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Summary. A fractional linear transformation, mapping the unit disc into itself, gives rise to
a weighted composition operator on the Hardy space H2. Such operators have been recently
used in [11] in connection with an extremal problem from operator theory. In this paper, we
investigate the basic properties of these operators and determine their spectra. The results can
be compared to those for unweighted composition operators on various spaces [11. [3], [5].
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In the present paper we investigate the relation between a fractional linear trans-
formation
az+ b
cz+d’

ab

cd
defined on H? by the formula

(m()1) () = —— o4 (2) .

o(A): z>

given by a matrix 4 = ), and the corresponding composition operator m(A)

Operators of this form have been recently used by V. Ptk [11] to obtain an
explicit expression for the operator realizing the maximum of | T"| as T ranges over
the set of all contractions on n-dimensional Hilbert spaces such that the spectral
radius of T does not exceed a given bound r < 1. It turns out that the maximum is
attained for the operator

S* | Ker (S* — a)",

where S is the shift operator on H? and o is a number of modulus r. The mapping
A+ m(A) was used to express this extremal operator as a matrix with respect to an
orthonormal basis in H?. Besides, some basic properties of the operators m(A4)
(inverses, adjoints, etc.) were established.

The present paper is devoted to a deeper study of the operators m(A4). For their
definition to be meaningful it is, of course, necessary that ¢(A4) map the open unit
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disc D into itself. It is not difficult to give a description of the corresponding matrices
A; this is done in Section 1. The result is that ¢(A) (D) = D if and only if

A¥QA £ |det 4] Q,

0 being the matrix ((1) _?) . In Section 2, the operators m(A) are defined and shown

to be bounded on H?2. In Section 3, a criterion for compactness is established. The
operator m(A) is compact if, and only if, ¢(A) (D) is bounded away from the bound-
ary of D. Sections 4— 10 are concerned with the spectra and the spectral radii of the
operators m(A). It turns out that these depend on the position of ¢(A4) (D) as a subset
of D, as well as on the number and location of the fixed points of the mapping ¢(4).
When ¢(A) is a Mébius transformation of D onto D, the spectrum of m(4) is either
a finite set (when ¢@(A) is periodic) or a circle; the latter fact follows from a result
of Kitover [10]. In other cases, the spectrum may assume various forms: it can
be a sequence of numbers tending to zero, or a disc, or even a spiral approaching
the origin. These sections are mostly technical in character and the final results are
stated in full detail at the end of this article as Theorems 10 and 11.

The operators m(A4) are examples of weighted composition operators on H?,
i.e. composition operators followed by a multiplication. Operators of this type,
acting on the disc algebra A(D) rather than H?, were first studied by Kamowitz
[6], [7]. who gave conditions for compactness and, in some cases, determined their
spectra. Kitover [10] studied such operators on general spaces of analytic functions
in the case when the composition operator is invertible (weighted automorphisms).
In the context of the present paper, his results apply to the case when ¢(A4) maps D
onto D. Unweighted composition operators on H?* (or, more generally, H”) as well
as A(D) have been investigated by many authors, and conditions for compactness,
nuclearity, etc., as well as descriptions of their spectra in many cases, are known;
see, for instance, [3], [5] and [1], where also more of the rich bibliography on this
subject can be found. The work of Kitover [9] deals with composition operators on
spaces of continuous functions. Many papers are devoted to the study of composition
operators (both weighted and unweighted) on Banach algebras, of which we mention
[6] and [8] as examples.

1. FRACTIONAL LINEAR TRANSFORMATIONS

4
Let A = k? Z) be a regular 2x 2 complex matrix. Then the fractional linear
transformation

az + b
cz +d

o(A): z >
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is a 1-to-1 mapping of the Gaussian sphere G = C U {o0} onto itself. A short com-
putation reveals that, for 4, B regular 2 x 2 matrices,

o(4) ¢(B) = #(4B),
o(B™) = (B,
¢(A) = ¢(B)<> A = tB forsome teC\{0}.

M = {(_;‘Z] —aa(ql> |hl = 1, I(X| < 1, q = (1 . Iall)—l/z} )

We see that for M € .4, ¢(M) is a Mébius transformation of D, the unit disc, onto
itself; clearly every Mobius transformation can be expressed in this way. Also, a short
computation gives

M*QM = Q forall MeJ/,

Q=<é _‘1’)

Our next task is to determine when ¢(4) (D) = D.

