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DIFFERENTIAL EQUATIONS WITH INTERFACE CONDITIONS
STEFAN SCHWABIK, Praha
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In this note, the theory of generalized linear differential equations will be applied
to some linear systems of ordinary differential equations with interface conditions.

1. INTERFACE PROBLEMS AND GENERALIZED LINEAR
DIFFERENTIAL EQUATIONS

Let us consider the ordinary linear differential system
(1.1) x=F(t)x + g(t), te[0,1]

where F:[0,1] - L(R,) is an n x n-matrix valued function and g:[0,1] — R,.
Both F and g are assumed to be Lebesgue integrable on [0, 1].
We consider the system (1.1) together with interface conditions

(1.2) M;x(t;—) + N;x(t;+)=¢;, j=1,2,..,k

where 0 = t, < t; <1, <... <t < tiyy =1, M;, N;e L(R,, R,,) are real m x n-
matrices and ¢;eR,, j =1,..., k.

1.1. Definition. A function x : [a, b] > R,, [a, b] = [0, 1] is called a solution
of the interface problem (1.1), (1.2) on [a, b] if

a) x is absolutely continuous on every interval of the form [a, b] N (t;_;, t)),
j=1,..k+1,

b) x satisfies (1.1) almost everywhere in [a, b],

c) for every t;e(a, b), j = 1,..., k the interface condition (1.2) is satisfied.

Remark. Interface problems of this type are described and studied in various

papers, see e.g. [1], [2], [3], [4], [7], [8]- The discontinuity of solutions of interface
problems is caused by the nature of the conditions (1.2). The generalized linear
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differential equations have also the property that they admit discontinuous solutions,
see e.g. [6]. This leads to the natural question about the connection between interface
problems and generalized differential equations. The first question concerns the
possibility of describing the interface problem (1.1), (1.2) by a generalized linear
differential equation. If this is possible then we can ask for the counterpart of the
results on generalized linear differential equations in the theory of interface problems.

We consider the interface problem (1.1), (1.2) for which the solution can be con-
tinued from the left to the right, i.e. we require that, given x(1—), it is possible to
determine x(¢+) (not uniquely in general). This requirement transfer to the interface
conditions (1.2) in the sense that the solvability of the linear algebraic equation
in x(t;+)

N x(t;+) =¢; — M;x(t;—), j=1,...k
will be assumed for every given x(tj—) € R,. This means that we have 10 assume that
¢;— Mx*eR(N)), j=1,..,k

holds for any x* € R,, where R(N) < R,, stands for the range of an m x n-matrix N,
i.e. R(N) s the linear span of all column vectors of the matrix N. Hence we have the
inclusion

c;+RM)<=R(N), j=1,...k

which is clearly equivalent to
(1.3) c;eR(N), j=1,....k
(1.4) R(M)) < R(N)), j=1,..,k.

If the conditions (1.3) and (1.4) are not satisfied, then there exists a value x(t;,—)
such that x(t;+) cannot be determined in such a way that (1.2) holds.

1.1. Lemma. The condition (1.3) holds if and only if there exist d;eR,, j =
=1,..., k such that
(1.5) Nd, =c;,, j=1,..k.

The condition (1.4) holds if and only if there exist D;eL(R,),j=1,..., k such
that

(1.6) M;+ND,=0, j=1,..k.

Proof. The first assertion is trivial. In order to prove the second statement, let us
mention that the matrix equation M; + N;X = 0 has a solution X e L(R,) if and
only if rank N; = rank (N;, M)), i.e. every column of the matrix M; depends linearly
on the columns of the matrix N;. Hence the mentioned matrix equation has a solution
D, e L(R,) if and only if R(M,;) = R(N)).
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In the sequel we assume that the interface conditions (1.2) satisfy (1.3) and (1.4)
(or the equivalent conditions given by Lemma 1.1).

Remark. Let us mention that if the continuability conditions (1.3) and (1.4) are
satisfied then for any (X, 7) e R, x [0, 1] and integrable g : [0, 1] — R, there exists
a solution x(¢) of the interface problem (1.1), (1.2) on the interval [%, 1] such that
x(%) = x. On the other hand if the conditions (1.3) and (1.4) are not satisfied then it is
possible to show that there exists an initial point (X, ¥) € R, x [0, 1] and an integrable
function g : [0, 1] — R, such that the interface problem (1.1), (1.2) has no solution x
defined on the whole interval [#, 1] and such that x(¥) = X.

Further, it is easy to see that if m = n and det N; + 0, j =1, ..., k then (1.3)
and (1.4) are satisfied. According to Lemma 1.1 we have in this case d; = Nj“cj
and D; = —N;j'M;,j=1,.., k.

