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is a set of the second Baire category. Therefore the sets Dy, D,, ..., D,, D, satisfy
properties 1), 2), 3), 4), and 5) and the proof of the lemma is complete.

We now proceed to the proof of the existence of a function g with the properties
mentioned in our introduction.

Theorem. There exists a Lebesgue measurable function g, g : R —» R such that
{x eI; g(x) € J} is a set of the second Baire category in R for each non-empty open
interval I and each set J which is of the second Baire category in R.

Proof. There exists a sequence of sets {D,,};‘,‘Ll satisfying the five properties men-
tioned in the last lemma. By Corollary in the introduction we can express D, as
D, =\ D, ;, where each set D, ; is of the second Baire category in R and such

j<e
that the sets {D,;}, . are pairwise disjoint. Here ¢ denotes the cardinal of the
continuum. Let {a;}__ be an enumeration (i.e. a well-ordering) of R. Define g(x) = a,

foreachxe ) D, ; and g(x) = Ofor each x ¢ | D,. Then g satisfies the requirements
n=1 n=1

of our theorem, in fact {x eI; g(x) = y} is a set of the second Baire category in R
for each real number y and each non-empty open interval I. The function g is clearly
measurable as each set D, has Lebesgue measure zero.
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