

Werk

Label: Article **Jahr:** 1988

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0113 | log136

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CONTINUITY OF LIFTINGS

W. M. MIKULSKI, Krakow (Received February 1, 1985)

Summary. Conditions are given under which $L(M) \sigma_m(v_m)$ tend to $L(M) \sigma(v)$, where L is a lifting, M a manifold, σ_m and σ are sections defined in a neighbourhood of $x \in M$ such that $j_x^{\infty}(\sigma_m)$ tend to $j_x^{\infty}(\sigma)$, and v_m is a sequence of points over x tending to v.

Keywords: natural bundles, liftings, continuity of liftings.

AMS Classifications: 58A20, 53A55.

Let F and G be two natural bundles over n-dimensional manifolds. Let H be a natural bundle over dim (GR^n) -dimensional manifolds. ([4]). If U is an open subset of an n-manifold M, then a mapping $\sigma\colon U\to FM$ (or $\varrho\colon (\pi_M^G)^{-1}(U)\to HGM)$ of class C^∞ such that $(\pi_M^F)\circ \sigma=\operatorname{id}_U(\pi_{GM}^H)\circ \varrho=\operatorname{id}_{(\pi_{GM}^G)^{-1}(U)})$ is called a section of $\pi_M^F\colon FM\to M(\pi_{GM}^H\colon HGM\to GM)$. If M is an n-manifold, we denote by $\mathcal{F}M(\mathcal{H}\mathcal{G}M)$ the set of section of $FM\to M(HGM\to GM)$. If φ is an embedding of an n-manifold M into an n-manifold N, we define $\varphi_*\colon \mathcal{F}M\to \mathcal{F}N$ and $(G\varphi)_*\colon \mathcal{H}\mathcal{G}N\to \mathcal{H}\mathcal{G}N$ by $\varphi_*\sigma=F\varphi\circ\sigma\circ\varphi^{-1}$ and $(G\varphi)_*\varrho=(HG\varphi)\circ\varrho\circ(G\varphi)^{-1}$. With each n-manifold M we associate a mapping $L(M)\colon \mathcal{F}M\to \mathcal{H}\mathcal{G}M$, which is natural for embeddings. That is to say, for each embedding φ of an n-manifold M into an n-manifold N, we have $L(N)\circ\varphi_*=(G\varphi)_*\circ L(M)$.

A family $L = \{L(M)\}$ is called an (n, F, G, H)-lifting.

Examples. (1) Let F and H be two natural bundles over n-manifolds. Let G be the identity functor over n-manifolds. Let $D = \{D(M)\}$ be a natural differential operator ([6]) such that for each n-manifold M, D(M): $\mathscr{F}M \to \mathscr{H}M$. Then D is an (n, F, G, H)-lifting. In particular, if F is the functor of positive-defined symmetric (0, 2)-tensors and H is the functor of (p, q)-tensors, then D is called a natural tensor ([1]). Hence natural tensors are liftings.

(2) Let F be the functor of tangent bundles (or (0,0)-tensors) over n-manifolds. Let G be a natural bundle over n-manifolds. Let G be the functor of tangent bundles (or (0,0)-tensors) over dim (GR^n) -manifolds. Let G be a lifting of vector fields to G (or a lifting of functions to G) (see [2], [3]). Then G is an G is an G if G if G in G is an G if G in G is an G in G

The main theorem of this paper reads as follows.

Theorem. Let L be an (n, F, G, H)-lifting. Let M be an n-manifold and $\sigma \in \mathcal{F}M$ a section defined on a neighbourhood of $x \in M$ and satisfying the following condition:

(*) There exists a vector field X defined on a neighbourhood of x such that $X(x) \neq 0$ and $j_x^{\infty}(L_x\sigma) = j_x^{\infty}(0)$. Moreover, let $X(x) \neq 0$ and $j_x^{\infty}(L_x\sigma) = j_x^{\infty}(0)$.

Let $\sigma_m \in \mathcal{F}M$ (m=1,2,3,...) be a sequence of sections such that $j_x^{\infty}(\sigma_m)$ tend to $j_x^{\infty}(\sigma)$ if m tends to infinity. Let $v_m \in (\pi_M^G)^{-1}(x)$ (m=1,2,3,...) be a sequence of points tending to v. Then L(M) $\sigma_m(v_m)$ tend to L(M) $\sigma(v)$.

