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CONNECTIONS ON HIGHER ORDER TANGENT BUNDLES

TomAS KLEIN, Zvolen

(Received November 26, 1979)

1. PROLONGATION COFUNCTORS

Denote by .# the category of differentiable manifolds and mappings, by & .# the
category of fibred manifolds and by ¥4 the category of differentiable vector bundles.

As usual, T'denotes the functor of # into ¥ # <= % # transforming any manifold
M into its tangent bundle 7M and any map f: M — M, into the induced tangent
map

fe=Tf:TM > TM, .

Definition 1. A functor p: # — %F.# will be called a prolongation functor,
if pM is a fibred manifold over M for any manifold M and

pf : pM - pM,

is a morphism of fibred manifolds over f : M — M for any mapping f (cf. [4]).

Every f: M — M, determines the cotangent map f* transforming any form
we TfyM, into f*w e TIM. Let n, ny, n* or n be the fibre projections of TM,
TM,, T*M or T*M,, respectively. Denote by f ~!T*M, the induced bundle over M,
ie.

fIT*M = {(x, ) e M x T*M,; nfw = f(x)} .

Then we can define
T* :f~T*M, - T*M

by T*f(x, ) = f*w e T;)M. Obviously, T*f is a fibre morphism over the identity
of M (the so-called base-preserving morphism).

Given two fibred manifolds # : E - M, m, : E, = M, over the same base, a base-
preserving morphism ¢ : E — E, and a map f: M — M,, the induced morphism

(1) flo:f'E~>f'E,
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is defined by
(x, e) > (x, o(e)) with =n(e) = f(x).

Definition 2. A prolongation confunctor p : # — ¥ .# is a rule transforming any
manifold M into a fibred manifold pM over M and any map f: M — M, into
a base-preserving morphism

pf :f " 'pM, > pM

such that
(2 plidy) = id,y forall M,
®3) plgof) =pfof'pg

forall f:M - M;and g : M; > M,.
If the values of a prolongation cofunctor p lie in the subcategory ¥"# = ¥ 4,
then p is said to be a prolongation cofunctor of .# into ¥ 4.

Lemma 1. T* is a prolongation cofunctor of # into ¥ A.
Proof is obvious.

In differential geometry, several prolongation cofunctors can be obtained by using
the following general construction of the jet theory. '

Consider two manifolds M, Q and a point g € Q. The set J(M, Q), = J;M of
all r-jets of M into Q with the target g is a fibred manifold over M. Consider further
a mapping

) Jof S 71 (M, Q) ~ (M, Q),
defined by the following rule. If be f~'J'(M,, Q),, b = (x, j}x)®), then
(Jaf) (b) = Ji(e o f) -

Theorem 1. J is a prolongation cofunctor of M into FMH.

Proof is straightforward.

Theorem 2. If Q is a vector space and q = 0, then J; is a prolongation cofunctor
of M into V' A.

Proof. In this case, J(M, Q)o is a vector bundle by
o + i =Jle +¥), k.jio=jke, keR.
For any f: M, - M, f(y) = x, we have
(x0 + i) oy f = e of + ¥ of) =50 f) + 5o f),
(J3k@) o jyf = k. jy(@ o f), QED.
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Remark 1. Let V be a manifold. If we associate with any manifold M the fibred
manifold J(M, V) > M and define the induced map f~'J(M,, V) - J' (M, V)
for any f : M > M, similarly to (4), we also obtain a prolongation cofunctor Jy, :
M FM.

Letn : E - M, n, : E; - M, be vector bundles and ¢ : E — E, a linear morphism
over f: M — M,. Let

9% (fIE,)* — E*
be the mapping defined by

o*(x, w) = ¢p¥(w), mo=f(x), xeM,

where ¢? is the dual map to ¢ | E.. It is easy to verify that ¢* is also a differentiable
map.

Considering a prolongation functor p:.# — ¥'%, we define p*M = (pM)*
(= the dual bundle of pM) for any manifold M and

(%) p*f = (pf)* :f7'p*M, > p*M
for any f : M — M,. One easily finds

Lemma 2. For any maps f: M - M,, g : M, - M, we have

pPXgof) =P -f"'p*g.

Thus, p* is a prolongation cofunctor .# — ¥ %. We shall say that the prolongation
cofunctor p* is dual to the prolongation functor p.