Let

where

Theorem 1. Let A be a regular 2 x 2 complex matrix. Then the following as-
sertions are equivalent:

(1) o(4)(D) = D
(2) 4*QA < |det A]. Q
(3) 3t > 0: A*QA4 < 1Q.

Proof. (1) = (2). Suppose ¢(4)(D) = D. Because ¢(A4) (D) is a disc, there are
three possibilities: either it lies inside D, or it touches the boundary 0D at exactly
one point, or it is the whole of D.

If p(A) (D) lies inside D, then there exists a M&bius transformation (M), M e
such that (M) ¢(4) (D) is a disc centered at the origin. Further, there exists a M&bius
transformation ¢(N), N € ., such that o(M) ¢(4) ¢(N) (0) = 0. Denote B = MAN;;
then ¢(B)(D) is a disc centered at the origin, and ¢(B)(0) = 0. If r is the radius
of ¢(B)(D), then the Schwarz lemma applies to the function ¢(B)[r and gives
¢(B) (z) = Az for some 4, |A| = r < 1, and so

B=<A(t)(:> for some teC~\{0}. .
Now
- _ (P —fap oy
B*QB — |det B| . Q = ( , 122 — |2

(-1 B
=|t|(ll(g| )|/101)=0’
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i.e. B*QB < Q|det B|. Using the relations |det A| |det B|, B = MAN and
N*QN = Q, we see that this is the same as

N*A*M*QMAN < |det A| N*QN .

Because N is invertible (N~! = QN*Q), this is equivalent to
A*M*QMA < |det 4. Q

Finally, M*QM = Q, so
A*QA < |det A]. Q

If ¢(A4) (D) is all of D, then we can proceed in the same manner as above, taking
M = I (the identity matrix). In this case we even get A*QA = |det 4| . Q.

In the remaining case, one can again choose M € . such that (M) ¢(A) (D) =
= {zeC||z — 1/2| < 1/2}, and then N € .# such that (M) ¢(A4) ¢(N) (0) = 1/2.
Denoting B = MAN, the Schwarz lemma applies to the function 2 ¢(B) — 1 and
gives

(p(B) (z) _ e+ 1

for some ¢ € 0D, so

&t
B_(02t) for some teC~\{0},

and, again
B*QB — |det B| Q = ]t|2<—: _i) <0,
which implies A*QA4 < Q|det A| just in the same way as in the preceding cases.
(2) = (3). Trivial.
(3)=(1). ForzeC,let x, = (i) . By assumption, we have

(A*QAx,, x,» < KK0x,,x,» VzeC.
If zeD, then

1{0x, x> =1t(|z]>* - 1) < 0,
and so ‘

0 > (A*QAx,, x,> = (QAx,, Ax,) = |az + b|* — |z + d|*.

This implies ¢z + d + 0 and
az + b

d‘z 1=l @ ~ 1, ie. o(4)(z)eD.

0>
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This completes the proof of Theorem 1.
By slight variations in the proof above, it is possible to prove the first four as-
sertions of the following theorem. The fifth is a consequence of the first four.

Theorem 2. Let A be a regular 2 x 2 complex matrix. Then
¢(4) (D) = D < A*QA < Q|det A ;
#p(A) (D) > D <> 4*Q4 = Q|det A| ;
¢(A) (D) =« G\D <« A*QA = —Q|det 4] ;
¢(4) (D) > G\ D <> 4*QA < — Q|det 4] ;
[the set G~ (p(0D)u dD) has four connected components| <> both A*QA +
+ Q|det A[ are indefinite.

Remark. For A singular, 4 + 0, the mapping ¢(A4) can be defined, too. It will
be a constant function (the constant infinity is also allowed). One can then prove the
following modification of Theorem 2:

Theorem 2. Let A % 0 be a singular 2 X 2 complex matrix. Then
o(4)(D) =D <= A*QA<0;
¢(4)(D) = 0D <> A*QA = 0 ;
¢(4)(D) =« G D < A*QA = 0.

We omit the easy proof of this theorem, as it will not be used in the sequel.

2. COMPOSITION OPERATORS

cd
For a function f on D, define

(m(4)1) (z) = — f("z & b)

cz+d cz+d)

Let A = (a b) again be a regular 2 x 2 matrix and suppose that ¢(4) (D) = D.

This is also a function on D, which is analytic on D if f is. In fact, a little more is
true:

Theorem 3. Let A be a regular 2 x 2 matrix such that ¢(A)(D) = D. Then
m(A) is a bounded linear operator on H>.

