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A NOTE ON INTEGRATION OF RATIONAL FUNCTIONS

JAN Makik, East Lansing
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Summary. Let P and Q be polynomials in one variable with complex coefficients and let n
be a natural number. Suppose that Q is not constant and has only simple roots. Then there is
a rational function ¢ with ¢’ = P/Q"* ! if and only if the Wronskian of the functions Q’, (Q2)’, ...
..., (@"), P is divisible by Q.
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0. Introduction. Let f be a rational function of one variable. If we ask how to
recognize whether f has a rational primitive, we may get various ‘‘reasonable”
answers. Let us observe, first of all, that every such f can be expressed as P/ om,
where P and Q are polynomials, Q is not identically zero and has no multiple roots
(which will be assumed throughout this introduction) and m is a natural number.
We may even require P and Q to have coefficients in the smallest field @ con-
taining the coefficients of the polynomials whose ratio is f. (It is possible to obtain
P and Q by so called rational operations.) Then we can find polynomials A and B
with coefficients in @ such that P/Q™ = (4/Q™" ')’ + B/Q.(We may proceed, e.g.,
as in the proof of Lemma 21.) It is obvious that f has a rational primitive if and
only if B is divisible by Q. This argument in some sense solves our problem.

Let us now compare the described procedure with the assertion (iv) on p. 19
of Hardy’s book [1]:

P/Q? has a rational primitive if and only if PQ"” — P'Q’ is divisible by Q.

This assertion gives a very simple answer to the mentioned problem, if m = 2.
For the case m = 3 it is not cifficult to prove the following:

P|Q? has a rational primitive if and only if P(3Q"* — Q'Q"”) — 3P'Q'Q" + P"Q"?
is divisible by Q. ,

This being so, it will not surprise the reader that for every positive integer n we can
find expressions Vj, ..., ¥, such that P/Q"*! has a rational primitive if and only
if PV, + P'Vy + ... + P™V, is divisible by Q; V; is the sum of terms of the form

C(Q’)jl (Qn)jz... (Q(n+ 1))jn+l ,
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where c is an integer and j, ..., j,+ are nonnegative integers with j; + ... + jo4q =
=nandj +j; +2j; + ... + (0 + 1) j,4y = 2n(sothat j + j, + ... + nj,4y = n).
We get these expressions, if we take in Theorem 22 for F the mapping @ defined in 7.

If we choose there F = A, where A is as in 14, we see that P/Q"*! has a rational
primitive if and only if the Wronskian of the functions Q’,(Q?),...,(Q"), P is
divisible by Q. This result is remarkable for its simplicity, but it is in some sense
unpractical. The mentioned Wronskian has namely the form PW, + P'W, + ...
... + PMW. where W; are determinants whose direct computation is considerably
more difficult than the computation of the expressions V;, if n > 1. However, it
follows from 13 and 14 that

n—1

W, = v P TTk.

1. Notation. Let P be the set of all polynomials in one variable with coefficients
in a given field of numbers. Throughout this note Q is a given element of P. For
fsg€®P the symbol fog means the corresponding composite function (ie.
(f - 9) (x) = f(g(x))). For any positive integers i, k let a;,, b, be polynomials defined
as follows: If k < i, let a; = k!(,:) Q7% if k > i, let ay = 0. Further let by, =
= Q(k); b“_ = O, bi,k‘i‘l = b;k + Q'bi-l,k (l = 2, 3, “eey k = 1,2, ...). Obviously
Ay = k!, b"‘ =0 fol‘ k < i, bkk = (Q’)k.

2. Lemma. Let Ke . Then (Ko Q)® = Y*_ (K9 Q) by (k =1,2,...).

Proof. This is obvious, if k = 1. If the assertion holds for some k, then
(Ko @)D =3 1 (KUY 0 Q) @by + Y51 (KD o Q) b = (K’ o Q) by +
+ Ties (K92 Q) (bim14@ + bi) + (K**D 0 0) @by, = Y4%1 (Y« 0) by

3. Conventions, notation. In what follows n is a nonnegative integer. For each
yePleteo(y) = (v, 5. ). Fori = 1,2,... let b; = (byy, ..., bynsy)-

Let § = &, be the set of all mappings F of P to P for which there are S, ..., S, € P
such that

W ) =505, (re®).
Remark. It is easy to see that the polynomials S; are uniquely determined by F.
(We may, e.g., apply the relations
F(y;) =i:2:y§”S, +ilS, (i=0,...,n),
whert(a yix) = ))c‘) ;‘—urther it is clear that F(y) is the scalar product o(y) S, where
S = (So ..., S,).

4. Lemma. Let i be a natural number. Then

o(@Y) = Tash,.



