

Werk

Label: Article
Jahr: 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?313123012_0116|log111

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A NOTE ON INTEGRATION OF RATIONAL FUNCTIONS

JAN MAŘÍK, East Lansing (Received May 15, 1990)

Summary. Let P and Q be polynomials in one variable with complex coefficients and let n be a natural number. Suppose that Q is not constant and has only simple roots. Then there is a rational function φ with $\varphi' = P/Q^{n+1}$ if and only if the Wronskian of the functions Q', $(Q^2)'$,, $(Q^n)'$, P is divisible by Q.

Keywords: Wronskian, primitive.

AMS Subject Classification: 26C15.

0. Introduction. Let f be a rational function of one variable. If we ask how to recognize whether f has a rational primitive, we may get various "reasonable" answers. Let us observe, first of all, that every such f can be expressed as P/Q^m , where P and Q are polynomials, Q is not identically zero and has no multiple roots (which will be assumed throughout this introduction) and m is a natural number. We may even require P and Q to have coefficients in the smallest field Θ containing the coefficients of the polynomials whose ratio is f. (It is possible to obtain P and Q by so called rational operations.) Then we can find polynomials A and B with coefficients in Θ such that $P/Q^m = (A/Q^{m-1})' + B/Q$. (We may proceed, e.g., as in the proof of Lemma 21.) It is obvious that f has a rational primitive if and only if B is divisible by Q. This argument in some sense solves our problem.

Let us now compare the described procedure with the assertion (iv) on p. 19 of Hardy's book [1]:

 P/Q^2 has a rational primitive if and only if PQ'' - P'Q' is divisible by Q.

This assertion gives a very simple answer to the mentioned problem, if m = 2. For the case m = 3 it is not difficult to prove the following:

 P/Q^3 has a rational primitive if and only if $P(3Q''^2 - Q'Q''') - 3P'Q'Q'' + P''Q'^2$ is divisible by Q.

This being so, it will not surprise the reader that for every positive integer n we can find expressions $V_0, ..., V_n$ such that P/Q^{n+1} has a rational primitive if and only if $PV_0 + P'V_1 + ... + P^{(n)}V_n$ is divisible by Q; V_i is the sum of terms of the form

$$c(Q')^{j_1}(Q'')^{j_2...}(Q^{(n+1)})^{j_{n+1}}$$
,

where c is an integer and $j_1, ..., j_{n+1}$ are nonnegative integers with $j_1 + ... + j_{n+1} = n$ and $j + j_1 + 2j_2 + ... + (n+1)j_{n+1} = 2n$ (so that $j + j_2 + ... + nj_{n+1} = n$). We get these expressions, if we take in Theorem 22 for F the mapping Φ defined in 7.

If we choose there $F = \Lambda$, where Λ is as in 14, we see that P/Q^{n+1} has a rational primitive if and only if the Wronskian of the functions $Q', (Q^2)', ..., (Q^n)', P$ is divisible by Q. This result is remarkable for its simplicity, but it is in some sense unpractical. The mentioned Wronskian has namely the form $PW_0 + P'W_1 + ... + P^{(n)}W_n$, where W_j are determinants whose direct computation is considerably more difficult than the computation of the expressions V_j , if n > 1. However, it follows from 13 and 14 that

$$W_j = V_j(Q')^{\binom{n}{2}} \prod_{k=1}^{n-1} k!$$
.

1. Notation. Let $\mathfrak P$ be the set of all polynomials in one variable with coefficients in a given field of numbers. Throughout this note Q is a given element of $\mathfrak P$. For $f,g\in\mathfrak P$ the symbol $f\circ g$ means the corresponding composite function (i.e. $(f\circ g)(x)=f(g(x))$). For any positive integers i,k let a_{ik},b_{ik} be polynomials defined as follows: If $k\leq i$, let $a_{ik}=k!\binom{i}{k}Q^{i-k}$; if k>i, let $a_{ik}=0$. Further let $b_{1k}=Q^{(k)}$; $b_{i1}=0$, $b_{i,k+1}=b'_{ik}+Q'b_{i-1,k}$ (i=2,3,...,k=1,2,...). Obviously $a_{kk}=k!$, $b_{ik}=0$ for k< i, $b_{kk}=(Q')^k$.