Proof. For any function f on D,

1 = ir\|2 -
| 10m) ) e 0 =
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B 1‘.[ n| ie'tl‘+ dpP’ | f(o(A) (re))[* dt =

§vmVMﬁ

where T, is the closed curve {p(re™)|1e<0,2n)} and ds(y) is the line element
on T

r

2m|d t Al

ds(y) = Idgq)(re“) dt = |¢'(re) rie’| dt = _EALT g
t

Now if f € H?, then |f|* has a harmonic majorant u on D, and so

§rmwmm§§ummm.

By the mean value theorem for harmonic functions, the last integral equals
(length of T,) u(y,) ,

where 7y, is the center of I'(I, is a circle). Combining the above results and letting r
tend to 1, we get
(lengthof I'y)

“m(A)f”'Zf = 2ﬁ]d tAl

u(y,).

Because u is harmonic on [0, Harnack’s inequality gives

) s - E o)

= |n
finally, u can be chosen so that u(0) = | f|f;>. Summing up, we see that

(1) |m(4) f]z. < (length of ¢(A) (6D)) 1 + |center of ¢(4) (0D)]

2n|det A| "1 — |center of ¢(4) (D)

[N

which completes the proof of Theorem 3.
Before going on, we list some properties of the operators m(4). In everything what
follows, these operators are considered as operators on H2.

Proposition 4. Let A, B be regular 2 x 2 complex matrices.
(i) If ¢(4) (D) = D and ¢(B)(D) = D, then also p(4B)(D) = D and m(AB) =
= m(B) m(A).
(ii) If ¢(A4) (D) = D and p(A™*)(D) = D, then m(4™*') = m(A)~".
(iii) If M € M, then m(M) is unitary.

Proof. (i) ¢(4B)(D) = D because ¢(4B) = ¢(A4) ¢(B); the formula m(AB) =
= m(B) m(A) follows after a short computation.
(ii) Take B = A~ " in (i).
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(iii) If Me.#, then |det M| = 1, (M)(D) = D and ¢(M) (D) = D, so the
formula (1) gives |m(M)| < 1. Because M e./# implies M~' e .#, we have also
|m(M~")| < 1. Finally, m(M~"') = m(M)~", so m(M) is an invertible isometry
and hence it is unitary.

3. COMPACTNESS

Now we are ready to establish a criterion for compactness of the operators m(A).

Suppose ¢(4)(D) = D. Looking at the beginning of the proof of Theorem I,
we see that there always exist M, N € .# such that MAN =% B =" tB,, where
te C\{0] and B, is

cither (6 ?) 2] <1, or (e(/)z 147_)’ =1,

depending on whether ¢(4)(D) lics inside D (]| < 1) or is all of D (|4 = 1), or
touches ¢D at one point. According to Proposition 4, m(B) = (1/t) m(B,) =
= m(N) m(A) m(M) with m(N) and m(M) unitary. It follows that m(A) is compact
if and only if m(B,) is.

Let us first dispose of the second case. We have B, = B,B,, where

(=0 . (1212
(). m(213)

It follows that m(B,) = m(B,) m(By), with m(B,) unitary (because B, € .#); hence, it
suffices to consider the case ¢ = 1. Then

(MWﬁ@:f(+ﬁ.

2

Ror Rez < 0, let arg z be the branch of the argument which takes its values in
(m/2, 3n/2). Denote

g(z)=In|z — 1] +iarg(z — 1),
and

fAz) = exp(xg(z)), xeC.
If o € 0, + o0), we have
|f(z)] = exp Re (x g(2)) = |z — 1]* £ 2* forall zeD,

so f,€ H® < H?; furthermore,

<”WM@=ﬂ(§§=WP4%?ﬂ=

=expafg(z) — In2] = e 2 f,(2).
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This means exp (—«In 2) e o,(m(B,)). As o runs through (0, + %), exp (—x1In 2)
runs through (0, 1). So <0, 1> = o(m(B,)) and m(B,) cannot be compact. (We
remark that what we have just done was exhibiting some quite elementary solutions
to Schroeder’s“equation

f(z_;l)=,lf(z), zeD;

for an exhaustive treatise on this matter, see [2], especially Proposition 4.4.)

Now let B, = (é (1)) If |4] = 1, then B, € # and, in view of Proposition 4, m(B,)

is unitary, i.e. not compact. We are going to show that for |/| < 1, m(B,) is compact.

