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DISCRETE ANALOGUES OF WIRTINGER'’S
INEQUALITY FOR A TWO-DIMENSIONAL ARRAY

JARMILA NOVOTNA, Praha

(Received December 20, 1977)

In [4], G. POLYA and G. SzEGO studied the inequality

(%) ﬂ(fj+f,2)dxdygAZHf2dxdy,
D D

where f = 0 on the boundary C of the domain of integration D. In [2], H. D. BLock
dealt with the corresponding discrete problem. The inequality is given for the two-
-dimensional array

{xij}i=l,...,m .
Jj=1,...,n

In [3] we have shown a new, simpler proof of the discrete analogues of Wirtinger's
inequality in case of n numbers x4, ..., x,. The proof was based on the use of trigono-
metric polynomials (see [1], pp. 13—20). The paper contains also some sharpenings
of the inequalities obtained.

In the present paper, we establish the two-dimensional analogues of trigonometric
polynomials. Using them we prove the discrete variations of (x) in a similar way as
in [3]. To simplify the proofs, the inequalities are studied for arrays of the form
{x:;}1;=1. The results for

could be proved in the same way.
Using the results established in [3] we prove some inequalities for the “‘asym-
metrical” case, i.e. inequalities involving the series

Z lezl and izl Zl(xu - le’j)z .
=1 j=

i=1 j=1

1. LIST OF THEOREMS FROM [3]1 USED IN THE PAPER
Theorem 1.1. Let x,, ..., x, be n real numbers such that
n
(1'1) Z X = 0.
i=1
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Let us define x,,., = x,. Then
(1.2) Y (x; — Xi44)* 2 4sin? I Y % .
i=1 ni=t

The equality in (1.2) holds if and only if
(1.3) x,-=Acos@+Bsin@, i=1,...,n, A, B= const.
n n

Theorem 1.2. If x, ..., x, are n real numbers and x; = 0, then

n—1 n
1.4 X, — Xpp ) = dsin® — T2,
(14) 1;1( %iv1)' 2 2(2n — 1) 1;2

The equality in (1.4) holds if and only if

(1.5) xi=AsinM, i=1,...,n, A = const.
n

Theorem 1.3. If x,, ..., x, are n real numbers, then

1.6 S X; — X; 224sin2Lnxz,

(1.8) i;o( 1) Z 2(n + 1) igo !

where xo = X,.,; = 0. The equality in (1.6) holds if and only if

(1.7) x; = Asin £ , i=1,...,n, A= const.

n+1
Theorem 1.4. Let x, ..., X, be n real numbers satisfying (1.1). Then

n—1 n

(1.8) Y (% — Xi44)* 2 45sin? bl Y x}.
=4 2n i=1

The equality in (1.8) holds if and only if

(1.9) X, = Acos(zl—;l)—n , i=1,...,n, A= const.

n

2. SYMMETRICAL CASE

Notation. To simplify the form of inequalities, we shall write szu instead of
(xij = Xir1,5)* + (xij = Xi501)%

The basic theorem in this article is Theorem 2.1, the two-dimensional analogue
of Theorem 1.1. Theorems 2.2 through 2.4 are analogues of Theorems 1.2 through
1.4. Theorem 2.5 is a sharpening of Theorem 2.1 and Theorem 2.6 is a sharpening
of Theorem 2.4.

Theorem 2.1. Let {x,;}} ;-1 be n® real numbers such that

(2.1)

Ma
Ma

xu=0.

L}
[}

1j=1
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Let us define x; 511 = Xiy, Xp41,i = X35 8 = 1,...,n. Then

M:
M:

(2'2) : szu _Z_ 4Sil’]2lr Z lezj :
ni=1j=1

1

i=1j

The equality in (2.2) holds if and only if

(2.3) xij=Acos@+Bsin2t—'+Ccos£1H+Dsingl,
n n n n

ihj=1,...,n, A,B,C, D = const.

The proof of Theorem 2.1 will be given in Section 4.