2. Lemma. Let $K \in \mathfrak{P}$. Then $(K \circ Q)^{(k)} = \sum_{j=1}^{k} (K^{(j)} \circ Q) b_{jk}$ (k = 1, 2, ...).

Proof. This is obvious, if k = 1. If the assertion holds for some k, then $(K \circ Q)^{(k+1)} = \sum_{j=1}^{k} (K^{(j+1)} \circ Q) \ Q'b_{jk} + \sum_{j=1}^{k} (K^{(j)} \circ Q) \ b'_{jk} = (K' \circ Q) \ b'_{1k} + \sum_{i=2}^{k} (K^{(i)} \circ Q) \ (b_{i-1,k}Q' + b'_{ik}) + (K^{(k+1)} \circ Q) \ Q'b_{kk} = \sum_{j=1}^{k+1} (K^{(j)} \circ Q) \ b_{j,k+1}.$

3. Conventions, notation. In what follows n is a nonnegative integer. For each $y \in \mathfrak{P}$ let $\varrho(y) = (y, y', ..., y^{(n)})$. For i = 1, 2, ... let $b_i = (b_{i1}, ..., b_{i,n+1})$.

Let $\mathfrak{F} = \mathfrak{F}_n$ be the set of all mappings F of \mathfrak{P} to \mathfrak{P} for which there are $S_0, \ldots, S_n \in \mathfrak{P}$ such that

(1)
$$F(y) = \sum_{j=0}^{n} y^{(j)} S_j \quad (y \in \mathfrak{P}).$$

Remark. It is easy to see that the polynomials S_j are uniquely determined by F. (We may, e.g., apply the relations

$$F(y_i) = \sum_{j=0}^{i-1} y_i^{(j)} S_j + i! S_i \quad (i = 0, ..., n),$$

where $y_i(x) = x^i$.) Further it is clear that F(y) is the scalar product $\varrho(y) S$, where $S = (S_0, ..., S_n)$.

4. Lemma. Let i be a natural number. Then

$$\varrho((Q^i)') = \sum_{j=1}^i a_{ij}b_j.$$

Proof. Set $K(x) = x^i$. Clearly $K^{(j)} \circ Q = a_{ij}$ for each j > 0. Let k be a natural number. By 2 we have $(Q^i)^{(k)} = \sum_{j=1}^k a_{ij}b_{jk}$. Since $a_{ij} = 0$ for j > i and $b_{jk} = 0$ for j > k, we have also $(Q^i)^{(k)} = \sum_{j=1}^i a_{ij}b_{jk}$. Now we observe that $\varrho((Q^i)') = ((Q^i)', \ldots, (Q^i)^{(n+1)})$.

- 5. Lemma. Let L be a linear subspace of P. Suppose that the following holds:
- (2) For each $y \in L$ and each $z \in \mathfrak{P}$ we have $yz \in L$.
- (3) If $z \in \mathfrak{P}$ and $zQ' \in L$, then $z \in L$.

Let F be given by (1) and let $F((Q^i)') \in L$ for i = 1, ..., n. Then

- (4) $F((Q^{n+1})') (n+1)! (Q')^{n+1} S_n \in L$. If, moreover,
- (5) $F((Q^{n+1})') \in L \text{ or } S_n \in L,$ then $S_j \in L \text{ for } j = 0, ..., n.$

Proof. Set $S = (S_0, ..., S_n)$. By 4 we have $F((Q^i)') = \varrho((Q^i)') S = \sum_{j=1}^{i-1} a_{ij}(b_j S) + i! (b_i S) (i = 1, ..., n + 1)$. We see that $b_1 S \in L$; by (2) we have $b_2 S \in L$, ..., $b_n S \in L$ and $F((Q^{n+1})') - (n+1)! (b_{n+1} S) \in L$. Clearly

$$b_i S = (Q')^i S_{i-1} + \sum_{j=i+1}^{n+1} b_{ij} S_{j-1}.$$

Choosing i = n + 1 we get (4). Now it follows from (3) and (5) that $S_n \in L$, $S_{n-1} \in L$, ..., $S_0 \in L$.

6. Lemma. Let L be as in 5. Let α_j , $\beta_j \in \mathfrak{P}$ (j = 0, ..., n), $G(y) = \sum_{j=0}^n y^{(j)} \alpha_j$, $H(y) = \sum_{j=0}^n y^{(j)} \beta_j$ $(y \in \mathfrak{P})$. Let $G((Q^i)') \in L$, $H((Q^i)') \in L$ for i = 1, ..., n. Then $(\alpha_n H - \beta_n G)(y) \in L$ for each $y \in \mathfrak{P}$.