Assume f, € H?, f, - 0 weakly. Any weakly convergent sequence is bounded,
50 ||f,]. £ ¢ for all n, for some ¢ > 0. For x € D, denote by g.(z) = (1 — Xz)~' the
reproducing kernel at x. Then f, - 0 implies f,(x) = {f,. g.> = 0 for every x € D.
If |x| = lll then

_ _ c
0] = 160 02| £ U0 sl el = s

Thus one can use the Lebesgue dominated convergence theorem to conclude that
2n
Im(Bo) £, = = | |12 dt - 0.
2 J o

Thus the operator m(B,) maps weakly convergent sequences into norm convergent
ones, and so must be compact.
Summing up, we have proved

Theorem 5. Let A be a regular 2 x 2 matrix, p(A) (D) = D. Then m(A) is a com-
pact operator if and only if cl(p(4) (D)) = D.

Remark. This theorem may be compared with Theorem 1 of Kamowitz [6]
which yields a similar criterion for compactness of operators m(A) acting on A(D),
the disc algebra.

4. SPECTRAL PROPERTIES

The rest of this paper is devoted to spectral properties of the operators m(4). The
results somewhat resemble those for common (unweighted) composition operators
on H?, cf. [3] or [5], for example.

Let A = (? Z) be a regular 2 x 2 complex matrix such that ¢(4)(D) < D.

There are four cases to distinguish:
First case: cl(¢(4)(D)) = D;
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Second case: ¢(A4) (D) touches dD at exactly one point, which is not a fixed point
of o(4);

Third case: ¢(A) (D) touches 0D at exactly one point, which is a fixed point of ¢(A);

Fourth case: ¢(A4)(D) =

We are going to determine the spectra in all four cases; that is the contents of
Sections 5—8, respectively. The fourth case is made easier by a theorem of Kitover
[10], combined with the known results about composition operators on H*.

The following fact will be frequently used in the sequel: if ¢ is a nonconstant
fractional linear transformation, different from the identity, then it has exactly one
or two fixed points in G.

5. FIRST CASE

cl(p(4)(D)) = D. In this case, ¢(A) has a fixed point z, in D; namely, {z,} =

= () cl p(A)" (D). We assert that it has one more fixed point in G; it is a consequence
1

of the following lemma.

Lemma 6. If ¢ is a nonconstant fractional linear transformation having only
one fixed point and ¢(K) = K for some open disc K in G, then the fixed point lies in
0K.(By an open disc in G, we mean an open disc in the complex plane, or its exte-
rior in G, or an open half-plane.)

Proof. We can suppose the fixed point to be co. Because it is to be the only fixed
point, ¢(z) = z + b V= e C, for some be C, b # 0. Now ¢(K) = K clearly implies
that K must be a half-plane, and so oo € 0K.

Because z, € D and ¢(A4) (D) = D, we see that ¢(A4) (which is not the identity) has

exactly one more fixed point, z,, in G; clearly z, ¢ D. Denote Q = U (p(A) " (D);
this is an open subset of G.

Lemma 7. Q = G\ {z,].

Proof. Choose a fractional linear transformation ¢ sending 0 into z, and oo
into zy, and let ¢ = ' ¢(A) Y. Then ¢ has 0 and oo as fixed points, so it has the
form ¢(z) = az, aeC, a # 0. Also cl 9(K) = K, where K = ¢y~ '(D) is some open

disc containing 0; this forces |a| < 1. Now it is already clear that () ¢ "(K) =
G \ {00}, which establishes the lemma. B

Now we are ready to determine a(m(A)). By Theorem 5, m(A) is compact, so
o(m(A)) = zero plus all nonzero eigenvalues. So, let us pick 2 # 0 and try to find
an f e H? such that

() ()——(C~ )f(<p(A)(z)) VzeD.
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Suppose first ¢ + 0,50 z; + oo. We assert, via the relation (2), that f admits a holo-
morphic continuation to @, which is G\ {z,} by the preceding lemma. The only
problems could arise when ¢z + d = o or ¢z + d = 0. Because ¢(A4) (—d/c) = oo,
the former occurs first. So suppose f is already defined in a neighbourhood of
¢(A4) (o0) = afe; then
1 f(alc)

im ——— f(p(A4) (z)) = —"= =0,

o Alcz + d) (el4) (=) 0
and by the Riemann removable singularities theorem we can define f(0) = 0 and f
will be analytic in a neighbourhood of co. Furthermore, as f(o0) = 0, a finite limit

