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y > yo can be proved similarly as in [4], p. 126, (14), if we consider the continuity
properties of the function B. We have proved the relation (6), and Theorem 2 as well.

If we want to deduce Theorem 1 from Theorem 2, i.e., to verify that g(x) =
= ZA(n)log(x/ )=x+ O(xlog™ x), x > oo, for any keN, we must put

A(x) = g(e*) in Theorem 2 and show that in the halfplane Re s > 1 the relation
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holds. It can be verified without any difficulties that the function f(s) =
= — (¢'(s)/s* (s)) satisfies all the assumptions of Theorem 2 for any n € N; the in-
tegrability of the n-th derivative of the function f(s) — 1/(s — 1) was verified in the
third section. According to Theorem 2 we have e *g(e*) = 1 + O(x™"), x - oo,
ie. g(x) = x + O(xlog™" x), x - 0, q.e.d.

It seems quite probable that no better estimation of the remainder term in the prime
number theorem can be proved by the method used in this paper than O(x log™* x),
X — o0.
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