEN,

!
DJ_‘.:. W cR,)

In fact we have

2 2« 1/2 ~e ® 2 1/2
(4.24)té|§;(5_)| +llxP®)dx1€ Ch C{klfhte_r)l dx]

A ATy 2 1Y2p 4 =
4(135“ J{klghtg-hm ) & 2m)dx)Y ChT £

- A ATy 2 ~(ATY" 2, 9y12
£CH !'{‘o(nfrl}"m(g RATT R 2O (xh ~(A) R 2mdx)
; ~o -n PR 2472
=CH &i‘on&l t‘{;lcrmg AT R 2T <
A

- L 2 1/2
& Ch bi“-&r (%._/'Aklcf'f)(,g)l ax) 3

A 0 T i S P

NG whr, )

Because ¢ € S, for every f > 0 we have for X e .a‘:
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l$ (xm - (AT) "M 20101 £ C,, Il ™, % %0

and so we have chosen such that the series T g
£ s,‘.‘;'_uo 2

is convergent.

3. Obviously the fundétions ?’ha' =  (xh) £, (%) ,
a=1,2,..., 2 are periodic functions with matrix of pe-

riodicity ¢(2a)(ATY™? —;: . So we may write

(4.25) S,y = I O ayethARE?

Let Q be support of € . Obviously there exists a con-
stant X such that G,Khzztg,@(;,d),‘ XKha ] is
a support of the function F"(fucg);{‘ (xMIP, (xh)) .

Therefore

(4.26) {g“"'*’gnc;)xécy-.)gc,;ma.,; -0

'”
for all x outside of aKh . So in (4.25), c;*cg,)- 0 for
all % such that siAk are outeide of Q.. .

Let us define

X~hAk

~
(4.27) F(x) = 45" F E P My ()

=1
Using Theorem 2.1 we may easily show that
(4.28) (Fg)(x)=§, ()A(x M) = B (XMIAGAIE (x)+ BOXRIAGKIF ).

Let us estimate 14, - ¢ 'w: TR have

2 1 2
(4.29) V= 9 len cz:él'!-?,(gm/\tgh)l 1§, (1% +1x *Ddgs
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* 4T XRIA RN EE 2+ Ix 1~)dx +

~ 2w -
4.Zz-m LS AR 23 AT R T 1 B AT R 2

2 2
+M{a2|§h(,¥)l U+ixI")dx J=CClL+L+1 +1 1 .
Because of (4.9) we have

(4.30) TAGX)B(x)~4] &€Cllx™

and therefore

2u 2 2e 2 2
(4.31) L 4 Ch ifkllgt_l (1+1x ") I PfI*dx € C 4/ 0

Because of (4.3) and the boundedness of E(xh)A(xh)

(independently on £ ) we have

(4.32) L& Cu“Ittp,, -

Further

I, = “1,4 + I[,_"2 where

Tis ‘u.‘z;) b 1B (xm) 1§, P A(x M - 27 (AT "R 12 .
*
c(1+lx + % (Af)"’& ""dﬁ

= 7 [ IP(xh)PIEX (x| - Ty 1812 .
L. aZ  fn'Btx i O IA G - 257 CAT) "2 |

cllx + —%‘1'- (AT) g 12%) dx

Because of (4.3) we have

€ c»;’“gz o En G ARG 1P B0 2 1y o 2T ATy 2y g g
*0
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s Cmi™ = 224 Nal?® 1{»‘”” Ix 1243 g x
A

Because of 2« + 2 & 23 and (4.5) we have

2

20
£ ChNE Incg

Iy,

We have analogously

p V% ‘ * 2 an
I,’aéc,h. {rlg O x 17 dx

By the same way as in (4.23)we may show that
2 ap 2
‘{r‘f:(ﬁﬂ 1x1Pax & CUElyncy )

So we have
2 2
(4.33) 1g € Ch “4nwfcn”) .