Let us now define, for t € [0, 1],
t k
(17) A(l) = J F#) de + 3. (B, = ) 3(0)
5 0 J=
and

(19) f() = J 'g(x) de +J_§1d,. 0

where i, (t) = 0if t < o, Y, (t) = 1if t > @, d;, D;, j = 1, ..., k are determined by
(1.5), (1.6), respectively, and I is the unit matrix in L(R,).

Evidently A : [0, 1] - L(R,), f: [0, 1] - R, are functions of bounded variation,
left continuous on [0, 1],i.e. A”A(f) = A(t) — A(t—) = 0, Af(¢) = f(t) — f(t—) =
= 0 for every te(0,1], A*A(t) = A(t+) — A(t) = 0, A*f(t) = f(t+) — f(r) = 0
for te[0,1), t + t; and

(1.9) A+A(tj) = Dj K ', A+f(tj) = dj ’ j = 1, eney k .
We consider the generalized linear differential equation
(1.10) dx = d[A] x + df

(see [5], [6]). Letx : [a, b] = R,, [a, b] = [0, 1] be a solution of (1.10). By defini-
tion we have

(L11) x(s) = x(} + f d[A(@)] x(¢) + f(x) — f(o)

for every 7, 0 € [a, b] (the integral used in (1.11) is the Perron-Stieltjes integral).
Using (1.7) and (1.8) we have by (1.11) for 7,6 € [a, b] n [t;-1, t;], = 1, ..., k

x(z) = x(0) + f "Fo)x(e) do + f glo)de

o

and a straightforward argument shows that the solution x : [a, b] —= R, of (1.10)
satisfies a) and b) from Definition 1.1.
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Using the results known for generalized linear differential equations (see [6],
III.1) we have

x(t—) = [1 - A~A@)]x(1) — A~f(t) = x(i), te(a, b]

x(t+) = [+ A*AQ] () + A*F(), te[ab),

ie. x(t+)=x(t) if te[a,b), t £1; and x(t;+) = D;x(t;) + d; for t;€[a,b).
(The onesided limits of the solution x(t) exist, because every solution of (1.10) is of
bounded variation.)
Hence by (1.5) and (1.6) we get
M;x(t;—) + N;x(t;) = M;x(t;) + N,(D; (1)) + d;) =
=(M; + N;D))x(t;) + Nd; = ¢;

and

forallt;e(a, b),j = 1, ..., k and the solution x of (1.10) satisfies also c) from Defini-
tion 1.1. In this way we can conclude that every solution of (1.10) is also a solution
of the interface problem (1.1), (1.2).

Assume conversely that x : [a, b] = R, is a solution of the interface problem (1.1),
(1.2) which is left continuous on [a, b]. Then we have

M;x(t;—) + Nyx(t;+) = M;x(t;) + N;x(t;+) = ¢; = Nid; =
= (M; + N;,D))x(t;) + Nd;
for every t; e (a, b),j =1, ..., k, where d;, D; are given in Lemma 1.1. Hence

N; x(t; +) = N;D; x(t)) + Nyd;,
i.e.
x(t;+) — D; x(t;) — d;e N(N,))

where N(N;) denotes the null-space of the matrix N;. This yields for every t;e
€ (a, b) the equality :
x(t;+) = D; x(t;)) + d; + 2

with some z; € R, such that N;z; = 0 (z;e N(N;)).
Ifwesetd, =d, +z;,j=1,...,kand define
t k
f() = f g0 de + T i), tefat]
0 i=

then it can be easily shown that for any o, 7 € [a, b] we have

x(®) = (o) = j "F(0) x(0) do + j s)de+ ¥ [(D, - )x(t) + ;] =

tselo,t)

- J" d[A()] x(0) + F(z) - F(0)
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and consequently x : [a, b] —» R, is a solution of the generalized linear differential
equation

dx = d[A] x + df

which is of the form (1.10). The only difference is the form of f which differs from f
given by (1.8) in the second term. In this way we have obtained the following

1.1. Theorem. If the interface conditions (1.2) satisfy (1.3) and (1.4) then every
solution of the generalized linear differential equation (1.10) with A, f given by
(1.7), (1.8), respectively, is a solution of the interface problem (1.1), (1.2). Con-
versely, every left continuous solution of the interface problem (1.1), (1.2) is a solu-
tion of (1.10) with A, f given by (1.7), (1.8) where D;, d;, j = 1, ..., k satisfy (1.6),

(1.5).

