

Werk

Label: Article **Jahr:** 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0106 | log114

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CONNECTIONS ON HIGHER ORDER TANGENT BUNDLES

Tomáš Klein, Zvolen

(Received November 26, 1979)

1. PROLONGATION COFUNCTORS

Denote by \mathcal{M} the category of differentiable manifolds and mappings, by $\mathcal{F}\mathcal{M}$ the category of fibred manifolds and by $\mathcal{V}\mathcal{B}$ the category of differentiable vector bundles.

As usual, T denotes the functor of \mathcal{M} into $\mathscr{VB} \subset \mathscr{FM}$ transforming any manifold M into its tangent bundle TM and any map $f: M \to M_1$ into the induced tangent map

$$f_* = Tf : TM \to TM_1$$
.

Definition 1. A functor $p: \mathcal{M} \to \mathcal{F}\mathcal{M}$ will be called a prolongation functor, if pM is a fibred manifold over M for any manifold M and

$$pf: pM \rightarrow pM_1$$

is a morphism of fibred manifolds over $f: M \to M_1$ for any mapping f (cf. [4]).

Every $f: M \to M_1$ determines the cotangent map f^* transforming any form $\omega \in T_{f(x)}^*M_1$ into $f^*\omega \in T_x^*M$. Let π , π_1 , π^* or π_1^* be the fibre projections of TM, TM_1 , T^*M or T^*M_1 , respectively. Denote by $f^{-1}T^*M_1$ the induced bundle over M, i.e.

$$f^{-1}T^*M = \{(x, \omega) \in M \times T^*M_1; \ \pi_1^*\omega = f(x)\}.$$

Then we can define

$$T^*f: f^{-1}T^*M_1 \to T^*M$$

by $T^*f(x, \omega) = f^*\omega \in T_x^*M$. Obviously, T^*f is a fibre morphism over the identity of M (the so-called base-preserving morphism).

Given two fibred manifolds $\pi: E \to M_1$, $\pi_1: E_1 \to M_1$ over the same base, a base-preserving morphism $\varphi: E \to E_1$ and a map $f: M \to M_1$, the induced morphism

(1)
$$f^{-1}\varphi: f^{-1}E \to f^{-1}E_1$$

is defined by

$$(x, e) \mapsto (x, \varphi(e))$$
 with $\pi(e) = f(x)$.

Definition 2. A prolongation confunctor $p: \mathcal{M} \to \mathcal{F}\mathcal{M}$ is a rule transforming any manifold M into a fibred manifold pM over M and any map $f: M \to M_1$ into a base-preserving morphism

$$pf: f^{-1}pM_1 \to pM$$

such that

(2)
$$p(id_M) = id_{pM} \text{ for all } M,$$

$$p(g \circ f) = pf \circ f^{-1}pg$$

for all $f: M \to M_1$ and $g: M_1 \to M_2$.

If the values of a prolongation cofunctor p lie in the subcategory $\mathscr{VB} \subset \mathscr{FM}$, then p is said to be a prolongation cofunctor of \mathscr{M} into \mathscr{VB} .

Lemma 1. T^* is a prolongation cofunctor of \mathcal{M} into \mathscr{VB} .

Proof is obvious.

In differential geometry, several prolongation cofunctors can be obtained by using the following general construction of the jet theory.

Consider two manifolds M, Q and a point $q \in Q$. The set $J'(M, Q)_q = J'_q M$ of all r-jets of M into Q with the target q is a fibred manifold over M. Consider further a mapping

(4)
$$J_q^r f: f^{-1} J^r(M_1, Q)_q \to J^r(M, Q)_q$$

defined by the following rule. If $b \in f^{-1}J'(M_1, Q)_a$, $b = (x, j'_{f(x)}\varphi)$, then

$$(J_a^r f)(b) = j_x^r (\varphi \circ f).$$

Theorem 1. J_q^r is a prolongation cofunctor of \mathcal{M} into \mathcal{FM} .

Proof is straightforward.

Theorem 2. If Q is a vector space and q = 0, then J_0^r is a prolongation cofunctor of \mathcal{M} into \mathcal{VB} .

Proof. In this case, $J^r(M, Q)_0$ is a vector bundle by

$$j_x''\varphi + j_x''\psi = j_x''(\varphi + \psi), \quad k \cdot j_x''\varphi = j_x''k\varphi, \quad k \in \mathbb{R}.$$

For any $f: M_1 \to M$, f(y) = x, we have

$$(j_x^r \varphi + j_x^r \psi) \circ j_y^r f = j_y^r (\varphi \circ f + \psi \circ f) = j_y^r (\varphi \circ f) + j_y^r (\psi \circ f),$$

$$(j_x^r k \varphi) \circ j_y^r f = k \cdot j_y^r (\varphi \circ f), \quad \text{QED}.$$

Remark 1. Let V be a manifold. If we associate with any manifold M the fibred manifold $J'(M, V) \to M$ and define the induced map $f^{-1}J'(M_1, V) \to J'(M, V)$ for any $f: M \to M_1$ similarly to (4), we also obtain a prolongation cofunctor $J'_V: \mathcal{M} \to \mathcal{F}\mathcal{M}$.