L f(o(4) (2)

lim —
2 -djc Acz + d)

exists and f(—d/c) can be defined to be this limit.
Thus we arrive at a function f, holomorphic on Q = G\ {z,}, satisfying (2) there,
and with f(o0) equal to zero. Define

Zo — yz
F(y) = f (LL) ,
L—-y
Then F is holomorphicin G \ {00} = C (i.e. F is an entire function), F(1) = f(«0) =
= 0 and (2) can be transcribed into the form

AF(y)(czg + d) IT_—Q}—) = F(oy) forall yeC,

where ¢ = (cz; + d)/(cz, + d). Because F(1) =0, G(y) = F(y)/(L — y) is also an
entire function and satisfies

Mezy + d) G(y) = Glay).
Comparing the Taylor coefficients on both sides, we see that G(y) = )" and 1 =
= 0"[(czo + d) = (czy + d)"[(czo + d)"*'. Going back, we get

1(2) = (zo — z1) (z — zo)"
(- 2"
which belongs to H? (even to H®), because z, ¢ D. So the nonzero eigenvalues of
m(A) are precisely the numbers (cz; + d)"/(czo + d)"*', n =0,1,2,....
It remains to treat the case ¢ = 0. This time z; = oo; proceeding in the same way
as before, one can show that f possesses an analytic continuation to all of C and the
function F(y) = f(z, — y) satisfies

AF(y) = 5F<§y>, forall yeC.

)

Comparing the Taylor coefficients gives f(z) = (z, — z)", which belongs to H* and
the corresponding eigenvalue is A = a"[d"*".
This completes the discussion of the first case.
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6. SECOND CASE

¢(A) (D) touches 4D at one point — say, t — and ¢(A) (¢) # 1. Then cl ¢p(4)* (D) =
< D, and what we know about the . first case” applies to ¢(A4): the operator m(A4)?
is compact, and so its spectrum, and, consequently, the spectrum of m(A4), consists
of zero plus the eigenvalues. If Af = m(A)f, 2 # 0, then m(A)* f = A*f, and so f
must be

(f_q_— z1) (2 - 2o)"

oy (z = =),
where z, z; or z,, o0, respectively, are the fixed points of <p(A)2. and z, € D. Putting
these expressions into m(A) f = Af yields
A= ez, & dff or A=-2_.
(czp + d)**1 drtd

Finally, {z,} = N clo(4)* (D) = N el p(A) (D), so =, is a fixed point of ¢(A) as
1 1

well; by Lemma 7, ¢(A) has exactly one more fixed point. Because this will be also
a fixed point for ¢(A4)?, it must be z, (or o0). Thus, we conclude that z, and =, (or )
are the fixed points of (p(A) and we see that the result is the same as for the , first
case”.

7. THIRD CASE

¢(A) (D) touches oD at exactly one point 7, and ¢(A4) (1) = 1.

Without loss of generality, we may assume t = 1. Indeed, if M ¢ .4 is such that
o(M) (1) = 1, then o(MAM™") falls into the ,third case” with t = 1, and the
operators m(A) and m(MAM ') are unitarily equivalent by Proposition 4.

Further treatment differs, depending on whether ¢(A4) has one or two fixed points.

I. Suppose ¢(A) has two fixed poirts, 1 and z, + 1; clearly z, ¢ D. Let xe D and
eq & _ 1+ 4
&g q 1+ a

Then M € .#, and so m(A)and m(MAM ~") are unitarily equivalent. Also p(M) (1) =
= 1. If we show that ¢p(M)(z,) = o for some o€ D, then we can assume, without
loss of generality, that z; = co. That is the contents of the following lemma.

Lemma 8. If z, ¢ D, then there exists « € D such that (M) maps z, into ®.

Proof. It suffices to prove that, while o runs through D, ¢(M) (o) runs through
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all of G\D; a moment’s thought reveals that this is equivalent to showing that
(M) (0) runs through all of D as « does. Denote

L+E, .

1+«

0(M) (0) =

Let C, be the circle |z| = r; we shall show that y(C,) covers all of C,, for every
re <0, 1). r = 0 is trivial; so let r > 0. Because y(C,) = C,, it suffices to show that
Ind,,, 0 # 0. But this index equals

1 de_ L -
21 ) i,y x  2mi) e, (r+ 2)(1 + r2)

_ 2
= Res,__, L !