Further we have
1 &CJ. IP$2A+Ix1*)dx s C S, IFERU+I 2oy 2SS ik &
= Rlah 2 IGX = Rom R Y PTL
£ 2 2
Cnt e 0 g

and therefore
20 2
(4.34) I,&Ch uuwz,.‘,“, .

So we have
- “
14, 9'w;‘cl,n % Ch. "“wz"cn,,,)
Because of (4.13) we have

“
- g hysr,y = CH I hyacx,)

q.e.d.
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Let there be given the functions e, € $°, 3 =1,..., %

with compact support. Let us introduce

(4.36) Pl o, B, e, ..,

[ 2

- ch
‘i,, (&)&) (

h

I+ )ﬂw.;“m)

= nen

& o
WP, )64 %% ), € i) £ DCIIS N

<¢naxM

The value P describes the approximation property of ay

with respect to the spaces w: (R,) and wa" (Rp) -

Theorem 4.1 says that mssuming (4.2) - (4.5) we have
P, x, B, a,..., @) £ Kh“ .
Let us now study further questions.
Theorem 4.2. Let there be given the functions @, € S’,
Aml...,n with compact support, and A be a nonsingu-

lar matrix. Then there exists a constant C > 0 such that
(4.37) P, &, B,0,.., @02 Cu g>a«.

Proof. Define

y -4 2 26
(4.38) Fnﬂ)z%ﬁ, LIF®0) T g F ) h) i 1 d

with q;(;)._ 8’, periodic with matrix of periodicity
-1 2 «
(AT > and fe& W,”(R,), # >« .
Obviously
0« é)éc u#uw‘m ,
Now put 4 = 1 and select g € W,*(R,) such that

l“,'(g,) =T > 0’ ﬂg.lw:cxﬂ, = 4.
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Such function clearly exists.
X
Now put -f.v(g_) = 9'(7) 3 then we have

e 22 < L
n'wfm,,v Ch

On the other hand

m-2a

L, (4,) =T, (g) % .
So because
. 5, ()
PP, x, B, a,..,0)xC YL
"'w’_"m“)

we have
Pih, &, B, &, a )2 Ca""
and the theorem is proved.
Let us now study the case x~ = 1 .
Theorem 4.3. Let there be given a function @ ¢ S’ with
compact support and let be given a nonsingular matrix. A .

Further let there exist a € > 0 such that
(4.39) Pma,x,B,w) & Ca¥

forall 4 2 m > 0.
Let further A(X) = F(w), AC0) & 0 . Then for
every M & L

(4.40) FACx = 2 CAT) 90| & Dt x4

provided that Ixll € (&), d(f&) >0,
Proof. Letp°>0,l(,‘-2[5, Ixl € p,1 and

1(% c _Q_:" , M, = 4. Let & be the characteristic func-
tion of X, ,, end put £ = F-'¢) .
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By (4.36) there exist coefficients C¥% ()
IC™ (M) £ CoRINBIE™ 0 2 £em) < oo

such the for

Ay mf s ot X-hAk
(4.41) OV (x) = ¢ i C™ () ( ™ )
we have
vy v
(4.42) 1¢ (5)'\'0/;‘(1!,,) £ Ch
and C does not depend on £ .
By Theorem 2.1 we have
(4.43) F(™ (x) = ¢(x) - 6™CxIA(x M)

and G*(x)e S’ isa generalized periodic function with

matrix of periodicity (AT % . Because

supp ¢ c O, we have for all 4 < 4

(4.44)  ne*™(x 2 = o 19(x) =GP )21+ 1 x 1D d x
LANE LRI 1{2, $(x LI

. {hm‘v(gn’mqn-mmﬁ'hn’cnny-’;:-' AT "% 1% dy .
*0 A

Because w (x) has compact support A (x) is continuous
(see Lemma 1.1) at x = O . Because A(0) # 0 by the

assumption there exists H > 0 such that
(4.45) 'qz>l/\(5h)l>q_1,0<"zq<ozz<ao

forggn.A and X < K
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By (4.42) we have

1 r's 2 27
o — - G \“d &« Ch
(4.46) K’f“l NPT G X1 dx

because ¢ is the characteriatic function of K,,O,,_ and

also

(4.47) ‘,/.' 1GR (k) A kA = 2 AT Tay 12l x & Ca2Y*2"
/2

for all S & 0 .