Let $\pi: E \to M$, $\pi_1: E_1 \to M_1$ be vector bundles and $\varphi: E \to E_1$ a linear morphism over $f: M \to M_1$. Let

$$\varphi^*: (f^{-1}E_1)^* \to E^*$$

be the mapping defined by

$$\varphi^*(x,\omega) = \varphi_x^*(\omega), \quad \pi_1\omega = f(x), \quad x \in M,$$

where φ_x^* is the dual map to $\varphi \mid E_x$. It is easy to verify that φ^* is also a differentiable map.

Considering a prolongation functor $p: \mathcal{M} \to \mathcal{VB}$, we define $p^*M = (pM)^*$ (= the dual bundle of pM) for any manifold M and

(5)
$$p^*f = (pf)^* : f^{-1}p^*M_1 \to p^*M$$

for any $f: M \to M_1$. One easily finds

Lemma 2. For any maps $f: M \to M_1$, $g: M_1 \to M_2$ we have

$$p*(g \circ f) = p*f \circ f^{-1}p*g$$
.

Thus, p^* is a prolongation cofunctor $\mathcal{M} \to \mathcal{VB}$. We shall say that the prolongation cofunctor p^* is dual to the prolongation functor p.

Conversely, given two vector bundles $E \to M$, $F \to M_1$, a map $f: M \to M_1$ and a base-preserving linear morphism $\psi: f^{-1}E \to F$, we define $\psi^*: E^* \to F^*$ by requiring that

$$\psi_x^*: E_x^* \to F_{f(x)}^*$$

be the dual map to $\psi_{f(x)}:(f^{-1}F)_x\to E_x$. Using local coordinates, we directly deduce

Lemma 3. ψ^* is differentiable.

Let $q: \mathcal{M} \to \mathcal{VB}$ be a prolongation cofunctor. Define $q^*M = (qM)^*$ for any manifold M and $q^*f = (qf)^*$ for any $f: M \to M_1$. One verifies easily that $q^*(g \circ f) = (q^*g) \circ (q^*f)$, so that $q^*: \mathcal{M} \to \mathcal{VB}$ is a prolongation functor.

Definition 3. The prolongation functor q^* will be called dual to the prolongation cofunctor q.

Theorem 3. For any prolongation functor $p: \mathcal{M} \to \mathcal{VB}$ and any prolongation cofunctor $q: \mathcal{M} \to \mathcal{VB}$ we have

$$(p^*)^* = p$$
, $(q^*)^* = q$.

Proof is straightforward.

Let M be an n-dimensional manifold.

Definition 4. Any jet $A \in J_x^r(M, R)_0$ of M into reals with a source x and target 0 will be called an r-covector on M at x. The vector bundle $J^r(M, R)_0 \to M$ will be denoted by $T^{r*}M$ and called the r-th order cotangent bundle of M.

Let $A = j_{x_0}^r F \in T^{r*}M$. Without loss of generality we may assume that the coordinate form of F is

$$F = a_i x^i + \ldots + \frac{1}{r!} a_{i_1 \ldots i_r} x^{i_1} \ldots x^{i_r}.$$

In this way, any local chart (x^i) on M induces a local chart $(x_0^i, x_i, ..., x_{i_1...i_r})$ on $T^{r*}M$.

By Theorem 2, T^{r*} is a prolongation cofunctor of \mathcal{M} into \mathcal{VB} and we can construct the dual prolongation functor $T^{r}: \mathcal{M} \to \mathcal{VB}$.

Definition 5. The dual vector bundle

$$T^rM = (T^r * M)^*$$

is called the r-th order tangent bundle of M and the induced map $T^r f: T^r M \to T^r M_1$ is said to be the r-th order tangent map of $f: M \to M_1$.

By dualization, any local chart (x^i) on M induces a local chart $(x_0^i, x^i, ..., x^{i_1...i_r})$ on T^rM .

We remark that one also can construct the r-th order tensor bundles over M, see [6].