Proof. Set $F = \alpha_n H - \beta_n G$. Then we have (1) with $S_n = 0$. Clearly $F((Q^i)') \in L$ for i = 1, ..., n and, by 5, $F(y) \in L$ for each $y \in \mathfrak{P}$.

7. Notation. Let v = (0, ..., 0) (n + 1 terms). For each $(n + 1) \times (n + 1)$ -matrix Z with rows $z_0, ..., z_n$ let Z^* be the matrix with rows $v, z_0, ..., z_{n-1}$. For each $f \in \mathfrak{P}$ let E(f) be the matrix with entries e_{ik} , where $e_{ik} = 0$ for k < i and $e_{ik} = \binom{k}{i} f^{(k-i)}$ for $k \ge i$ (i, k = 0, ..., n). Let I be the $(n + 1) \times (n + 1)$ identity matrix and let w be its last row. Further let

$$M = n E(Q') - (E(Q))^* + QI^*$$
.

Let $m_0, ..., m_n$ be the rows of M. For each $y \in \mathfrak{P}$ let $\Phi(y)$ be the determinant with rows $m_0, ..., m_{n-1}, \varrho(y)$.

8. Lemma. Let $f, g \in \mathfrak{P}$. Then $\varrho(fg) = \varrho(f) E(g)$, $\varrho(f'g) = \varrho(f) (E(g))^* + f^{(n+1)}gw$; in particular, $\varrho(f') = \varrho(f) I^* + f^{(n+1)}w$. (The easy proof is omitted.)

9. Lemma. M is an upper triangular matrix with diagonal entries (n - k) Q'(k = 0, ..., n); in particular, $m_n = v$.

Proof. Let H = E(Q) - QI. Then $H = (h_{ik})$ is an upper triangular matrix with $h_{kk} = 0$ (k = 0, ..., n) and $h_{k-1,k} = kQ'$ (k = 1, ..., n). Obviously $M = n E(Q') - H^*$ from which our assertion follows at once.

10. Lemma. Let $f \in \mathfrak{P}$. Then $\Phi(nfQ' - f'Q) = -Q \Phi(f')$.

Proof. By 8 we have $\varrho(nfQ'-f'Q)=n\,\varrho(f)\,E(Q')-\varrho(f)\,(E(Q))^*-f^{(n+1)}Qw=$ = $\varrho(f)\,M-Q(\varrho(f)\,I^*+f^{(n+1)}w)=\varrho(f)\,M-Q\,\varrho(f')$. Since, by 9, we have $m_n=$ = $\nu,\,\varrho(f)\,M$ is a linear combination of the rows m_0,\ldots,m_{n-1} . This easily implies our assertion.

11. Lemma. We have $\Phi((Q^i)') = 0$ for i = 1, ..., n. If we define V_i by

(6)
$$\Phi(y) = \sum_{j=0}^{n} y^{(j)} V_j \quad (y \in \mathfrak{P}),$$

then

$$(7) V_n = n! (Q')^n.$$

Proof. We may suppose that n > 0. If we choose f = 1 in 10, we get $\Phi(Q') = 0$. Now, if i < n and $\Phi(Q^i) = 0$, we set $f = Q^i$ in 10 and we get $\Phi(Q^{i+1}) = [(i+1)/(n-i)] \Phi(nQ^iQ^i - iQ^{i-1}Q^iQ) = 0$. It is obvious that V_n is a triangular determinant with diagonal entries $(n-k)Q^i(k=0,...,n-1)$. This completes the proof.