Remark. Let us mention that if the conditions (1.3) and (1.4) are satisfied then
for every initial point X € R, and g integrable on [0, 1] it is possible to construct
a “train” composed of k + 1 pieces of Carathéodory solutions of the differential
equation (1.1) on [0, t,], [#,, 1], ..., [#, 1] in the sense of CoNTI [2] such that the
solution x(¢) on [0, t,] satisfies x(0) = x.

The left continuity of solutions of the interface problem (1.1), (1.2) is a requirement
which can be easily satisfied for an arbitrary solution by changing its values at every
point of discontinuity.

The class of generalized linear differential equations (1.10) corresponding to the
problem (1.1), (1.2) depends on the null-space N(N;) of the matrices N; (see Lemma
1.1 and the definition of A(¢) and f(t) given in (1.7) and (1.8)). For example, the
difference of any two functions f(t), f(f) corresponding to the problem (1.1), (1.2)

k

is of the form Y z; ¥, (t) where z; e N(N;); similarly for the matrices A(f) of the
system (1.10). =1

1.2. Theorem. Assume that the interface conditions satisfy (1.3) and (1.4). Let
x, y be two solutions of the interface problem (1.1), (1.2) defined on [a, b] < [0, 1],
left continuous on [a, b]. Then the difference z(t) = x(t) — y(t), t € [a, b] satisfies
the generalized linear differential equation

(1.12) dz = d[A] z + dh
where A is given by (1.7) and h : [0, 1] - R, is a function of the form
k .
(1.13) h(r) = -lej v, tefo,1]
=

With ZjGN(Nj), i.e. szj = o,j = 1, ey k.

Proof. Let D;,j = 1, ..., k be given as in Lemma 1.1 and let A be defined by (1.7).
By Theorem 1.1 the functions x, y satisfy the equations dx = d[A] x + df, dy =
= d[A] y + dfwhere
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0 - [[#04+ X440, 10 = [ s ae+ 4v30,

te[0,1] with N, =c¢;, Nd;=c;, j=1,....,k. Hence z; = d; — d;e N(N,),
j=1,...,k and

k
h(t) = (1) — f(1) =_=le,. vi(), tef0,1].
The difference z(t) = x(t) — y(t) evidently satisfies the equation
dz = d[A]z + d(f - f)

and this yields the statement of the theorem.

1.1. Corollary. If the conditions (1.3), (1.4) are satisfied and x :[a, b] - R,
is a fixed left continuous solution of the interface problem (1.1), (1.2) on [a, b]
then an arbitrary left continuous solution of the interface problem (1.1), (1.2)

is of the form x + z, where z : [a, b] — R, is a solution of the generalized linear
differential equation (1.12).

The proof of this statement easily follows from Theorems 1.1 and 1.2.
Let us now assume that instead of (1.4) the stronger condition

(1.14) R(M,) = R(N,), j=1,...k

is satisfied. This condition ensures the continuability of a solution of the interface
problem from the left to the right as well as in the opposite direction.

1.2. Lemma. Assume that M, N are m x n-matrices. Then the equality R(M) =

= R(N) holds for their ranges if and only if there exists a regular n x n-matrix D
such that

(1.15) M+ ND=0.

Proof. Assume that R(M) = R(N). This is equivalent to the fact that the linear
spans of the columns of M and N coincide. Let us write M = (M,, ..., M,) and
similarly N = (N, ..., N,) where M,, N, denote the I-th columns of M, N, respec-
tively. It is known from linear algebra that there exists a regular n x n-matrix R
such that

MR = (M,, ..., M,,0, ..., 0)

where M, ..., M, are linearly independent columns of M, k = rank M and similarly
there is a regular n x n-matrix § such that

NS =(N,,...,N,,0,...,0)

where N, N,,..., N, are linearly independent columns of N, k = rank N =
= rank M. Since R(M) = R(N), the linear spans of the vectors M,, ..., M, and
N,, ..., N, are the same and consequently there is a regular k x k-matrix U such
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that (My, ..., M) U = (N, ..., N,). If we set

U, 0
ity

then MRT = (M, .., M,,0,...,0)T = (N,,...,N,,0,...,0) = NS and Tis a regu-
lar n x n-matrix. If we set D = —ST !R™! then D is a regular n x n-matrix such
such that M = — ND and this proves the “only if* part of the lemma. The second
implication is evident.

Lemma 1.2 yields immediately

1.3. Lemma. The condition (1.14) holds if and only if there exist regular n x n-
matrices D; e L(R,) such that

(1.16) M,+ND,=0, j=1,.. k.

