

Werk

Label: Obituary

Jahr: 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0106|log107

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen $y > y_0$ can be proved similarly as in [4], p. 126, (14), if we consider the continuity properties of the function B. We have proved the relation (6), and Theorem 2 as well.

If we want to deduce Theorem 1 from Theorem 2, i.e., to verify that $g(x) = \sum_{n \le x} A(n) \log(x/n) = x + O(x \log^{-k} x)$, $x \to \infty$, for any $k \in N$, we must put $A(x) = g(e^x)$ in Theorem 2 and show that in the halfplane Re s > 1 the relation

$$-\frac{\zeta'(s)}{s^2\zeta(s)} = \int_1^\infty \frac{g(x)}{x^{s+1}} dx = \int_0^\infty g(e^x) e^{-xs} dx$$

holds. It can be verified without any difficulties that the function $f(s) = -(\zeta'(s)/s^2 \zeta(s))$ satisfies all the assumptions of Theorem 2 for any $n \in N$; the integrability of the *n*-th derivative of the function f(s) - 1/(s - 1) was verified in the third section. According to Theorem 2 we have $e^{-x} g(e^x) = 1 + O(x^{-n})$, $x \to \infty$, i.e. $g(x) = x + O(x \log^{-n} x)$, $x \to \infty$, q.e.d.

It seems quite probable that no better estimation of the remainder term in the prime number theorem can be proved by the method used in this paper than $O(x \log^{-k} x)$, $x \to \infty$.

References

- [1] Diamond H., Steinig J.: An elementary proof of the prime number theorem with a remainder term. Investigationes math. 11 (1970), 199-258.
- [2] Edwards H. M.: Riemann's zeta function. Academic Press 1974.
- [3] Grosswald E.: Topics from the theory of numbers. The MacMillan company 1966.
- [4] Chandrasekharan K.: Introduction to analytic number theory. Springer Verlag 1968.
- [5] Schwartz L.: Математические методы для физических наук. Moskva 1965.
- [6] Titchmarsh E. C.: The theory of Riemann zeta function, Oxford: Clarendon Press 1951.
- [7] Walfisz A.: Weyl'sche Exponentialsummen in der neuere Zahlentheorie, Berlin 1963.

Author's address: Vysoká škola strojní a elektrotechnická, Nejedlého sady 14, 300 00 Plzeň.