(r+z)(1+rz):I

We have made use of the fact that y(y) = (1 + (r?/y))/(1 + y).y if |[y| = r, and
performed the substitution x = Y(rz) = (r* + rz)/(1 + rz). This proves the lemma.
8 a —?—b)’ wA)z) =
= (az + b)/(a + b) = 1 + (af(a + b))(z — 1), and ¢(4) (D) = D forces ¢ € (0, 1),
where ¢ = af(a + b). Define the functions f,(z), univalent branches of (z — 1)*
on D, in the same way as at the beginning of Section 3. Just as before, one can show
that m(A) f, = 4,f, with

So we may suppose z; = oo. This implies that A =

i, = ] exp («1n o).
a+b

A routine argument shows that f, € H> whenever Re « < —1/2. If & runs through
this half-plane, 2, runs through the disc with center at the origin and radius
_ 1

la(a + b)]'/?
Iterating ¢(A) gives p(A)"(z) = 1 + o"(z — 1), so ¢(A)"(D) is the disc centered
at 1 — o" with radius ¢". Using the estimate (1) for the norm, we have

2r 0" ‘1+(1—g")§ 2
2n|det A" 1 — (1 — ") |det A"

~-1/2
Q/

a+b

= |det 4|12,

[m(ay | =

and the formula for the spectral radius gives
spectral radius of m(A4) < |det A|7'/%.
Summing up, we see that in this case
a(m(A4)) = Idet A" D,

i.e. the spectrum is a disc centered at the origin.
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II. It remains to consider the case when ¢(4) has only one fixed point (namely, 1).
Let y¥(z) = 1/(1 — z); then Y ¢(A4) Y " has oo as the only fixed point, and so it is
the translation by a nonzero vector b € C. Thus

1 1

(p(A)(z)—1=z—1+b’
and
O =R s,

The requirement ¢(4) (D) < D forces Re b < 0.
For the determination of the spectrum, we will employ the argument adopted
from Cowen [1, page 102]. First note that (3) implies

1+b -=b
(3a) A—t(b 1—b)
for some teC, t + 0. Because m(A[f) = t m(A), it suffices to consider the case
t = 1. Then the matrices

<1+b —-b

__def
b 1—b)_ A,, Reb <0,

satisfy A, p, = Ay, - Ap,, i.e. they form a multiplicative semigroup, isomorphic,
under the correspondence b « A4,, to the additive semigroup of all complex numbers
with negative real parts. It follows that the operators m, =%"m(4,), Re b < 0,
also form a commutative semigroup: my, 5, = My, . My,.

Lemma 9. The semigroup m, is norm-holomorphic (i.e. b+ m, is a norm-
holomorphic operator-valued function).

Proof. By [4, page 93], Theorem 3.10.1, it suffices to show that for any f e H?
and x € D the function

b <mbf’ gx)

is analytic in the left half-plane. Here, as before, g,(z) = (1 — Xz)™! is the repro-
ducing kernel. Now observe that

— _ 1 Q+b)x-0>b
it gy = (maf) (x) = bx + (1 — b)f(bx 4 {1~ b))’

which is certainly analytic in b for any xe D. Q.E.D.

Consider the norm-closed subalgebra € of #(H?) generated by the m,’s, Re b < 0,
and the identity. This is a commutative Banach algebra, and so, according to the
Gelfand theory,

(4) a(my) = {A(m,): A is a multiplicative lin. functional on %} .
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Fix such a A4 and consider the function A(b) =% A(m,). By Lemma 9, this function
is analytic in the half-plane

H-={zeC: Rez <0},
and satisfies the semigroup condition
Aby + by) = Aby) A(bs) .

It follows that either A vanishes everywhere, or A(x) = e’* for some f € C. Denote
by £ the set of all beta’s that arise in this way, and add the symbol + oo to £ in case
the possibility A = 0 also occurs. Then we have

(5) o(m,) = {e/*: pe B}, forall bex,

where, for a while, we set e®® = 0 for be # and f = + .

For Re b < 0, the disc ¢(4,)(D) is contained in D and touches dD at 1, so it
must have center 1 — r, and radius r, for some r, € (0, 1). The norm estimate (1)
gives
2nr, 14+(1—rn)
2.1 1 —(1—r)
implying |A(b)| < [ 4] . [|m,] < /2 for all be #. This forces f = + o0 or f > 0, s0

B <0, +0).