Conversely, given two vector bundles E > M, F - M,, amap f: M - M, and
a base-preserving linear morphism ¢ : f 'E — F, we define y* : E* - F* by re-
quiring that
(6) ll’: : E: = F;(x)
be the dual map to Y, :(f~'F), = E,. Using local coordinates, we directly
deduce :

Lemma 3. y* is differentiable.

Let g : .# — ¥ % be a prolongation cofunctor. Define g*M = (gM)* for any
manifold M and g*f = (gf)* for any f : M > M. One verifies easily that g*(g . f) =
= (q*g) - (g*f), so that g* : # — ¥"# is a prolongation functor.

Definition 3. The prolongation functor g* will be called dual to the prolongation
cofunctor q.

Theorem 3. For any pfolongation functor p: M — V' R# and any prolongation
cofunctor q : M — V"B we have

(P*)* =p, (q*)* =gq.
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Proof is straightforward.
Let M be an n-dimensional manifold.

Definition 4. Any jet A e J(M, R), of M into reals with a source x and target 0
will be called an r-covector on M at x. The vector bundle J(M, R), - M will be de-
noted by T™*M and called the r-th order cotangent bundle of M.

Let A = ji F € T™*M. Without loss of generality we may assume that the coordi-
nate form of F is

F=ax'+ ..+ —a; .
r!

In this way, any local chart (x') on M induces a local chart (x§, X ..., %;,. ;)
on T™*M.

By Theorem 2, T™ is a prolongation cofunctor of ./ into "% and we can construct
the dual prolongation functor T" : # — ¥ 4.

Definition 5. The dual vector bundle
M = (T’*M)*

is called the r-th order tangent bundle of M and the induced map T’f : T'"M — T'M,
is said to be the r-th order tangent map of f : M —» M,.

By dualization, any local chart (x’) on M induces a local chart (x§, x', ..., x'*""")
on T'M.

We remark that one also can construct the r-th order tensor bundles over M,
see [6].

2. LINEAR MAPPINGS BETWEEN HIGHER ORDER TANGENT SPACES

Let p; denote the canonical projection of r-jets into k-jets, r > k. The kernel of
Bi_y: T™M — T"~'*M is naturally identified with the r-th symmetric tensor power
O'T*M, so that we have an exact sequence

(7 0 OT*M —» T*M L% T-1*m 5 0.,
The dual sequence is
(8) 0->T"'M->TM-OTM 0.
In particular, we have
IMcTMc..cT 'McTM.

For any f : M — M,, the following diagram commutes:
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) 0-T"'M>TM->OTM -0
lr=r 1y lorzr
0-T"'M, » T'"M, » O'TM, - 0,
see [3], [7]
Let g, h be real functions on M, g(x) = h(x) = 0. Since the r-th order partial

derivatives of the product g . h at x do not depend on the r-th order partial deri-
vatives of g and h at x, we have a well — defined map

pi (T ™M) x (TE ™M) > TI*M
(9, 5 )= g - b).
Since ‘u is symmetric and bilinear, it can be viewed as a map p: O*T."'*M —

- TI*M.

Lemma 4. The sequence

oM L M I T M S 0
is exact.

Proof. As g and h vanish at x, g . h has all the first order partial derivatives at x
equal to zero. Hence Im p = Ker B7. Conversely, if C e Ker B}, it can be written
in the form

C = jo(x* hy(x))
with h(0) = 0. This implies CeIm p, QED.

Let KIM = Kerp and S;*M = O*T;""*M | K M. Then we have an exact
sequence

(10) 0-S*M > T*M - T)M -0 -
and its dual ’

(11) 0->TM->TM->SM->0,
where

SiM = (S*M)* < O*T,"'M .
Lemma 5. Let f : M; —» M, f(y) = x. Then
‘ O*T"~Mf(KM) < KiM, .
Proof. Let u = (j;'g, i 'h) € KLM, ie. 0 = ji(g . h) e Ty*M. If

oZTr—I*f(u) = (j;_1 g(f)’jy_l h(f)) ’
then |

(57" a(N) 37" W) = 5(a(7) - W(A) = jla - b) () = Jlg - ) <y »
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where . denotes the composition of jets. The coordinate formula yields

0=jig.h)ojsfe T;*M,, QED.