Theorem 2.2. Let {x;;}];_, be n® real numbers such that x;; = x,;, =0, i =

= 1,...,n. Then (putting x,11 ; = Xpjs Xjn+1 = Xjn)
(2.4) Y D*x;; = 4 sin?
i=1 j=1

The equality in (2.4) holds if and only if

™=

(2.5) X;;=A sinzt(l;l) + BsinE(J———-l),
2n — 1 2n — 1

i,j=1,..,n, A, B = const.

Proof. We apply Theorem 2.1 to a new array {y,}i{=; " (analogously to the

proof of Theorem 2 in [3]) defined as follows (schematically written in the form of
a matrix):

x“, seey xl,,, xl,,, ceey xlz, —xu, sy —xl,,, —xl,,, ceey _xlz

x,.l, ooy xnn’ X,,,,, “seey ,x,,;, —x,,l, sy —x,,,,, —-x,,,,, seny —xnz
Xn1s soes  Xpns Xpns +oos Xp2s —Xpps eoos —Xpps —Xpps o005 —Xp2

X2gseees X2ps Xops coes X225 — X215 cc05 — X2, —Xaps seey —X22
—x“, ooy ‘_xl", —Xl,,,..., —xlz, x“,..., xl,,, xl,,,..., x12

—Xp1s vo0s —Xppy —Xpps o005 —Xp2s Xnts ++os  Xpno Xpns +o0s  Xp2
—Xpts oo =Xpms —Xums cos —=Xn2s  Xnts covr  Xmms  Xpms eevs  Xnz

—le, ey "'xz,,, "'xzn, PR —xzz, x21, ooy xz,,, xz,,, ceey X21 Py
Yan-1,1= Yi,an-1 = 0.

(2.5) follows from (2.3) for y,; and from the equalities
Y11 = Y2na5 Y11 = V1,2
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Theorem 2.3. Let {x;;}7 ;- be n® real numbers such that Xo; = X,41,; = Xjo =
= Xjn41 =0,j=1,...,n Then

2.6 3B sz,.-.>_85in2—n— Sy x% .

) 1;0 j;o S 2(n + 1)i=ZO j=ZO !

The equality in (2.6) holds if and only if

(2.7) x;; = A sin LI L i,j=1,..,n, A = const.

n+l n+1’

Remark. 1. (2.6) is a discrete analogue of (*) for a special case D = (0, m) x (0; =),
A? = 2. This inequality can be derived from (2.6).

2. Using the method of the proof of Theorem 2.2 with {y,,}7 =" defined as follows
(analogously to the proof of Theorem 3 in [3]):

0,0, ...,0, 0, 0 .. 0
0, X1 o Xgm 0, 0, ..., O

0, Xptp corXem 0 O, .., O
0,0 ..0, 0 0 .. O
0, O, seey O, 0, —x“, esey —xl,,
0,0, .00, 0, —Xpisoeey —Xuns

Van+3a = Yi2n+3 = 0, we could derive an inequality similar to (2.6) with the con-
stant 4 instead of 8 at the right hand side and with the equality achieved only for x;; =
=0,i,j=1,...,n. .

Proof. Choosing i fix, 1 £ i < n, we can apply Theorem 1.3 to the numbers x;,
j=1,...,n. Adding these inequalities for i, 1 < i < n, and applying similarly

Theorem 1.3 to the numbers x;;, i = 1,...,n, for j fix, 1 £ j < n, we obtain (2.6),

2.7).

