

## Werk

Label: Table of literature references

Jahr: 1981

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0106 | log12

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

$$\supset (\mathsf{R} \setminus \bigcup_{i=1}^{n} D_{i}) \cap \{(\mathsf{R} \setminus I_{n+1}) \cup D_{4}^{n+1}\} \cap J =$$

$$= (D_{4}^{n+1} \cap J) \cup \{(\mathsf{R} \setminus \bigcup_{i=1}^{n} D_{i}) \cap (\mathsf{R} \setminus I_{n+1}) \cap J\},$$

is a set of the second Baire category. Therefore the sets  $D_1, D_2, ..., D_n, D_{n+1}$  satisfy properties 1), 2), 3), 4), and 5) and the proof of the lemma is complete.

We now proceed to the proof of the existence of a function g with the properties mentioned in our introduction.

**Theorem.** There exists a Lebesgue measurable function  $g, g: R \to R$  such that  $\{x \in I; g(x) \in J\}$  is a set of the second Baire category in R for each non-empty open interval I and each set J which is of the second Baire category in R.

Proof. There exists a sequence of sets  $\{D_n\}_{n=1}^{\infty}$  satisfying the five properties mentioned in the last lemma. By Corollary in the introduction we can express  $D_n$  as  $D_n = \bigcup_{j < c} D_{n,j}$ , where each set  $D_{n,j}$  is of the second Baire category in R and such that the sets  $\{D_{n,j}\}_{j < c}$  are pairwise disjoint. Here c denotes the cardinal of the continuum. Let  $\{a_j\}_{j < c}$  be an enumeration (i.e. a well-ordering) of R. Define  $g(x) = a_j$  for each  $x \in \bigcup_{n=1}^{\infty} D_{n,j}$  and g(x) = 0 for each  $x \notin \bigcup_{n=1}^{\infty} D_n$ . Then g satisfies the requirements of our theorem, in fact  $\{x \in I; g(x) = y\}$  is a set of the second Baire category in R for each real number y and each non-empty open interval I. The function g is clearly measurable as each set  $D_n$  has Lebesgue measure zero.

## References

- [1] Abian, A.: Partition of nondenumerable closed sets of reals, Czech. Math. J., 26 (101), (1976), 207—210.
- [2] Berman, S.: Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Soc., 137 (1969), 277—299.
- [3] Carathéodory, C.: Theory of Functions, Vol. 2, 2nd English ed. Chelsea, New York, 1960.
- [4] Miller, H. I.: A general partition theorem for sets of reals, Akademija Nauka i Umjetnosti Bosne i Hercegovine (Sarajevo), LXVI (19), (1980), 87-89.
- [5] Oxtoby, J.: Measure and Category, Springer-Verlag, New York, Heidelberg, Berlin, 1971.

Author's address: University of Sarajevo, Department of Mathematics, Sarajevo, 71000, Yugoslavia.