2. LINEAR MAPPINGS BETWEEN HIGHER ORDER TANGENT SPACES

Let β_k^r denote the canonical projection of r-jets into k-jets, r > k. The kernel of $\beta_{r-1}^r : T^{r*}M \to T^{r-1*}M$ is naturally identified with the r-th symmetric tensor power O^rT^*M , so that we have an exact sequence

(7)
$$0 \to O^r T^* M \to T^{r*} M \xrightarrow{\beta^{r_{r-1}}} T^{r-1*} M \to 0.$$

The dual sequence is

(8)
$$0 \to T^{r-1}M \to T'M \to O'TM \to 0.$$

In particular, we have

$$TM \subset T^2M \subset \ldots \subset T^{r-1}M \subset T^rM$$
.

For any $f: M \to M_1$, the following diagram commutes:

(9)
$$0 \to T^{r-1}M \to T^rM \to O^rTM \to 0$$

$$\downarrow T^{r-1}f \qquad \downarrow T^rf \qquad \downarrow O^rTf$$

$$0 \to T^{r-1}M_1 \to T^rM_1 \to O^rTM_1 \to 0,$$

see [3], [7].

Let g, h be real functions on M, g(x) = h(x) = 0. Since the r-th order partial derivatives of the product g. h at x do not depend on the r-th order partial derivatives of g and h at x, we have a well — defined map

$$\mu: (T_x^{r-1*}M) \times (T_x^{r-1*}M) \to T_x^{r*}M,$$

 $(j_x^{r-1}g, j_x^{r-1}h) \mapsto j_x^r(g, h).$

Since μ is symmetric and bilinear, it can be viewed as a map $\mu: O^2T_x^{r-1*}M \to T_x^{r*}M$.

Lemma 4. The sequence

$$O^2T_r^{r-1}*M \xrightarrow{\mu} T_r^{r*}M \xrightarrow{\beta^{r_1}} T_r^{1}*M \to 0$$

is exact.

Proof. As g and h vanish at x, g. h has all the first order partial derivatives at x equal to zero. Hence $Im \mu \subset Ker \beta_1^r$. Conversely, if $C \in Ker \beta_1^r$, it can be written in the form

$$C = j_0^r(x^i h_i(x))$$

with $h_i(0) = 0$. This implies $C \in Im \mu$, QED.

Let $K_x^r M = Ker \mu$ and $S_x^{r*} M = O^2 T_x^{r-1*} M \mid K_x^r M$. Then we have an exact sequence

$$(10) 0 \rightarrow S_x^{r*}M \rightarrow T_x^{r*}M \rightarrow T_x^*M \rightarrow 0$$

and its dual

(11)
$$0 \to T_x M \to T_x^r M \to S_x^r M \to 0,$$

where

$$S_x^r M = (S_x^{r*} M)^* \subset O^2 T_x^{r-1} M.$$

Lemma 5. Let $f: M_1 \to M$, f(y) = x. Then

$$O^2T^{r-1}*f(K_x^rM)\subset K_y^rM_1.$$

Proof. Let
$$u = (j_x^{r-1}g, j_x^{r-1}h) \in K_x^r M$$
, i.e. $0 = j_x^r (g \cdot h) \in T_x^{r*} M$. If

$$O^2T^{r-1}*f(u) = (j_v^{r-1} g(f), j_v^{r-1} h(f)),$$

then

$$\left(j_{y}^{r-1} \ g(f), j_{y}^{r-1} \ h(f)\right) = j_{y}^{r}(g(f) \cdot h(f)) = j_{y}^{r}(g \cdot h) \left(f\right) = j_{x}^{r}(g \cdot h) \circ j_{y}^{r}f,$$

where o denotes the composition of jets. The coordinate formula yields

$$0 = j_{x}^{r}(g \cdot h) \circ j_{y}^{r} f \in T_{y}^{r*} M_{1}, \quad QED.$$

Corollary 1. The mapping T'f dual to T'*f has the property

$$T^r f(S^r_v M_1) \subset S^r_v M$$
.

Coordinate formulae for mapings $T^{r*}f$, $T^{r}f$.

Let (x^i) or (y^a) be local coordinates on M or M_1 , respectively. Consider $F: M \to R$, F(x) = 0 and a mapping $f: M_1 \to M$ with the coordinate form $x^i = f^i(y^a)$. Let

$$j_{y}^{r}f = (y^{\alpha}, x^{i}, f_{\alpha}^{i}, f_{\alpha_{1}\alpha_{2}}^{i}, ..., f_{\alpha_{1}...\alpha_{r}}^{i}),$$

$$j_{x}^{r}F = (x^{i}, \bar{x}_{i}, ..., \bar{x}_{i_{1}...i_{r}}) \in T_{x}^{r*}M,$$

$$T^{r*}f(x^{i}, \bar{x}_{i}, ..., \bar{x}_{i_{1}...i_{r}}) = (y^{\alpha}, \bar{y}_{\alpha}, ..., \bar{y}_{\alpha_{1}...\alpha_{r}}).$$

From the coordinate formula for the composition of jets, we obtain

Dualization yields the following coordinate formula for T'f:

Let

$$L': T_v^r M_1 \to T_x^r M$$

be an arbitrary linear mapping with the coordinate form

(13)
$$x^{i} = a^{i}_{\alpha}y^{\alpha} + a^{i}_{\alpha_{1}\alpha_{2}}y^{\alpha_{1}\alpha_{2}} + \dots + a^{i}_{\alpha_{1}\dots\alpha_{r}}y^{\alpha_{1}\dots\alpha_{r}}, \\ x^{i_{1}\dots i_{r}} = a^{i_{1}\dots i_{r}}_{\alpha_{1}}y^{\alpha_{1}} + \dots + a^{i_{1}\dots i_{r}}_{\alpha_{1}\dots\alpha_{r}}y^{\alpha_{1}\dots\alpha_{r}}.$$

Definition 6. We shall say that L' is an r-mapping with respect to $L'^{-1}: T_y^{r-1}M \to T_x^{r-1}M$, if L' can be restricted to $T_yM_1 \to T_xM$ and the factor map

$$T_y^r M_1|_{T_y M_1} \to T_x^r M|_{T_x M}$$
 coincides with $O^2 L^{-1}|_{S^r y M_1}$.

Theorem 4. A linear mapping $L' = T_v'M_1 \rightarrow T_x'M$ is of the form $T_v'f$ iff

- a) L can be restricted to $L^{-1}: T_y^{r-1}M_1 \to T_x^{r-1}M$,
- b) L^{-1} is of the form $T_y^{r-1}f$,
- c) L is an r-mapping with respect to L^{-1} .

Proof consists in direct evaluation in local coordinates, which we omit here.

3. REGULAR CONNECTION ON T'M

Given a vector bundle $E \to M$, its first jet prolongation J^1E is also a vector bundle over M. A connection on E means any linear morphism $\Gamma: E \to J^1E$ satisfying $\beta_0^1 \circ \Gamma = id_E$. If we have some local coordinates x^i , y^a on E, then the equations of Γ are

$$(14) y_i^{\alpha} = \Gamma_{\beta i}^{\alpha}(x) y^{\beta},$$

where y_i^{α} are the induced coordinates on J^1E , [1], [5].

The set LE of all linear isomorphisms between the individual fibres of E is a Lie groupoid in the sense of Ehresmann. For every $\Phi \in LE$, $\Phi : E_x \to E_y$, we set $a\Phi = x$, $b\Phi = y$. Let $QLE \to M$ be the fibred manifold of all (first order) elements of connection on LE, i.e. every $A \in (QLE)_x$ is the 1 – jet at x of a local map φ of M into LE satisfying $a \varphi(t) = x$, $b \varphi(t) = t$ for all t and $\varphi(x) = id_{E_x}$. Every section $\gamma : M \to QLE$ determines a connection Γ on E as follows. If $\gamma(x) = j_x^1 \Phi(t)$, then $\gamma(t)(y)$ is a local section of E for every $y \in E_x$ and we put $\Gamma(y) = j_x^1 \Phi(t)(y)$. Given a subgroupoid $\Omega \subset LE$, a connection Γ on E is said to be an Ω – connection, if it is generated by a section $\gamma : M \to Q\Omega$, i.e. for every $x \in M$ there is a local map φ of M into Ω with $\alpha \varphi(t) = x$, $\alpha \varphi(t) = t$ and $\alpha \varphi(t) = id_{E_x}$ such that $\alpha \varphi(t) = t$ and $\alpha \varphi(t) = t$

In particular, let $\pi^r(M)$ denote the groupoid of all invertible r-jets of M into itself. Every element of $\pi^r(M)$ with a source x and target y determines a linear map of T_x^rM into T_y^rM , so that $\pi^r(M)$ is a subgroupoid of $L(T^rM)$. A connection on T^rM will be called regular, if it is a $\pi^r(M)$ — connection in the above sense. Using Theorem 4, we shall characterize the regular connections. However, we first explain some necessary general ideas.

Let $E_1 \to M$ be another vector bundle and Γ_1 a linear connection on E_1 with the equations

$$z_i^{\lambda} = \Gamma_{\mu i}^{\lambda}(x) z^{\mu}$$

in some local coordinates x^i , z^{λ} on E_1 . According to [2], Γ and Γ_1 determine a connection $\Gamma \otimes \Gamma_1$ on the tensor product $E \otimes E_1$ with the following equations:

(16)
$$w_i^{\alpha\lambda} = \Gamma_{\beta i}^{\alpha} w^{\beta\lambda} + \Gamma_{\mu i}^{\lambda} w^{\alpha\mu},$$

provided $w^{\alpha\lambda}$ are the induced coordinates on $E \otimes E_1$.