Let us now consider the generalized linear differential equations (1.10) with A(r)
given by the relation (1.7) where the matrix A(r) is constructed by means of the regular
n x n-matrices D;, j=1,..., k given by Lemma 1.3. In this case we have
det (I + A*A(t)) + 0 for every t € [0, 1) (see (1.9)) and also det (I — A™A(t)) =
= detl = 1 for t€(0, 1]. Hence by Theorem III.1.4 in [6], to every (X, ) e R, x
x [0, 1] and f: [0, 1] > R, of bounded variation on [0, 1] there exists a unique
solution of (1.10) defined on [0, 1] such that x(¥) = x. This yields the following
result.

1.4. Theorem. If the interface conditions (1.2) satisfy (1.3) and (1.14) then the
conclusions of theorem 1.1 hold. Moreover, to the interface problem (1.1), (1.2)
there exists a generalized linear differential equation (1.10) which is uniquely
solvable on the interval [0, 1] for every initial point (x, )€ R, x [0, 1] and every
right hand side f of bounded variation on [0, 1].

Every solution of a generalized linear differential equation of the form (1.10),
where the matrices D, j = 1, ..., k occuring in the definition (1.7) of the matrix A
are regular can be given by the variation-of-constants formula (see 111.2.14 in [6]),
i.e.

117 x(t) = X()e - x(t)j' 4[X ()] £s) + (), te[0,1]

0
where X : [0, 1] - L(R,) is the uniquely determined solution of the matrix equation
(1.18) X() =1+ J.td[A(r)] X(r), te[o,1]

0

called the fundamental matrix and c € R, is arbitrary.
For our purposes it is more convenient to have a formula for the solution using
the conventional fundamental matrix of the differential equation (1.1).
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Assume that te(t;, t;+,],j = 1, ..., k. Then by (1.18) we have

© X0 =X + [ ] X0

and taking into account the definition of A(r) from (1.7) we get

x)= x0) + [ o[ ['Ferae + £.0, ~ w30 x0) -

tj 0

= X(1)) + ﬂr(r) X(r)dr + (D; — 1) X(t)) =

t
= D; X(t;) +J' .F(r) X(r)dr.
1)
Hence for t € (tj, tj“],j = 1, ..., k the fundamental matrix X(¢) satisfies
(1.19) X(1) = U(1, t;) D; X(1))

where U(t, 7) is the fundamental matrix corresponding to the equation (1.1), i.e. for
every t, T€ [0, 1] we have

Ut =1+ fF(r) U(r,7)dr.
Using (1.19) we have
(1.20) X(t) = U(1,0) for tel0,1t,],
X(t) = U(t, ;) D; X(t;) =
= U(t,t;) D; U(t;, t;_) D;_; ... Dy U(,,0) for te(t; t;4q]-
Integrating by parts in the integral in (1.17) (see 1.4.33 in [6]) we get
x(t) = X(t) e + f(t) - X(t)[—J‘;X“(s) df(s) + X~'(¢) f(r) — X~1(0) f(0) —
_og«yx-l(r)yf(t)] _

= X() < + X() f X)) + X0, T AKX A,
The definition (1.8) of f yields further
(120) x()= X< + X0 [ X0 g) s + X0) T (X7'6)4*F(0) +
+ AT M) =
= X+ X0) [ X ) s + X0 T X6+ 271(0) =
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= X(1) ¢ + X(1) J:)X"(s) g(s)ds + X(I?KZ X~Y(t;) D} 'd;

tj<t

because A*f(t) =0 for v+ t;, j = 1,...,k, A*f(t;) = d; and X(t;+) = D; X(t;),
j=1, ..., k(see(1.19)).

It is a matter of routine to insert (1.20) into (1.21) and to derive the following
result, which describes the solution of (1.10) in terms of the interface problem

(1.1), (1.2).

1.4. Theorem. If the n x n-matrices D;, j = 1, ..., k occuring in the definition
(1.7) of A(t) are regular, then every solution x :[0,1] > R, of the generalized
linear differential equation (1.10) is given by the formula (c € R, is arbitrary)

(1.22) x(1) = U(t,0)c + U(1, O)J;U(O, s)g(s)ds for te[0,¢,],
x(t) = U(1,1;) D; U(1,t;_,) D;_, ... D, U(t, 0) <c +Itlu(0, s) g(s) ds) +

Jj—1 ti+1
+I"‘Zl U(t,1;) D; U(t), t;_q) ... Dyyy U(tyyy, t,)(d, +J. U(t,, s) g(s) ds) +

3]

+ U(1, t,)(dj +f u(t;, s) g(s)ds) Jor te(t,tjy].i=1...k (ties=1).
tj .

