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0. INTRODUCTION

In the first part of this work certain transformations of sets in R” will be studied.
We extend the results of various authors. An article by Neubrunn and Salat [10]
was the initial work in this area. Latter contributions were made in [12], [14] and
[15].

The second part of this paper deals with analogues of theorems that appeared
in [1], [4] and [5]. In particular, sets of the second category having the Baire property
are studied here. Such sets and their duality with sets of positive measure have been
studied extensively ([3], [6], [7], [8], [10], [11], [13] and [16]).

1. FAMILIES OF TRANSFORMATIONS IN R”

Let .#" denote the collection of Lebesgue measurable subsets of R" (n-dimensional
Euclidean space). If A€ " then |A| stands for the Lebesgue measure of the set A.
Suppose that with each w belonging to a metric space Q a certain transformation of
the family %! into £* is associated, this transformation being denoted by T,
Neubrunn and Saldt [10] considered families of transformations {T}oen satlsfymg
the following assumptions.

(1) There exists w, € 2 such that for every closed interval {a, b) and every sequence
{w,}m, of elements belonging to 2 and converging to w,,

lim (inf T, (<a, b))) = a, lim (sup T,, (<a, b))) = b

holds;
(ii) if E, Fe £* and E < F then for every o €, T,(E) = T,(F);
(iii) if Ee £! and o, - o, (in Q), then

1) This research is supported by the Foundation for Scientific Work of the Republic of Bosnia
and Herzegovina.
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lim |T,,(E)| = |Too(E) = |E| -

Consider the following examples.

Example 1.1. Set @ = R'. If Ee &', thenlet T,(E) = E + ® (i.e. the set of all
numbers of the form x + w, x € E). Taking 0 as w, one can easily check that prop-
erties (i)—(iii) are satisfied.

Example 1.2. Set Q = (0, 1). If Ee £, then let T,(E) = wE (i.e. the set of
all numbers of the form wx, x € E). If we put w, = 1 then properties (i)— (iii) are
satisfied. These examples appear in the work of Neubrunn and Salét [10].

M. Pal [12] considered an extension of the families of transformations of Neubrunn
and Saldt, namely, with each @ belonging to a metric space Q he associated a trans-
formation T,, mapping %" into #”" in such a way that the family of transformations
{T,} weq satisfied the following three conditions.

(I) There exists wq € Q such that for every closed sphere K = S[a, r] = R" and
every sequence {w,} (w, € 2) converging to w,,

lim [sup |a — T, (K)|] = r holds.

(I1) If E, Fe " and F < E, then for every w e Q, T,(F) = T,(E).
(I1I) If Ee #" and w, > w,, then

lim |7, (B) = | .(8) = |£].

Here |a — B denotes the set {|a — b|; b € B} where |a — b| is the ordinary Euclidean
distance between a and b.

Clearly, Example 1.1 can be modified in the obvious way to Example 1.1’ by setting
Q = R" and taking x + o to be the ordinary vector sum of x and w. It is easy to
see that Example 1.1’ satisfies properties (I)— (III).

Example 1.2 can be modified to Example 1.2'. In this case Q remains unchanged,
that is @ = (0, 1), and wx = (wx;, ..., wx,) where x = (x,, ..., X,). Then it is easy
to check that Example 1.2’ satisfies properties (I)—(IT11). We now consider the
following example.

Example 1.3'. Set @ = (0, 1). If E€ £, then let T,(E) = wE. If we put w, = k
for some k in the open interval (0, 1), then properties (I) and (III) fail to hold.

We will now list three properties, for a family {T,,},.q of transformations on %"
into £”, satisfied by all three of the above examples (1.1, 1.2" and 1.3') and show
several consequences of the three properties.

We consider families of transformations {T,},eo 0n £" into " (2 a metric space)
which satisfy the following conditions.