Define now
(4.48) Al -2 (ATY ") = Ay (%) ..

By Lemma 1.1 the function Ag (x) = A, (x,,..., Xy )
is analytic entire function of m variables X ,..., X .

So we may write

.91" “1 ‘lﬂ'
(4.49) A&(ﬁ,) =‘_Zb ‘1*%‘_%.‘ B g, ¥47 000 Xm

and the series converges absolutely in a K*/z . So we

may write

s Ud tud £, Ln
(4.50) A&(ﬁh) =“§ah ‘1*%*4’"‘ %8, 177701 *m

L 4
NN ¥ L CROMPR S %

Now put

2
(4.51) & (n, &)-‘s{m Yp (X, )dx .
Let 0 £ ¢ (&) be an integer such that

rip, )=0 for all 0 & pn % g (&)
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and

L(q (), &) + 0 .
From (4.47) we have
2
‘,.‘/M 16*cx) IA&(gh)lzdgc_ £ Cli) M27+2x
and hence
(4.52) e AN L PR 2

o2

Wocmy ! 22X £

4 C(4) 2=+, o(u‘“""a"?{ 1G%x) P dx .
/2

But by (4.46)

(4.53) Mex) e —
53 GT(x) Acxm) + 3 (x, &)
with
K,_f In(x, W) idx € cRIR2?
0/2

So hﬁg(&7b(g(£)’ &) & c(&)hﬂfs—ﬂﬂ_‘_ o(hzg&))
and
(4.54) Q(R) = 4 + < .

The theorem 4.3 follows from (4.54) and (4.50).

5. A cloaer'analxeis of the one dimensional case

Now we shall study in more detail the case m = 4 and
_#« = 4 . Let us prove the following theorem.

Theorem 5.1. Let < (x) € S’ and @ (x) have com-
pact support. Further let F (@) = A(x) fulfill

(5.1) ACO) % 0
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(5.2) AQorse + x) & KxHED(s)

for Ixl € d (k) ,d(h) > 0 (see also the 4.3). Then
<-%’+ e, %’-;)’ ¢ >0 cannot be a support of w(x),
where t’= min [L; £ integral , £ =2 t 1 .

Proof. By Lemma 1.1, it is possible to continue
A(x) = Fw), in the complex plane z = X + <4 and

(5.3) IACz) & (1 +1xI%)C e

The function . A(z) has zero of order t' (t' ' mmin[ L;
L integer L 2 t] ) at the points 2 fe,
o= .oy =2,-4,1,2,... , Dbecause of (5.2).

Let us introduce the function
(5.4) $, (2) = aint L2y .
: + Sl

The function

"

x* A(2)

(5.5) yiz) - dp (%)

is an entire function and because of (5.1) we have

We have

(5.6) L, Cx+ig)l 2 Inht o al .
s 4 7 Y

So for lgl > 4 we have
() £ (A+ Ix1%y g g@t72+ei! 4 5 0 . rbitrary
2

and also for Iyl € 41
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(5.8) ¥ (z) &« (U+1x1¥re .

So if a+e & %’ then ¥ (=) is a polynomial and if
Q « -;— then ¥(xz) = 0 which contradicts with (5.5) and
(5.1). Finally, by the use of Lemma 1.1, the theorem is pro-
ved.

From Theorem 5.1 it is obvious that the function

-~ 1 »
92(«) = F 1(T;-;- b, (x)) € S

fulfils (5.1) and (5.3) and has minimal support.
The functions &, (x) have been studied by Schoenberg

and called B-splines. For numerical construction see [14].
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