- **12.** Convention. In sections 13 and 14 we define mappings Ψ and Λ . The reader can prove easily that theorems 13 and 14 hold, if n=0 or Q'=0. (If n=0, then $\Phi(y)=\Psi(y)=\Lambda(y)=y$; if Q'=0 and n>0, then $\Phi(y)=\Psi(y)=\Lambda(y)=0$ ($y\in\mathfrak{P}$).) Therefore in the corresponding proofs we will suppose that n>0 and that Q is not constant. Then (3) holds with $L=\{0\}$.
- 13. Theorem. For each $y \in \mathfrak{P}$ let $\Psi(y)$ be the determinant with rows b_1, \ldots, b_n , $\varrho(y)$ (see 3). Let T_j be defined by

(8)
$$\Psi(y) = \sum_{j=0}^{n} y^{(j)} T_j.$$

Then

(9)
$$\Psi((Q^i)') = 0 \text{ for } i = 1, ..., n$$

and

(10)
$$n! \Psi = (Q')^{\binom{n}{2}} \Phi.$$

Proof. The relation (9) follows from 4. It is easy to see that T_n is a triangular

determinant with diagonal entries $Q', ..., (Q')^n$. Let (6) hold. By 11 and 6 with $L = \{0\}$ we have $V_n \Psi = T_n \Phi$. This combined with (7) yields (10).

14. Theorem. For each $y \in \mathfrak{P}$ let $\Lambda(y)$ be the Wronskian of the functions Q', $(Q^2)'$, ..., $(Q^n)'$, y. Let Ψ be as in 13. Then $\Lambda = \Psi \prod_{k=1}^n k!$.

Proof. Let A, B, C be matrices with entries a_{ik} , b_{ik} , $(Q^i)^{(k)}$ (i, k = 1, ..., n). By 4, where we take n-1 instead of n, we have C = AB. Let us define W_j by $\Lambda(y) = \sum_{j=0}^n y^{(j)}W_j$ and let (8) hold. Then det $A = \prod_{k=1}^n k!$, det $B = T_n$ and $W_n = \det C = \det A \det B$. Clearly $\Lambda((Q^i)') = 0$ for i = 1, ..., n. By (9) and 6 with $L = \{0\}$ we have $T_n \Lambda = W_n \Psi$ which easily implies our assertion.

- 15. Conventions, notation. In what follows we suppose that Q is a polynomial that is not identically zero and has no multiple roots (so that it is relatively prime to Q'). If $f, g \in \mathfrak{P}$, then the relation $f \equiv g$ means that f g = hQ for some $h \in \mathfrak{P}$. Let $\mathfrak{B} = \mathfrak{B}_n$ be the set of all mappings $F \in \mathfrak{F}_n$ such that $F((Q^i)') \equiv 0$ (i = 1, ..., n). Let $\mathfrak{B} = \mathfrak{B}_n$ be the set of all mappings $F \in \mathfrak{B}_n$ for which $F((Q^{n+1})')$ is relatively prime to Q.
- **16.** Lemma. Let $F \in \mathfrak{B}$ and let (1) hold. Then $F \in \mathfrak{W}$ if and only if S_n is relatively prime to Q.

Proof. We set $L = \{ y \in \mathfrak{P}; y \equiv 0 \}$ in 5 and apply (4).

17. Theorem. The mappings Φ , Ψ and Λ are elements of \mathfrak{B} .

Proof. By (7) and 16 we have $\Phi \in \mathfrak{W}$. Now we apply 13 and 14.

18. Lemma. Let $F \in \mathfrak{B}$, $f \in \mathfrak{P}$. Then $F(nfQ' - f'Q) \equiv 0$.

Proof. Let (1) and (6) hold and let $L = \{y \in \mathfrak{P}; y \equiv 0\}$. Set y = nfQ' - f'Q. By 6 and 10 we have $V_n F(y) \equiv S_n \Phi(y) \equiv 0$ and, by 11, V_n is relatively prime to Q. Thus $F(y) \equiv 0$.

19. Lemma. Let n > 0, $F \in \mathfrak{M}_n$. Set G(y) = F(yQ) - QF(y) $(y \in \mathfrak{P})$. Then $G \in \mathfrak{M}_{n-1}$.

Proof. Let (1) hold. It is obvious that there are $C_j \in \mathfrak{P}$ such that $G(y) = \sum_{j=0}^{n} y^{(j)} C_j$. Since $C_n = S_n Q - Q S_n$, we have $G \in \mathfrak{F}_{n-1}$. Now we observe that $G((Q^i)') \equiv (i/(i+1)) F((Q^{i+1})')$ for each positive integer i.

20. Lemma. Let $F \in \mathfrak{B}_n$, $P \in \mathfrak{P}$. Let P/Q^{n+1} have a rational primitive. Then $F(P) \equiv 0$.

