

Werk

Label: Table of literature references

Jahr: 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0106|log111

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

cycle is a loop) and by $\lambda(C)$ we denote the maximal length of a directed path in this component which contains no edge of the cycle (it may be 0, if C consists only of a cycle).

Now we shall prove a theorem which gives a characterization of the finite graphs G(S, a).

Theorem. Let G be a finite directed graph in which each vertex has the outdegree 1. The graph G is isomorphic to the graph G(S, a) for a semigroup S and its element a if and only if it contains a connected component C with the property that for each connected component D of G the number $\varkappa(D)$ divides $\varkappa(C)$ and $\lambda(D) \leq \lambda(C) + 1$.

Proof. Suppose that G is isomorphic to G(S, a) for some S and a. Let a have a period h and a pre-period k; this means that the elements $a, a^2, ..., a^{h+k-1}$ are pairwise distinct and $a^{h+k} = a^k$. Hence in G there exists a cycle of the length h and a directed path of the length k whose terminal vertex belongs to this cycle; the initial vertex of this path corresponds to the element a. Now let x be an arbitrary vertex of G (i.e. an element of S); let D be the connected component of G containing x. Let p be the length of the directed path outgoing from x, incoming into a vertex of a cycle and containing no edge of this cycle; evidently $p \le \lambda(D)$. Let $q = \kappa(D)$. Then the elements $x, xa, xa^2, ..., xa^{p+q-1}$ are pairwise distinct and $xa^{p+q} = xa^p$. If q does not divide h, then k and h + k are not congruent modulo q and thus $xa^k \ne xa^{h+k}$, which is a contradiction with the assumption $a^{h+k} = a^k$. Hence q must divide h and h is $\kappa(C)$, where C is the connected component of G containing a. Now suppose $p \ge k + 2$. Then xa^{k+1} is distinct from xa^l for each $l \ne k + 1$. But, as $a^{h+k} = a^k$, we must have $xa^{k+1} = xa^{h+k+1}$, which is a contradiction. Hence $p \le k + 1 \le \lambda(C) + 1$. Thus the necessity of the condition is proved.

Now suppose that the condition is fulfilled. In C take a directed path containing no edge of a cycle and having the length $\lambda(C)$; its initial vertex will be a. Take all sources of G and if G contains connected components distinct from C which are cycles, choose one vertex in each of them. The set thus obtained will be denoted by B. The vertex a and the vertices of B will be considered elements of a semigroup S. Each remaining vertex will be denoted as a power of a or a product of an element of B with a power of a in the way corresponding to the definition of G(S, a). Further, we introduce the equality xb = b for each $x \in S$ and each $b \in B$. Thus we have defined a semigroup S such that G is isomorphic to G(S, a).

Reference

[1] Teh, H. H. - Shee, S. C.: Algebraic Theory of Graphs. Singapore 1976.

Author's address: 406 01 Liberec 1, Komenského 2 (katedra matematiky VŠST).