[my]* < 2-r,£2,

We are going to show that this inclusion is, in fact, an equality. Let us first prove
the following lemma.

Lemma 10. For any t > 0 and be #, the operators m, and my, are unitarily
equivalent.

Proof. Just as before Lemma 8, consider the matrices
eq &g _ 1 +a
aq q 1+«
where o€ . Because M e .#, the operators m, = m(4,) and m(MA,M™") are
unitarily equivalent (Proposition 4). A few minutes’ calculation reveals that

MAM™' = 4,
with :
_ b L+ of? .
1= |of?
Now observe that as « runs through D (or, even, only through (—1, +1)), the value

by

_ |1 + of?
1= e

t
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runs through all of (0, + o0), which proves our assertion.

Suppose there exists f, € (0, +00) such that B, ¢ #. Owing to (5), exp (Bob) ¢
¢ a(m,) for all be #. According to Lemma 10, o(m,) = o(m,,) whenever t > 0;
so exp (Bob) ¢ o(m,,), and using (5) once again we conclude that f,/t ¢ . Because
this holds for every t > 0, # can contain only 0 and +oo. It follows that every
multiplicative linear functional on ¢ is either 0 on all m,’s, or 1 on all of them. But
the m,’s plus the identity generate %; so ¥ has at most two multiplicative linear
functionals. Consequently, it has dimension at most 2, which clearly is not the case.

This contradiction shows that (0, +00) = #. Looking at (5) and recalling that
a spectrum is always a closed set, we see that # = (0, +c0).

Summing up, we have shown that, for all b e 5,

o(m,) = {e/*: B0, +0)} U {0} .

8. FOURTH CASE

¢(4) (D) = D. Since no new techniques are used in this section, we will proceed
a little more briefly. Because ¢(4) is a Mdbius transformation, 4 = t4, for some
teC\{0}, Aye A, and m(A4) = (1]t) m(A,). It suffices to consider 1 =1, i.e.
A € 4. This implies m(A) is unitary and ¢(m(4)) < oD.

The easiest case to handle occurs when ¢(4) has one fixed point in D and the
other outside . Conjugating by an appropriate Mobius transformation, one can
suppose the former to be 0. Then ¢(A)(z) = &z for some ¢ € dD and a(m(4)) is
readily seen to be the closure of {¢": n = 0, 1, 2, ...}. This is either the set of all N-th
roots of unity, for some N, or the whole of dD.

The parabolic case (i.e. ¢(A) has only one fixed point in G, lying on dD) is more
difficult; it can be treated in a similar way as in Section 7 - II. We may suppose 4

to be
1+b —b
( b1 — b) , b*0,
this time with Re b = 0 (Theorem 2), i.e. b =si, se R, s &= 0. The operators
T, =" m(A4;), se R, form a commutative group of unitary operators (T, =
T,T,, T, = T_,fors, t € R). By a classical theorem of M. H. Stone (cf. [ 12], Theorem
13.37), T, = ¢“¥, where iH is the infinitesimal generator of the group {T.},x,
H* = H. Also, o(T,) is the closure of e (cf. [12], Theorem 13.27c). Looking
at the proof of Lemma 10, we see that it carries over verbatim to the present situation

and, moreover, the operator which establishes the unitary equivalence between T,
and T, depends only on ¢, not on s:

U'TU, =T, forall t>0, seR.
It follows that UfHU, = tH, and so o(H) = t o(H) for each t > 0. Thus, o(H) can
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be only {0}, <0, + o), (— 0, 0) or R. Reasoning as at the end of Section 7 rules out
the first possibility; consequently,

o(T) = 0D for seR, s+*0.

The case that remains is that ¢(A) has two fixed points, both of which lie on JD.
This case seems to be the most difficult. The fixed points may be supposed to be +1
and — 1 (this can be shown by proving an analogue of Lemma 8 — with z; € 9D \ {1}
and —1 instead of o0) and A may be assumed to be

il

A, =% (1 — r2)"172 (r 4

Now we are going to use a result of A. K. Kitover [10], which is reproduced below
for the special case X = H2, A = H*, a = 1 (consult [10] for this notation).

), re(-1,1), r+0.

Theorem. Suppose that

1. the operator % = m(A,) is bounded on H? and its spectrum lies on dD;

2. H® > B!, the space of all functions analytic on D and such that their second
derivative is square-integrable over D;

3. when f, g are functions analytic on D, B is a Blaschke product and f = By,
then fe H* <> ge H* (It would even suffice to consider Blaschke products
whose zeros are subject to some special condition, but, for our purposes, this
formulation will do.)