Theorem 2.4. Let {xi;}7j=1 be n? real numbers satisfying (2.1). Then (putting
Xn+1,j = Xnjp Xjn+1 = xjn)

(2.8) Y ¥ D3xy; = 4sin?
The equality in (2.8) holds if and only if

2.9 x,-=AcosQl—_—1)—n+Bcos(2j——l)ﬂ, i,j=1,...,n, A, B = const.
! 2n 2n
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Proof. Let us apply Theorem 2.1 to a new array {yk,}ff',=1 defined as follows
(analogously to the proof of Theorem 4 in [3]):

xu, ey xl,,, xl,,, ooy x“

Xn1s s Xpns Xpns ++ o> Xy
Xnts +oos Xpns Xpns =5 Xp1

Xy #ivis Xiags Kedms: ¥ 50 X4 .5

Yan+1.4 = Vian+1 = Vi, Which also satisfies (2.1). Then (2.8), (2.9) follow from
(2.2), (2.3).

Theorem' 2.5 (sharpening of Theorem 2.1 for n even). Let n = 2m, n 2 4. Let
{xi;}1.;=1 be n* real numbers satisfying (2.1). Let us define X,4;n4; = Xij, i,j =
=1,...,m. Then

(210) ¥ Y Dx; 2 3sin2Z Y Y (xy; + Xiamem) + 4sin2 = Y Y x%.
i=1j=1 ni=1j=1 ni=1j=1
The equality in (2.10) holds if and only if x,; satisfy (2.3).
The proof of Theorem 2.5 will be given in Section 4.

3. ASYMMETRICAL CASE

n n n n
Here we shall study inequalities involving Y Y x7, and Y Y (x;; — X;44,)%
i=1j=1 i=1 j=1

To simplify the form of inequalities, we shall denote A%x;; = (x;; — X;4, ;)% To
derive these inequalities we shall use Theorems 1.1 through 1.4.

Theorem 3.1. Let n = 2m. Let {x;;}] ;=1 be n® real numbers such that x; =
=Xim+1 =6 i=1,..,n, and ’

o 5 $ey-0.

Let us define x,41,; = X1, j =1,...,n. Then
m

(3.2) Y Y A%, 2 4sin?Z Y Y x% + 4n2c?sin? =,
i=1j=1 ‘ ni=1j=1 n

The equality in (3.2) holds if and only if
c+ A,-sin(i;llﬂ-:, i=1..
(3) xy= "

¢+ Band oMo UT

m

j=m+1,..,n, i=1,...,n,

358



where the numbers A;, B; do not depend on j and satisfy the relation
(3.4) n + cotg = Y (4, + B) =0.
ni=1

Proof. Take i fix, 1 <i < n. Let us define one-dimensional arrays {y}i-o,
{zi}i=o as follows: y, = X;441 — € Z = Xym+r+1 — €. Then yg = y, = zo =
= z,, = 0; applying Theorem 1.3 to the arrays {y,Jr<1, {z}ic: and adding the

obtained relations for i, 1 < i £ n, we obtain the statement of Theorem 3.1.

Theorem 3.2. Let {x;;}} ;- be n® real numbers satisfying (3.1) and such that
Xy =c¢ i=1,...,n Then

n n—1 n n
3.5 Ax;, = 4sin? — 2 4 dn?c?sin? —
(3:3) igl jgl = 2(2n — l)igl j=21x ¢ 22n - 1)

The equality in (3.5) holds if and only if
(3.6) x,-j = + Ai SlngﬂIt )
2n — 1
where the numbers A; do not depend on j and satisfy the relation

3.7 m2c + cotg— " Y A4, = 0.
o) g2(2n - 1) igl

Proof is similar to the previous one, but we apply Theorem 1.2 to the one-
-dimensional array {y}r-1, ¥k = Xy — ¢, i fixed .

Theorem 3.3. Let {xij}’,-’,j=1 satisfy the assumption of Theorem 3.2. Let us define
Xp41,; =X1;j=2¢ j=1,...,n Then

(3-8) Y Y A%x;; 2 4sin? = Y Y x} + 4n%c? sin? =,
i=1 j=1 2n i=1 j=1 2n

The equality in (3.8) holds if and only if

(3.9) XU=C+A"SinM, i,j=1,...,n,

n
where the numbers A; do not depend on j and satisfy the relation
(3.10) n%c + cotg — YA4;=0.
2n i=1
Proof. Theorem 3.3 follows from Theorem 1.3 in a similar way as the previous
two theorems or from Theorem 3.1 when defining the two-dimensional array