1.5. Theorem. If the conditions (1.3) and (1.14) are satisfied for the interface
conditions (1.2) then the formula (1.22) yields a left continuous solution of the
interface problem (1.1), (1.2) provided D;, j =1,...,k are the regular n x n-
matrices from Lemma 1.3. Moreover, every left continuous solution of the interface
problem (1.1), (1.2) can be written in the form

(1.23) x(t) = U(1,0) c + U(1,0) Jt)U(O, s)g(s)ds for te[0,1t,],
x(t) = U(t,t;) D; U(t;, t;—y) D;_y ... D, U(t,, 0) (c + J-nU(O, s) 8(s) ds) &
+ YUt 1D, U(t) t;_1) ... Dy Ultyso, tl)(d, +z, +j"+'U(t,, 5) g(s) ds) +

t
+ U(t, tj)(d,- + z; +J- U(t, s) g(s)ds) for te(t,tq]i=1,...k,
1

where c€ R, is arbitrary, d;e R, are such that N;d; = c; and z;e N(N,), j =
=1,..,k. :

Proof. By Theorem 1.3 the function given by the formula (1.22) in Theorem 1.4
is a solution of the interface problem (1.1), (1.2). By Corollary 1.1 every left con-
tinuous solution of the interface problem (1.1), (1.2) can be expressed in the form of
the sum of the function from (1.22) and an arbitrary solution z of the equation
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(1.12). Using the variation-of-constants formula for the equation (1.12) we can
evaluate the function z (the procedure is the same as for the solution of the equation
(1.10) in Theorem J.4):

z(t) = U(t,0)c for te[0,t,],
z(t)j:—-l U(t,t;) D; U(t;, t;) D;—y ... D, U(t;, 0) c +
+lZlu(t, t)D; U(t), tiq) ... Dyyy U(tyhq, 1) 2, +
+ Ut t)z; for te(tj,t;nqg], j=1,..,k

where z;e N(N;), j = 1, ..., k and c € R, is arbitrary. Adding the function z to the
function from (1.22) we get (1.23). '

Remark. Let us assume in addition that the null-spaces of the matrices N;
satisfy

(1.24) N(N)={0}, j=1,...k.

Then the matrices D;, j = 1, ..., k are uniquely determined by (1.16). Indeed, if we
have M; + N;D; = 0 as well as M; + N,D; = 0 for some j, then N(D; — D;) = 0
and consequently D; = b ;- Hence also the matrix-valued function A(t) is uniquely
determined by (1.7). Moreover, to every ¢; € R(N;) there is a uniquely determined d;
such that N;d; = c; and consequently also the function f(t) is given uniquely by (1.8).

If the interface conditions (1.2) are such that (1.3), (1.14), (1.24) hold then evidently
there is a one-to-one correspondence between the interface problem (1.1), (1.2) and
the generalized linear differential equation (1.10) with A, f given by (1.7), (L.8),
respectively.

The situation when (1.3), (1.14), (1.24) are satisfied occurs for instance, when
m=n,det N; £ 0,det M; £ 0, j = 1, ..., k. Of this type are the so called “shock
conditions” x(t;—) — x(t;+) = ¢;, j = 1,..., k or conditions of the form x(t;—) +
+ N; x(t;+) = c;withdet N; £0,j = 1,..., k.

2. BOUNDARY VALUE PROBLEMS WITH INTERFACE CONDITIONS

In this section we turn our attention to the two-point boundary value problem for
interface problems, i.e. we consider the system

(2.1) x=F(t)x + g(t), te[0,1],
(2.2) M; x(t;)) + N;x(t;+)=¢;, j=1,..,k,
(23) M x(0) + N x(1) = r-

with F, g, M;, N;,c;, j = 1, ..., k given in Section 1 and M, Ne L(R,, R,), r€ R,
Let us assume that the interface conditions (2.2) satisfy (1.3), (1.14) and (1.24),
ie. c;eR(N;), RMM;) = R(N)), N(N))={0}, j=1,.... k.
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Under these conditions it is possible to associate with (2.1), (2.2) a generalized
linear differential equation

(24) dx = d[A] x + df

which is uniquely solvable for every initial point (x, ¥)e R, x [0, 1]. (See Theorem
1.3.) We consider the boundary value problem (2.4), (2.3). For problems of this
type some results are known (see [5], [6]). Our aim is to modify these results to the
problem (2.1), (2.2), (2.3).