(a) If E, Fe " and E < F then for every w € , T,(E) = T,(F).
(b) There exists w, € 2, a € R" and k (0 < k £ 1) such that
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lim |T,..(S[a, r]) n S[a, kr]| _ 3
= |S[a, kr]|

for every ¥ > 0 and for every sequence {w,};>, of elements belonging to Q and
converging to w,. :

(c) There exists j (0 < j < 1) such that if 4, Be " and 4 — B, then lim sup .
AT (BINT, (4)| < |B\ 4| provided w, » w, (in Q). "

Theorem 1.1. If {Tw}weﬂ is a family of transformations on &" into £" satisfying
properties (1), (I1) and (I11) then {T,} .., satisfies properties (a), (b) and (c).

Proof. Property (II) implies property (a). Properties (I) and (IIT) imply property
(b) (with k = 1 and a any point in R"). Properties (II) and (III) imply property (c)
with j = 1.

It is easy to see that the family of transformations given in Example 1.3’ satisfies
properties (a), (b) and (c), where a =0, w, = k (0 < k < 1) and j = k" (to see
the last equality consult [2], page 153). Therefore by Theorem 1.1 and our earlier
remarks (i.e. that Example 1.3’ does not satisfy properties (1) and (II1)) it follows
that properties (a), (b) and (c) are strictly weaker than properties (I), (IT) and (III).

M. Pal [12] proved the following theorem which extends Theorem 1.1 of Neubrunn
and Saldt [10].

Theorem. Let {T,,, wen be a family of transformations satisfying conditions
(1), (11) and (1T1) and let {w,} be a sequence converging to w, (in Q). Let A be a set
of positive measure in R". Then there exists a natural number N, such that for
n = No, An T, (A) is a set of positive measure.

We now show that this result remains true for families of transformations satisfying
the (weaker) conditions (a), (b) and (c).

Theorem 1.2. Suppose A = R" has positive Lebesgue measure. If {T,},cq is
a family of transformations on %" into &" satisfying conditions (a), (b) and (c)
and a (in condition (b)) is a density point of A, then if {w,} is a sequence converging
1o w,, there exists a natural number N, such that for n = Ny, An T, (A) is a set
of positive measure. '

Proof. Let 0 <& < 1 and let {w,,,} be a sequence converging to w,. Since a is
a density point of A, there exists r, > 0 such that 0 < r < r, implies

1) |Sle, 7]~ 4] >1—¢or |S[a,r]| —|4nS[ar]| <e.|S[ar].
|S[a. ]| : .

By (c) there exists a natural number N, such that m > N, implies

2) |T,,.(S[a, r. )\ T, (S[a, r.] » A)| <j.|S[a,r]N(S[a,r,] N A)| + &.|S[a,r.]|

This in turn implies, in virtue of (a), that if m = N, then
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3) |To(S[a, r])| = |To,(Sla. r] 0 A) < j. [S[a, r]N(S[a, r] 0 A)] +
+e. lS[a, rE:H.

Using 1) we see that for m > N, we have

4) ITmm(S[a, rt])l - |Twm(S[a, rn A)I <j.e. IS[a, re:” +e. ]S[a, rg:”.

By (b) there exists a natural number N, > N, such that

5) |T,,.(S[a, r.]) n S[a, kr.]| > (1 — &) . |S[a, kr]| if m 2 N,

From 4) and 5) it follows that if m = N, then

6) |T,.(S[a, r.] n A) A S[a, kr.]| > |S[a, kr.]| — &.|S[a, kr.]| —
—(+1).e. |S[a, re]l,

or if m = N we have

7) | T, (S[a, 7] 0 4) A S[a, kr]| > [k — (j + 2) €] . |S[a, r.]|-

Let ¢ be a fixed real number, 0 < & < 1, such that [k"(1 —¢) — (j + 2)&] > 0.
Then this ¢ satisfies the inequality [k" — (j + 2)¢] . [S[a,r.])| > &. k".|S[a, r.]|.
For the same ¢, 1) yields
8) |S[a, kr.]| — |4 n S[a, kr]| < &.k".|S[a, ]|
Therefore, because of 7) and 8), we have for our fixed &

9) |T..(S[a, r.] n 4) A A| > 0 for each m = N, > N,,
completing the proof.