Proof. Set K(x) = x'. Clearly K“¥> - Q = a;; for each j > 0. Let k be a natural
number. By 2 we have (Q)® = Y%_, a;;bj. Since a;; = 0 for j > i and by =0
for j > k, we have also (Q)*® = Y}., a;;b;. Now we observe that ¢((Q)) =
— (@) (@)

5. Lemma. Let L be a linear subspace of B. Suppose that the following holds:
(2) For each y € Land each z € B we have yz € L.
(3) If ze B and zQ' € L, then z€ L.
Let F be given by (1) and let F((Q'))e Lfor i = 1,...,n. Then
(&) F(Q"1Y) — (n + 1) (@)* S, e L.
If, moreover,
(5) F(@"*'Y)eLor S,eL,
then S;e L for j =0,...,n.
Proof. Set S = (So, ..., S,). By 4 we have F{(Q')) = o((Q")) S = Y.i=1 a;,(b,S) +
+i1(b;S)(i = 1,...,n + 1). We see that b,S € L; by (2) we have b,SeL,...,b,Se
€ Land F((Q"*')) — (n + 1)! (by4+.S) € L. Clearly

n+1

b,‘S = (Q’)i Si—l + ,_Zi_*_lbijsj_l .

Choosing i = n + 1 we get (4). Now it follows from (3) and (5) that S, €L,
S, ,eL,....SoeL.

6. Lemma. Let L be as in 5. Let a;, B;€ P (j =0,...,n), G(y) = Yj=0 y¥a;,
H(y) = Y10 y9B; (yeP). Let G{(Q)))eL, H(Q'))eL for i =1,...,n. Then
(o,H — B,G) (y) € L for each y e P.

Proof. Set F = a,H — B,G. Then we have (1) with S, = 0. Clearly F((Q))eL
fori =1,...,nand, by 5, F(y) € Lfor each y € .

7. Notation. Let v = (0,...,0) (n + 1 terms). For each (n + 1) x (n + 1)-
matrix Z with rows z,, ..., z, let Z* be the matrix with rows v, z,, ..., z,_,. For each
f€P let E(f) be the matrix with entries e;,, where e; = 0 for k < i and ey =

= (?)f"“” for k2 i (i,k=0,...,n). Let I be the (n + 1) x (n + 1) identity
matrix and let w be its last row. Further let
M = n E(Q') — (E(Q))* + QI*.

Let m,, ..., m, be the rows of M. For each y € B let ®(y) be the determinant with
TOWS My, ..., M,_y, o(y).

8. Lemma. Let f,geB. Then o(fg) = o(f) E(g), o(f'9) = o(f) (E(9))* +
+ f™*Ygw; in particular, o(f') = o(f) I* + f" Vw.
(The easy proof is omitted.)
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9. Lemma. M is an upper triangular matrix with diagonal entries (n -k Q
(k =0,...,n); in particular, m, = v.

Proof. Let H = E(Q) — QI. Then H = (h,) is an upper triangular matrix
with hy =0 (k =0,...,n) and h_,, = kQ' (k = 1, ..., n). Obviously M =
= n E(Q') — H* from which our assertion follows at once.

10. Lemma. Let f € . Then &(nfQ' — f'Q) = — Q &(f").

Proof. By 8 we have o(nfQ’ — f'Q) = no(f) E(Q") — o(f) (E(Q))* — f"*VQw =
= o(f) M — Q(e(f) I* + f“"*Vw) = o(f) M — Q o(f’). Since, by 9, we have m, =
=, o(f) M is a linear combination of the rows my, ..., m,_,. This easily implies
our assertion.

11. Lemma. We have ®((Q')’) = 0 for i = 1, ..., n. If we define V; by

©  #0) =30 Gew),
then
(7) V, = n!(Q) .

Proof. We may suppose that n > 0. If we choose f = 1in 10, we get ®(Q’) = 0.
Now, if i <n and &((Q')) =0, we set f = Q' in 10 and we get ®((Q'*!)) =
= [(i + 1))(n — i)] (nQ'Q" — iQ'"*Q'Q) = 0. It is obvious that ¥, is a triangular
determinant with diagonal entries (n — k) Q' (k = 0, ..., n — 1). This completes the
proof.

12. Convention. In sections 13 and 14 we define mappings ¥ and A. The reader can
prove easily that theorems 13 and 14 hold, if n = O or Q' = 0. (If n = 0, then & y) =
= ¥(y) = A(y) = y;if Q' = 0and n > 0, then &(y) = ¥(y) = A(y) =0 (y e B).)
Therefore in the corresponding proofs we will suppose that n > 0 and that Q is not
constant. Then (3) holds with L = {0}.

13. Theorem. For each y € B let ¥(y) be the determinant with rows by, ..., b,,
() (see 3). Let T; be defined by

® ) =207

Then

©) Y(Q)) =0 for i=1,...n
and

(10) ne=(0Po.

Proof. The relation (9) follows from 4. It is easy to see that T, is a triangular

408



determinant with diagonal entrics Q/, ..., (Q’)". Let (6) hold. By 11 and 6 with L =
= {0} we have V,¥ = T,®. This combined with (7) yields (10).