Let us define

(2.5) B(1) = J:F(ﬂ dr +j§k:l(Dj - Ny (1), tel0,1]

where Y, (1) = 0if t <o, Y (1) =1if t 2 &, D;, j =1,..., k are determined by
(1.6) and are unique since (1.24) is assumed, (1.14) implies the regularity of D;
j=1,..,k. We have evidently B(t+) — A(t+) = B(t—) — A(t—) = 0 for all
1e(0,1), A(0) = B(0), A(1) = B(1), A*B(t) A*A(t) = A"B(t) A" A(¢) for all t € (0, 1)
and

det (I + A*A(t))det (I + A™B(t))det (I — A™A(t)) £ 0

since I+ A*A(t;))=1+ A"B(t;)=D;, j=1,...,k and D; are regular n x n-
matrices, A"A(f) = 0 for all te(0,1] and A*A(r) = A™B(t) = 0 for te(0, 1),
t *t;j =1,..., k. The matrix valued function A is given by (1.7) in Section 1.
Using the results from [6] (Theorem II1.5.5) we obtain the following result:
The boundary value problem (2.4), (2.3) possesses a solution if and only if

(9) P = ¥ £0) - [ a0 = 2+
for any solution (y, 4) of the homogeneous system

27) dy = —d[B*]y,

(2.8) y(0) + M*A =0, y(1)— N*A=0

(a star denotes the transpose to a matrix).
The properties of B : [0, 1] — L(R,) ensure that for every (¥, i) € R, x [0, 1] the
equation (2.7) has a uniquely determined solution y : [0, 1] — R, satisfying y(?) = y.
Let us consider a solution y : [0, 1] — R, of (2.7). Using the results of IIL.1 in [6]
we have :

y(t+) = [1 + AT (=B*(1))] y(t) = (I — A*B*(1)) y(1) = y(1), te[0,1)
=) = [1 = A= Y() = (1 + A°B*(0) Y() = ¥(0)
for te(0,1], t 1, j=1,....k
=) = (0 + ABR(0) Y1) = DY y(t). 4= L.k,

and
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i.e.

y(t;—) — D} y(1;) = 0.
Further it is evident that y is absolutely continuous on every interval of the form
(tj-1, ;). j = 1,...,k + 1 and y satisfies the ordinary differential equation '

y=—-F)y

almost everywhere in [0, 1]. This follows from the fact that we have by definition

x(9) = x(0) + [ A[-B*@N o) = xt0) - [ (@ ¥le) o

for any 7,0 €(t;_y, t;), j = 1, ..., k. Hence every solution y : [0, 1] —» R, of (2.7) is
a solution of the interface problem

(29) y=—-F@)y,

(2.10) y(t;—=) — D} y(t;) = 0.

It is easy to check that conversely every solution of the interface problem (2.9), (2.10)
is a solution of (2.7).

Taking this fact into account we reformulate the solvability condition (2.6) as
follows.

2.1. Theorem. Assume that the interface conditions (2.2) satisfy (1.3), (1.14)
and (1.24). Then the boundary value problem (2.1), (2.2), (2.3) has a solution if and

only if
(2.11) J.ly*(t) g(t) dr + i Y*(l_,') dj = A*r
1] F=1

Sor any solution (y, A) of the homogeneous problem (2.9), (2.10) with the parametric
boundary conditions
(2.12) y(0) = —M*A, y(1) = N*A.

Proof. Using the integration-by-parts formula (see Theorem 1.4.33 in [6]) and
taking into account the form of f given in (1.8) we have

PO = O £0) - [ O1£6) = [0 arfo)] -
- [roa[ [0+ Favi0] - [rosma+ Troe.

0

This together with (2.6) yields (2.11).

Remark. The parametric boundary value problem (2.9), (2.10), (2.12) plays the
role of an adjoint problem to the problem (2.1), (2.2), (2.3).
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If 0 < m < 2n and rank N = rank (M, N) = m then there exist uniquely deter-
mined matrices P, Q € L(R,,_,, R,) and P°, Q° e L(R,,, R,) such that

P, P
det| .. =0
.
and —MP° + NQ° =1, —MP + NQ = 0; P, Q are the so called adjoint matrices
associated with [M, N] and P, Q° the complementary adjoint matrices associated
with [M, N]. Using this concepts and the results from I1I1.5.18 in [6] we obtain the
following theorem.

2.2. Theorem. Let the assumptions of Theorem 2.1 be fulfilled. Then the boundary
value problem (2.1), (2.2), (2.3) has a solution if and only if

@) [y Ty )4 - rOF + el

for any solution of the system (2.9), (2.10) with the homogeneous boundary con-
dition
(2.14) P*y(0) + Q*y(1) = 0
where P, Q, P, Q° are the adjoint and the complementary adjoint matrices asso-
ciated with [M, N].