Remark. $L_X \sigma$ is the Lie derivative of σ with respect to X. If $y \in \text{dom}(X) \cap \text{dom}(\sigma)$, then $L_X \sigma(y)$ is the vector from $T_{\sigma(y)}FM$ given by the curve $t \to (\varphi_{-t})_*$. $\sigma(y)$, where $\{\varphi_t\}$ is a local 1-parameter group of X.

If φ is an embedding of an *n*-manifold M into an *n*-manifold N, then $\varphi_*(L_X\sigma) = L_{\varphi_*x}\varphi_*\sigma$ (see [6]). We denote by 0 the mapping given by $M\ni y\to 0\in T_{\sigma(y)}FM$.

Remark. The counterexample of D. B. A. Epstein [1, p. 638-641] shows why we insist that σ should satisfy (*).

From now on, we denote by π the given map from GR^n to R^n . We write F_0 instead of $(\pi_{R^n}^F)^{-1}(0)$ and G_0 instead of $\pi^{-1}(0)$. Let $s = \dim(F_0)$. If $x \in R^n$, we denote by τ_x the translation by $x(\tau_x : R^n \to R^n, \tau_x(y) = x + y)$. We have the C^{∞} -diffeomorphism $T: R^n \times F_0 \to FR^n$ given by $(x, f) \to F \tau_x(f)$. We write L instead of $L(R^n)$. We denote by P the projection $R^n \times F_0 \to F_0$, and by $p: R^n \to R$ the projection $(x_1, \ldots, x_n) \to x_1$.

We prove two lemmas.

Lemma 1. Let $\sigma_1, \sigma_2 \in \mathcal{F} \mathbb{R}^n$ be two sections such that $0 \in \text{dom}(\sigma_t)$ (t = 1, 2) and $j_0^{\infty}(\sigma_1) = j_0^{\infty}(\sigma_2)$. Then $L\sigma_1$ is equal to $L\sigma_2$ on G_0 .

Proof. Choose a chart (U, ψ) on F_0 such that $P \circ T^{-1} \circ \sigma_0(0) \in U$. Putting $f_t = \psi \circ P \circ T^{-1} \circ \sigma_t$ (t = 1, 2) we find that $j_0^{\infty}(f_1) = j_0^{\infty}(f_2)$. By Whitney's extension theorem [5] there exist a C^{∞} -mapping $f: \mathbb{R}^n \to \mathbb{R}^s$ and an open neighbourhood W of 0 such that $f = f_t$ on $V_t = \{(x_1, ..., x_n) \in \overline{W}: (-1)^t x_1 \ge n|x_i| \text{ for } 2 \le i \le n\}$ for t = 1, 2. Let $\overline{\sigma} \in \mathcal{F} \mathbb{R}^n$ be given by $\overline{\sigma}(x) = T(x, \psi^{-1} \circ f(x))$. Then $\overline{\sigma} = \sigma_t$ on V_t for t = 1, 2. Hence $L\overline{\sigma} = L\sigma_t$ on $\pi^{-1}(\text{int } V_t)$ for t = 1, 2. Since $G_0 \subset \text{cl }(\pi^{-1}(\text{int } V_t))$ we obtain that $L\sigma_1 = L\sigma_2$ on G_0 .

Lemma 1 is proved.

Lemma 2. Let $\sigma \in \mathcal{F} \mathbb{R}^n$ be a section such that $0 \in \text{dom }(\sigma)$ and $j_0^{\infty}(L_{\partial/\partial x_1}\sigma) = j_0^{\infty}(0)$. Then there exist a section $\tilde{\sigma} \in \mathcal{F} \mathbb{R}^n$ and a chart (U, φ) on F_0 such that $\tilde{\sigma}(0) \in U$, $j_0^{\infty}(\tilde{\sigma}) = j_0^{\infty}(\sigma)$ and $\partial/\partial x_1 \tilde{f} \equiv 0$, where $\tilde{f} = \varphi \circ P \circ T^{-1} \circ \tilde{\sigma}$.

Proof. Choose a chart (U, φ) on F_0 such that $\sigma(0) \in U$. Let $\psi = (T \circ (\mathrm{id}_{\mathbf{R}^n} \times \varphi^{-1}))^{-1}$. Putting $f = \varphi \circ P \circ T^{-1} \circ \sigma$, we find $\varepsilon > 0$ such that