14. Theorem. For each y € P let A(y) be the Wronskian of the functions Q,
(0%, ...,(Q"),y. Let ¥ be as in 13. Then A = Y [1i=1 k"

Proof. Let A, B, C be matrices with entries ay, by, (Q')* (i, k = 1,...,n). By 4,
where we take n — 1 instead of n, we have C = AB. Let us define W; by Aly) =
= Y70 yYW; and let (8) hold. Then det A = [Ti=1 k!, det B=T, and W, =
= det C = det A det B. Clearly A((Q")') =0 for i =1,...,n. By (9) and 6 with
L= {0} we have T,4 = W,¥ which easily implies our assertion.

15. Conventions, notation. In what follows we suppose that Q is a polynomial
that is not identically zero and has no multiple roots (so that it is relatively prime
to Q). Ii f, g € B, then the relation f = g means that f — g = hQ for some ke ‘P.
Let B = B, be the set of all mappings F € §, such that F((Q)))=0(i=1,...,n). Let
9 = W, be the set of all mappings F € B, for which F((Q"*')') is relatively prime
to Q.

16. Lemma. Let F € B and let (1) hold. Then F € W if and only if S, is relatively
prime to Q.

Proof. Weset L= {y e B; y = 0} in 5 and apply (4).

17. Theorem. The mappings @, ¥ and A are elements of 1B.

Proof. By (7) and 16 we have ¢ € . Now we apply 13 and 14.

18. Lemma. Let F € B, fe P. Then F(nfQ' — 'Q) = 0.

Proof. Let (1) and (6) hold and let L= {yeP; y = 0}. Set y= nfQ' — f'Q.
By 6 and 10 we have V, F(y) = S, ®(y) = 0 and, by 11, V, is relativcly prime to Q.
Thus F(y) = 0.

19. Lemma. Let n >0, Fed, Set G(y) = F(yQ; — QF(y) (ye€®B). Then
Ge,_,.

Proof. Let (1) hold. It is obvious that there arc C; € P such that G(y) =

= Y"_o y¥C;. Since C, = S,Q — 0S,, we have G € §,_;. Now we observe that
G((Q'y) = (i/(i + 1)) F((@°*")) for each positive integer i.

20. Lemma. Let Fe B,, PeP. Let P/Q""! have a rational primitive. Then
F(P) = 0.

Proof. It is well-known that there is an f € 9 such that P[Q"*! = (f/@")’; thus
P =f'Q — nfQ'. By 18 we have F(P) = 0.
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21. Lemma. Let Fe, Let Pe P, F(P) =0. Then P/Q"*' has a rational
primitive.

Proof. It is easy to see that the assertion holds, if n = 0. Now let k be a natural
number such that the assertion holds for n = k — 1. Let FeW,, Pe B, F(P) = 0.
There are f, g € B such that P = kfQ' — gQ. Set P, = kfQ' — f'Q, P, = f' — g.
Then P = P, + QP,. By 18 we have F(P,) = 0 so that F(QP,) = 0. Let G be as
in 19. Then G € MW,_, and G(P,) = 0 so that, by induction assumption, P,/Q* has
a rational primitive. Obviously P,/Q*"! = (—f/Q*) and P/Q**' = P,/Q**' +
+ P,f Q. Therefore the assertion holds also for n = k.

22. Theorem. Let P € B, F € ,. Then P/Q"*! has a rational primitive if and only
if F(P) = 0.
(This follows at once from 20 and 21.)

Remark 1. It is very easy to construct the matrix M = (m,) by means of which
the mapping @ has been defined. We have m;, = ,0*~"*", where By, = n and
Bu = n(:c) - (i f 1) for i=1,...,k (k=0,...,n); in particular, B, = n — k.
The numbers f;, with 0 < i < k can be obtained from the obvious relations f, ;,; =

=B+ B-1s (1 Sr=<s;s=1,...,n—1). Moreover B;, = n(n) —-( " ) =

i i—1

1
(") = ie == (" o= i=(" e -0
(i=1,...,n). Thus, if n + 1 is a prime, the numbers By, ..., B,, are its multiples.
For example, if n = 4, &(y) is the detcrminant

4Q° 4Q" 4Q” 4QW  4QW®
0 30 70" 110”7 150@
0 0 20 90" 200"
0 0 0 Q  10Q"

" n

y ¥y oy y y

Now let n be an arbitrary natural number. It follows from the definition of a de-
terminant that @(y) is the sum of terms of the form

(11) CQ(ko—0+1)Q(k1—l+l) Q(kn-x—(ﬂ—1)+1)y(kn) s

where c is an integer, {ko, ky, ..., k,} ={0,1,...,n}and k; Z ifori =0, ..., n. Let
us write k, = j. Since Y- (k; — i) = 0,wehave YiZo(k; — i+ 1)+ j—n+ 1=
=Y1_o(ki—i+1)=n+ lsothatj+ Y725 (k; — i + 1) = 2n. Hence (11) can
now be expressed also in the form cy?(Q')/' (Q")/* (Q"*V)*!, where j, are
nonnegative integers, j; + ... + jooq =nandj +j; +2j, + ... + (n + 1) jo4y =
= 2n. We see that the expressions V; defincd by (6) have the form described in the
intreduction.
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