The interface problem (2.9), (2.10) together with the boundary condition (2.14)
represents the nonparametric form of the adjoint problem to (2.1), (2.2), (2.3).

Let us now assume that for the interface conditions (2.2) the assumption (1.24)
is not satisfied, i.e. N(N;) # {0} for some j = 1, ..., k. In this case, to the interface

problem (2.1), (2.2) there is a variety of generalized linear differential equations of
the form

(2.15) dx = d[A] x + d(f + h)
k
where h(t) = Y z;y;(t), te[0,1] and z;e N(N;), j =1,..., k are arbitrary. In
j=1

this case every solution of the interface problem (2.1), (2.2) is also a solution of an
equation of the form (2.15) (see Theorem 1.2).
This leads to

2.3. Theorem. Assume that the interface conditions (2.2) satisfy (1.3) and (1.14).
Then the boundary value problem (2.1), (2.2), (2.3) has a solution if and only if there
exist ;e N(N;), j = 1, ..., k such that

(2.16) j:y*(t) g(r)dt +,§1y*(t’) (d; + z;) = A*r

for any solution (y, 4) of the homogeneous problem (2.9), (2.10) with the boundary
conditions (2.12).
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Remark. A similar result can be derived if the nonparametric adjoint problem
(2.9), (2.10), (2.14) is used (see Theorem 2.2). The authors in [5] use a different ap-
proach to adjoint equations for the generalized linear differential equation (2.4).
The adjoint problem to (2.1), (2.2), (2.3) in the sense of [5] has the form (see Remark
3.9in [5])

(2.17) dz + d[A*z] — Ad[z] =0

(2.18) 2(0) = —M*i, z(1) = N*A

where (2.17) stands for the equation

(2.19) z(t) — z(s) + A*(1) z(t) — A*(s) z(s) —-ﬁA*(r) dz(r) = 0

which has to be satisfied for every s, t € [0, 1] provided z : [0, 1] — R, is a solution
of (2.17).
It can be shown by integration by parts that

JtA*(r) d[z(r)] = - de[A*(r)] z(r) + A*(t) z(1) — A*(s) z(s) _s§;<tA+A(T) A*z(7)

for every solution z : [0, 1] — R, and any s, t € [0, 1]. Hence (2.19) implies

z(t) — z(s) + J.d[A*(r)] z(r) + Z A*A*(1) A*z(r) = 0

S t<t

foralls, te [0, 1]. Hence we have in our case

t
z(t) = z(s) — fd[A*(r)] z(r) = z(s) - IF*(r) z(r) dr
forany s, te (t -1, 1 ,-) and the solution of ( 2.17) satisfies the differential equation
z=—-Ft)z

a.e. in [0, 1]. Moreover, the solution z is left continuous in [0,1] and

2(s + ) = z(s) — f dA*() () ~ T A*AR)A*2(E)

s t<S

foreveryse[0,1)andé > 0 such that s + 0 < 1. Passing to the limit & — 0+ we get
2(s+) = z(s) — ATA*(s) 2(s) — ATA¥(s) A" 2(s) = z(s) — ATA*(s) 2(s+).
Hence z(s+) = z(s) for s [0,1), s+ t;, j = 1, ..., k'and
2(t) = (1 + A*A%1) 2(t,+) = D] (,+)
forall j=1,..., k.

404



This implies that the equation (2.17) is equivalent to the interface problem
z=-Fz,
z(t;) - DY z(t;+) =0, j=1,.. k.

If we compare this problem with the problem (2.9), (2.10) then we can observe
that the only difference is the fact that in the former case the solution is assumed to
be left continuous while in the latter one it is right continuous. The solvability condi-
tions given by Theorem 2.3 remain the same (see Remark 3.9 in [5]).

In [5] the authors derive also Green’s function for boundary value problems of the

form (2.4), (2.3). Using the results from [5] we obtain the following result.
Let X(¢) : [0, 1] - L(R,) be the fundamental matrix satisfying the matrix equation

t
X(r)=1 +I d[A(r)] X(r), te0,1].
0
Assume that m = n and det D % 0 where
D = M X(0) + N X(1).

Then for any g, M;, N;,c;, j=1,...,k and reR, the boundary value problem
(2.1), (2.2), (2.3) possesses a unique solution x : [0, 1] — R, and this solution is given
by

(2.20) x(t) = X(t) D~ 'r + ":d,[G(t, s)] f(s) on [0, 1]

where

—X(t)D"'M X(0) X" '(s), 0ss<tZ1,

e G(t, s) = { X() D~'N X(1) X~(s), 0St<s<1
is the corresponding Green’s function.