Proof. It is well-known that there is an $f \in \mathfrak{P}$ such that $P/Q^{n+1} = (f/Q^n)'$; thus P = f'Q - nfQ'. By 18 we have $F(P) \equiv 0$.

21. Lemma. Let $F \in \mathfrak{W}_n$. Let $P \in \mathfrak{P}$, $F(P) \equiv 0$. Then P/Q^{n+1} has a rational primitive.

Proof. It is easy to see that the assertion holds, if n=0. Now let k be a natural number such that the assertion holds for n=k-1. Let $F \in \mathfrak{W}_k$, $P \in \mathfrak{P}$, $F(P) \equiv 0$. There are $f, g \in \mathfrak{P}$ such that P = kfQ' - gQ. Set $P_1 = kfQ' - f'Q$, $P_2 = f' - g$. Then $P = P_1 + QP_2$. By 18 we have $F(P_1) \equiv 0$ so that $F(QP_2) \equiv 0$. Let G be as in 19. Then $G \in \mathfrak{W}_{k-1}$ and $G(P_2) \equiv 0$ so that, by induction assumption, P_2/Q^k has a rational primitive. Obviously $P_1/Q^{k+1} = (-f/Q^k)'$ and $P/Q^{k+1} = P_1/Q^{k+1} + P_2/Q^k$. Therefore the assertion holds also for n=k.

22. Theorem. Let $P \in \mathfrak{P}$, $F \in \mathfrak{W}_n$. Then P/Q^{n+1} has a rational primitive if and only • if $F(P) \equiv 0$.

(This follows at once from 20 and 21.)

Remark 1. It is very easy to construct the matrix $M = (m_{ik})$ by means of which the mapping Φ has been defined. We have $m_{ik} = \beta_{ik}Q^{(k-i+1)}$, where $\beta_{0k} = n$ and $\beta_{ik} = n \binom{k}{i} - \binom{k}{i-1}$ for i = 1, ..., k (k = 0, ..., n); in particular, $\beta_{kk} = n - k$. The numbers β_{ik} with 0 < i < k can be obtained from the obvious relations $\beta_{r,s+1} = \beta_{rs} + \beta_{r-1,s}$ $(1 \le r \le s; s = 1, ..., n-1)$. Moreover $\beta_{in} = n \binom{n}{i} - \binom{n}{i-1} = \binom{n}{i-1} [n(n-i+1)-i]/i = \binom{n}{i-1} [(n-i)(n+1)]/i = \binom{n+1}{i}(n-i)$ (i = 1, ..., n). Thus, if n + 1 is a prime, the numbers $\beta_{1n}, ..., \beta_{nn}$ are its multiples. For example, if n = 4, $\Phi(y)$ is the determinant

$$\begin{bmatrix} 4Q' & 4Q'' & 4Q''' & 4Q^{(4)} & 4Q^{(5)} \\ 0 & 3Q' & 7Q'' & 11Q''' & 15Q^{(4)} \\ 0 & 0 & 2Q' & 9Q'' & 20Q''' \\ 0 & 0 & 0 & Q' & 10Q'' \\ y & y' & y'' & y''' & y^{(4)} \end{bmatrix}.$$

Now let n be an arbitrary natural number. It follows from the definition of a determinant that $\Phi(y)$ is the sum of terms of the form

(11)
$$cQ^{(k_0-0+1)}Q^{(k_1-1+1)}\dots Q^{(k_{n-1}-(n-1)+1)}y^{(k_n)},$$

where c is an integer, $\{k_0, k_1, ..., k_n\} = \{0, 1, ..., n\}$ and $k_i \ge i$ for i = 0, ..., n. Let us write $k_n = j$. Since $\sum_{i=0}^{n} (k_i - i) = 0$, we have $\sum_{i=0}^{n-1} (k_i - i + 1) + j - n + 1 = \sum_{i=0}^{n} (k_i - i + 1) = n + 1$ so that $j + \sum_{i=0}^{n-1} (k_i - i + 1) = 2n$. Hence (11) can now be expressed also in the form $cy^{(j)}(Q')^{j_1}(Q'')^{j_2...}(Q^{(n+1)})^{j_{n+1}}$, where j, are nonnegative integers, $j_1 + ... + j_{n+1} = n$ and $j + j_1 + 2j_2 + ... + (n+1)j_{n+1} = 2n$. We see that the expressions V_j defined by (6) have the form described in the introduction.