Then the spectrum of U is the same as the spectrum of the operator V, defined
on H® by the formula

(Vg) (z) =*"g(o(4,) (2)) -

The only assumption which is not fulfilled at first sight is, perhaps, the second;
but note that a function

f=Yaz2"
0
belongs to Bj if and only if
Yagso2(n +2(n +1) < +0,
0
and that
lf(Z) - alz - a0| = I;anznl é % |an+2| é
< (3 awsaf? (0 + 202 (n + D)2 (T (n +2)72 (n + )7
0 0
whenever z € D. So indeed, B} < H*.
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Applying the theorem and recalling that o(V) = 0D (see, for example, [8, the
second Corollary on page 269]), we conclude that, again, a(m(4,)) = dD, the same
result as when ¢(4) was parabolic.

9. THE SPECTRUM

Summing up the results from all the cases under discussion, we obtain the following
theorem.

Theorem 11. Let A = (z 3) be a regular 2 x 2 complex matrix such that

¢(4) (D) = D.
(a) If cl ¢(A4) (D) = D, then ¢(A) has two fixed points z, and z,,zo €D, z, ¢ D,

and
{0} U ez +d) o,
(czo + d)"*?

o(m(4))

or, if ¢ = 0 (and z,

),
o(m(4)) = {0} L {d:‘:l — }

(b) If ¢(A) (D) touches 3D at exactly one point t and ¢(A)(z) * 1, everything
is the same as in (a). '

(¢) If ¢(A) (D) touches oD at exactly one point t, p(A) (t) = = and ¢(A)(z) = z
for some z + 1, then

o(m(A)) = |det A|"2D.
(d) If @(A)(D) touches oD at exactly one point t, ¢(A)(z) = v and ¢(A) has
no other fixed points, then
11
o(A)(z) -t z-—1
for some q e C, Re q < 0, and
a(m(A)) = {0} U {tef%: Be <0, +o0)}

for some complex number t of modulus |det A|~'/2,
(e) If ¢(A) (D) = D and N is the smallest positive integer such that o(4)" = id,
then

+4q

a(m(A)) = t{e": n=0,1,...,.N — 1} ,

where ¢ = exp (2ni/N) and t is a complex number of modulus [det A|~1/2.
(f) If ¢(4)(D) = D and ¢(A)N * id for all N = 1,2,..., then

a(m(A)) = |det 4|71/ 0D .
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Proof. Everything is just a restatement of what has been said before, except for
the factor |[det A|~*/2 in (d)—(f). To clear up this point, note that for any M e .#

det.-A = det MAM ™!,

and so the modulus of ¢ in (3a) must be |det A|'/%; it remains to use the fact that
m(tA) = (1/t) m(A4). This settles (d). As for (e) and (f), we have ¢(4)"(D) =D
foralln =0, +1, +2,.... Consequently, the norm estimate (1) gives

2n 140 _
A2 < — 2 ="~ = |det 4|7"
Ay = 2n|det A" 1 —0 et A,

for all integers n. Hence, the spectral radius of m(A) equals |det 4| '/2. This con-
cludes the proof.

10. THE SPECTRAL RADIUS

Since we know what the spectrum of m(A) is, we can determine its spectral radius.

Theorem 12. Let A = : Z) be a regular 2 x 2 complex matrix such that
¢(A4)(D) = D. Then
(a) If cl ¢(A4) (D) = D, then ¢(A) has a unique fixed point z, in D and

1
[m(A)]s, = o+ d]

(b) If @(A)(D) touches oD at exactly one point © and ¢(A) (<) * 7, the same

conclusion as in (a) holds.
(c) If ¢(A) (D) touches oD at exactly one point © and ¢(A) (1) = 1, then

[m(A)|,, = |det 4|71/
(d) If ¢(A4) (D) = D, the the same conclusion as in (c) holds.

Proof. (a) and (b): by Theorem 11, (a) and (b),

1
o(m(A4))\ {0} = 0" n=20,1,...%,
(AN (0} = { g e |
where
=6_21Ld or Q=g (1fc=0)_
czo +d d

Because m(4) or m(A4)* is compact by Theorem 5, we have |o| < 1. This implies
sup {|¢"|: n =0, 1,...} = 1 and the result follows.
(c): Follows from Theorem 11, part (c) and (d).
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