Example. Let y(t) denote the bending of a beam fixed at the endpoints, let h(t)
stand for the (piecewise continuous) load and let g be a point load in the middle of
the beam. The problem of determining y() can be described as follows.

Find solutions of the equation

(2.22) y9() = h(r), tef0,1], heL(0,1)

which possess continuous derivatives up to the order 3 on [0, 1] — {4} and satisfy
the conditions

(2.23) y3+) =y3-), y@+)=33-), JG+)=33-),

yE+)=y3-)+4q
and

(224) 9(0) = 5(0) = y(1) = 5(1) = 0.
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By means of the transformation x; =y, X, = J, x3 = j, x, = y the problem
(2.22), (2.23), (2.24) can be written in the form of the system

(2.25) - x=Fx+g,
(2.26) x(1)-) — x(D)+) =<4,
(2.27) M x(0) + N x(1) = 0
where
0,1, 0,0 0 0 1,000
0,0, 1,0 1o o 1o, 1,00
F=looo1]° E9=|o| <=|o|" M=lo 00 0|
0,0, 0, 0 h(t) q 0,000
0,0, 0,0
0,0, 0,0
N=110 00|
0,1,0,0

This is a boundary value problem for an interface problem of the form considered in
this paper. The interface condition (2.26) can be written in the form

M, x(}) =) + Ny x((}) +) = ¢

where M; = —N; = I e L(R,). Hence if we set D, = I, we have M; + N,D, = 0.
Moreover, N,d; = —d; = ¢,,i.e. d; = —c,. The fundamental matrix for the gener-
alized linear differential equation corresponding to the interface problem given
above is of the form

1, 1, 32, 4%
— Ft — 0’ 1, t9 %tz
X(t)=¢e" = 00 1 1| tef0,1].
0,0, 0, 1]
Further, it is easy to evaluate

‘ 1, 0, 0, 0
: 0,1,0,0
D = M X(0) + N X(1) = L1 4
0,1, 1, %

and det D = ;15 + 0. Hence we can construct Green’s function as was described
in the previous part of this section. It is a matter of routine to evaluate

, 0, 0, O
00 1, 0, 0
-6, —4, 6, —2|"
12, 6, —12, 6



A straightforward multiplication of matrices makes it possible to determine Green’s
function G(t, s) for the boundary value problem (see (2.21)) and to write

(2.28) x(1) = ﬁa,[a(:, S £(s)

for the solution. Since the solution y of the original problem (2.22), (2.23), (2.24)
satisfies y(f) = x,(t), we need to know only the first component of the vector x(t)

on the right hand side of (2.28). Since only the fourth component of f is different
from zero we get

) = () = [[ 461t 91146

where G, is the element in the first row and the fourth column of G(t, s). The deter-
mination of Green’s function by (2.21) gives in our situation

Gyt s) =  5°[6 — $*1%[2 + $°P[3 — 5%t[2 + s% — 5%8%)2
for 0s<t£1l,
Gia(t,s) = —1253[2 + 2% — 1352 + 13533 — 3s%[2 + £[6
for 0Zt<s=<1.
Further we have

W= [[al6u 9140 = - [ 610.99406) + Gl D A0) -
- Gu(1,0)£4(0) =

- _ ”:G14(t, s)d (J:h(‘r) dt — g ¥1)2(5)) + Ga(t, 1) (J;h(r) dr — q) _
— _ r':)G14(t, s) h(s)ds + Gya(t, 1) g — Gra(t, 1) g + G (2 I)J:h(T) dr =

= 0G14(t, s) h(s)ds + Gy4(t, ) g

where the integration-by-parts formula for Perron-Stieltjes integrals is used and the
equality G,4(t, 1) = 0 is taken into account. Substituting into this formula, we get

the following explicit expression for the solution of the problem (2.22), (2.23), (2.24),
te[0,1]:

y(t) = (—t3/3 + 1?2 — 1/6)J.;s3 h(s)ds + (]2 — * + t/Z)J‘;s2 h(s) ds +
+ (-3 + t2/2)fs3 h(s)ds + (/3 — th)J‘lsz h(s) ds + (tz/Z)Jqs h(s)ds —

1
- (t3/6)J‘ h(s)ds + K(t) q
t
where
1 1
—th + Hts for t é ‘} ’

K(t)={1 1

1. 1 342 143
= b+t =t for t> 1.
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