Saha and Ray [15] considered families {T,,}.q of transformations of #" into %",
which are more general than those satisfying properties (I), (I) and (III) of Pal
[12]. In [9], the current author corrected several basic mistakes in the paper of Saha
and Ray [15]. We now generalize the three conditions on families of transformations
{T.,} wen given in [9] and consider some of their consequences.

We will consider families of transformations { T,}.Eq, Where Q is a metric space
and T, : £" — £" for each we Q satisfy conditions (a), (b’) and (c), where (b’)
denotes the following condition:

(b") There exist wy € 2, a, be R”, and k (0 < k < 1) such that
lim |T.,.(S[b, r]) N S[a, kr]| ~1q
n—wm |S[a, kl‘]l

for every r > 0 and for every sequence {,}, of elements belonging to 2 and
converging to w,.

We now prove the following theorem, related to Theorem 2’ in [9] and Theorem 2
in [15].

Theorem 1.3. Suppose A and B are two sets of positive measure in R" and a is
a point of density one in A, b is a point of density one in B and w, is a point of Q.

Suppose {Tm}weﬂ is a family of transformations of " into " satisfying properties
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(a), [b’) and (c) with respect to the points a, b w, mentioned above. Then, if {w,}7
is a sequence in Q converging to w, and p is a positive integer, there exists p
strictly increasing integers ny, n,, ..., n, such that

AnT, (B)nT, (B)n...n Tw,,,(B)

is a set of positive measure.

Proof. Let 0 < ¢ < 1 and let {w,} be a sequence converging to w,. Since a is
a density point of A and b is a density point of B there exists r, > Osuchthat0 < r <
< r, implies
1) |S[a,r]| - |4 ~ S[a,r]| <&.|S[a,r]| and
2) |S[b, r]| — [B ~ S[b, r]| <. |S[b, r]|.
Imitating the proof of Theorem 1.2 we can find a positive integer N such that
3) |T.,.(S[b, r.] n B) A S[a, kr,]| > (1 — &) |S[a, kr]| — (j + 1) &.|S[a, re]| if
O<ée<1land m2=N'.
Foreachi = 1, 2,..., p, there exists ¢;, 0 < ¢; < 1, such that if 0 < ¢ < ¢; we have
4) |T,,(S[b, r] 0 B) A S[a, kr,]| > (1 — 1/(2.2%)|S[a, kr,]| if m = N, and
5) |S[a, kr.]| — |4 ~ S[a, kr.]| < 1/2.2%)|S[a, kr,] if0 < & < &,
Equations 4) and 5) imply that
6) |T...(S[b, r.] n B) 0 (4 n S[a, kr,])| > (1 — 1/2%)|S[a, kr,]| if 0 <& <¢; and
m = N,.
Let ¢ be a fixed real number satisfying
0 <& < min (g, &, ..., &)

and suppose that n,, n,, ..., n, are p distinct positive integers each greater than or
equal to N,.

Then it follows that
7) |Ta, (S[b, 7] n B) (4  S[a, kr])| > (1 = 1/2°) [S[a, kr]| if i=1,2,...,p.

This yields
8) |[f31 T,, (S[b, 7] ~ BY]  [4  S[a, kr]]| > 0,

which completes the proof.

We conclude this section by presenting the following theorem which is related
to Theorem 3’ in [9] and Theorem 3 in [15].

Theorem 1.4. Suppose A, By, B,, ..., B, are sets of positive measures in R", a is
a point of density one in A, b, is a point of density one in B, foreachi = 1,2,....,m
and wy is a point of Q for eachi = 1,2, ..., m. Suppose {T,.} weq is a family of trans-
formations on " into & satisfying properties (a), (b') and (c) with respect to the
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triple (a, b;, wy) for each i = 1,2, ..., m. If the sequence {w}} , converges to w}

foreachi = 1,2,..., m, then there exists a positive integer N such that forn = N,
AnT,(B)n T,:B) ... T, w(B,)

is a set of positive measure.

Proof. The proof of Theorem 1.4 is similar to that of Theorem 1.3 and will
therefore be omitted.