{Vi}ih=1 as follows:
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x“, ceey xl,,, x“, ceey xl"

. Xpgs ++os Xams Xns ++s Xnn
X113 ¢+ o5 Xpns Xigs #0535 Xn

Konfis +» o3 Xy, Xt siemy Xngy s

In the previous three theorems the assumption (3.1) was very important. Now we
shall show two more theorems without using this assumption. However, we have
to assume that the constant ¢ = 0. Theorems follow from Thorem 3.1 in a way
analogous to the proofs in Section 2. We shall only define new arrays in the schematic
form of a matrix.

Theorem 3.4. Let {x;}} -, be n® real numbers such that x;; =0, i =1,...,n
Then

n n—1 n n
3.11 A%x;; = 4sin? ————— e
(3.11) igl jgl = 2(2 -1) ;Zl ;sz o

The equality in (3.11) holds if and only if
(3.12) x;; = A;sin (‘{2—_1¥ , Lj=1,...,n, A;donotdependon j.
% i
Proof. {y 2

x“,..., xl,,, Xl,,,..., xlz, —xu, cney —xl", —xl,,,..., _‘xlz

Xnts «++s Xy Xpps =+05 Xn2s —Xpgs ooy T Xppy T Xppy cees T Xp2
0,
Yan-1,4 = Y15 then ¢ = 0, ny, = 2(2n — 1).

Theorem 3.5. Let {x;}7;-y be n® real numbers such that x5 = X;,.y =0,
i=1,...,n. Then

= T
; Xy 2 4sin? ——— Y Y xi.

2(n + 1) i=1 =0
The equality in (3.13) holds if and only if

(3.13)

lIM:

(3.14) x;; = A;sin ]nl’ i,j=1,...,n, A;do notdependonj.
n +

Proof. {yu}ays:
0, x“ ...,_.xl,,, 0, —xll,: 289 —xln

0, Xpts oo Xpms 05 —Xp1y eeey — Xm
0,

Van+3, = Vg5 then ¢ =0, ny = 2(n + 1).
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4. PROOFS OF THEOREMS 2.1 AND 2.5

In a way analogous to the introduction of trigonometric polynomials in [1] we can
show that for any array {x;;}} ;—; there exist such numbers &, &,, &5, 1, 13, P =
=1,...,m,8, 8%, t,, pr,s,t = 1,..., m, that

- 2 o .2 .2
(4.1) xy =& + ), (é,, cos pi & + &y sin pi .4 1, €os pj - 5
p=1 n n n

2r . .2
+ 7, sin pj >+ Y Z (SS,cos si L sin tj - +
n

s=1t=1 n

x . L2W .2 .27 .2
+ 3¢, sin si — cos tj — + p,, cos si—cos tj — +
n n n n

x . .2 . .2m ..
+ pgsinsi—sinti—), i,j=1,...,n,
n n

n n n2 m
(42) T Xxy=nl+ SN (GG A )+
i=1j= p=

m

n m
'—'Z Z(‘gft + ‘9::2 s I'lst + ﬂsr)

i=1j=1 p=1

(4.3) b3 3, D*x;; = 2n* Y (&2 + &2 + n) + ny?) sin? pL—E +

+n? Y T (%% + 0+ e+ )

s=11t=1
.(sinz s 4 sin?t E) .
n n
From (2.1) it follows that

(4.4) éo = 0 .
Theorem 2.1 follows immediately from (4.1)—(4.4).
Using (4.1) and (4.2) we derive

(4.5) Z": i(xii + Xivimgam) =

i=1j=1

TE+ gtk )+ (1T +

n

2
2m m

T ROk + 9 k) [+ (<1 + (1) + (ST
s=11t=

Theorem 2.5 is a consequence of (4.1)—(4.5) in an analogous way as in [3] (the proof
of Theorem 2.5).
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