Corollary 1. The mapping T'f dual to T™f has the property
T'f(S;M,) = SiM .
Coordinate formulae for mapings T"*f, T'f.

Let (x) or (y*) be local coordinates on M or M, respectively. Consider F : M — R,
F(x) = 0 and a mapping f: M, -» M with the coordinate form x’ = fi(y®). Let

];f = (ya: xi,fai’fai,uz’ "'1f¢i,...¢.-) ’
1...‘,-) € ’I‘;*M ’
T'*f(xis Xis eee fi,...i,.) = (ya’ Vs e ﬁa;...d,) .

From the coordinate formula for the composition of jets, we obtain

LF =(x), %, .., %

S _ <
Ya = xifa >

s — = iy £iz = fi1

ya;az - xiliz ayJaz -+ xi;fa,az ’
- —_—= iy {7 = i1 iz ip -1
Vay.oar = xl'xn-ipfal e a: + xil...ir-i(famz a3 "'fu: + ...+

iy 173 ir—1 = iy

+ Sl )+ e+ RS

Dualization yields the following coordinate formula for T'f:

(©2) T
ifedp=-1 __ gi1 { PSP TR SU iy iz ip=1
x = f ooyttt 4 (fR S St
i1 i2 ir=1Y) 4,@100
oo T L B e JEDG) Y

ifudy iy PR, TR
pd =Jag +-- lry .

Let
L:T/M, »TM

be an arbitrary linear mapping with the coordinate form

x'=alyt + al VI A+ +ah YT,
(13) e

xu...i.- = a‘l:,...x,ya; F oo ok aill...‘.‘::ryal...a.. .

Definition 6. We shall say that I’ is an r-mapping with respect to L1 : y M-
- T; 7'M, if I can be restricted to T,M; — T,M and the factor map

LM llT,M. -» TIM|T,M coincides with 021:-1'5'”1“l .
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Theorem 4. A linear mapping L' = T/M,; — T;M is of the form T, f iff
a) L can be restricted to L™ : T,"'M, - T;"'M,

b) L~ is of the form T, 'f,

c¢) L is an r-mapping with respect to L™,

Proof consists in direct evaluation in local coordinates, which we omit here.

3. REGULAR CONNECTION ON' T'M

Given a vector bundle E — M, its first jet prolongation J'E is also a vector bundle
over M. A conncction on E means any linear morphism I' : E — J'E satisfying
B o I' = idg. If we have some local coordinates x’, y* on E, then the equations of I
are

(14) ¥i=T5(x) ",

where y} are the induced coordinates on J'E, [1], [5].

The set LE of all linear isomorphisms between the individual fibres of E is a Lie
groupoid in the sense of Ehresmann. For every ® € LE, & : E, — E,, we set ad = x,
b® = y. Let QLE — M be the fibred manifold of all (first order) elements of con-
nection on LE, i.e. every A€ (QLE),‘ is the 1 — jet at x of a local map ¢ of M into LE
satisfying a ¢(t) = x, b ¢(t) = t for all ¢t and ¢(x) = id,_. Every section y : M —
— QLE determines a connection I' on E as follows. If y(x) = ji &(t), then y(¢) (»)
is a local section of E for every y € E, and we put I'(y) = j:[®(f) (v)]. Given a sub-
groupoid Q < LE, a connection I' on E is said to be an Q — connection, if it is
generated by a section y : M — QQ, i.e. for every x € M there is a local map ¢ of M
into Q with a ¢(t) = x, b (t) = t and ¢(x) = idg_ such that I'(y) = ji[e(?) (»)]
for all yeE,.

In particular, let #"(M) denote the groupoid of all invertible r-jets of M into itself.
Every element of n'(M) with a source x and target y determines a linear map of T;M
into Ty M, so that n"(M) is a subgroupoid of L(T"M). A connection on T"M will be
called regular, if it is a n"(M) — connection in the above sense. Using Theorem 4,
we shall characterize the regular connections. However, we first explain some neces-
sary general ideas. .

Let E; — M be another vector bundle and I'; a linear connection on E; with the
equations

(15) ‘ 2} = Fix) 2"

in some local coordinates x, z* on E,. According to [2], I' and I'; determine a con-
nection I' ® I'; on the tensor product E ® E, ‘with the following equations:

(16) wit = Ipwht + Thw™,

provided w** are the induced coordinates on E ® E,.
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