2. BAIRE SETS IN R"

A set A in R” is said to have the Baire property if it can be written in the from
A = (G\P)u Q, where G is an open set and P and Q are sets of the first category
(i.e. countable unions of nowhere dense sets).

In this section we present two theorems. They are the Baire property analogues of
results of Khan and Pal [4] and Mazumdar [5], respectively.

Theorem 2.1. Let A and B be two Baire sets (i.e. sets possessing the Baire pro-
perty) of the second category in R" and let ay, &y, ..., &, (&% =+ O for each k) be real
numbers. Then exist two spheres K, (with center at the origin) and K,, such that
for any system of p vectors z, z,, ..., z, if K, and for any vector x € K,, there are
vectors

a(x; zy, ..., z,)€ 4
and
by(x; zy, ..., 2,) € B
(k=1,2,...,p)
such that
= b(x; 2y, 23, ..., 2,) — a(x; zy, ..., 2,) — 2,
Oy

for k=1,2,...,p.

Proof. A and B can be written in the form 4 = (G;\P,) U @, and B =
= (G,\P;) U Q,, where G, and G, are open sets and Py, P,, Q, and Q, are sets
of the first category in R". Let a € G; \ P, and b € G, \ P, be two fixed points.

1) Let ¢ denote b — a and let @ = max (|oy, ..., |o,]).
There exist positive real numbers r and s such that r > s > 2(r — s)/3 and such that
2) K, = S[a,r] = G, and K = S[b, 5] = G,.
Define K, and K as follows:
3) K, = S[0, (r — s)[3«] and K, = S[c, (r - 5)/3].
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Suppose x € K, and z,, z,, ..., z,€ K.
4)Set C=K,nAand C,=(KzgnB) —ax —z for k =1,...,p.
5) Let X(x; z7, ..., z,) denote the set CN C; nC, N ... N C,,.
We proceed to show that X(x; zy, ..., z,) is a set of the second Baire category.

The set Kz — a;x — z; has as its center a point whose distance from a is less than
or equal to 2(r — s)/3 since (|w| denotes the length of w)

la —b+ax+z)=|a—b+oux+(c+[(r—1s)3]e)| =

= |ox + [(r — 5)/3] | < (r — 5)/3 + (r = 5)/3 = 2((r — 5)3)
(where |¢| < 1).
Furthérmore, the radius of Kz — ox — z; is s and s > 2((r — s)/3). Therefore,
for each k = 1, ..., p, the sphere Ky — a;x — z, contains a neighborhood of the

point a. This in turn implies that each set C, (k = 1, ..., p) contains a neighborhood
of a with the exception of a set of the first category, i.e.

6) C, o S[a, t,]\N, for each k = 1,..., p, where N, is a set of the first Baire
category and t, > 0.

Therefore it follows that X(x; z,, ..., z,) is a set of the second Baire category in R"
and hence it is not empty. So there exist vectors

a(x; zy,...,z,)€ A and by(x; zy,...,z,)eB (k=1,...,p)

such that

7 a(x; 24, ... 2p) = by(X; 24, oo0y 2p) = 29 — 04X = ... = by(x; 2y, ..., 2,) —
-z, — a,x.

Therefore

8) x = bi(x; zy, ..., 2,) = a(x; 24, ..., 2,) — 2,
Ok

for each k = 1, 2, ..., p, which completes the proof.

We now prove the Baire property analogue of a result of Mazumdar [5] (which
in turn is a generalization of a result of Das Gupta [1]).

Theorem 2.2. Suppose that A and B, subsets of R* (the set of all positive real
numbers), are two Baire sets of the second category, i.e. A= (Gy\P;)u Q, and
B = (G,\P,;) U Q, where G, and G, are non-empty open sets and Py, Q, P,, Q,
are sets of the category. Suppose further that pe G, \ P, and g€ Gy \ P, If ()%
is any sequence of positive real numbers converging to q/p (which will be denoted
by «), then the set

X = {xeR*; xe A and x|u, € B for infinitely many n} is a set of the second
Baire category in R.
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