

Werk

Label: Article
Jahr: 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log84

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

DISCRETE ANALOGUES OF WIRTINGER'S INEQUALITY FOR A TWO-DIMENSIONAL ARRAY

JARMILA NOVOTNÁ, Praha

(Received December 20, 1977)

In [4], G. PÓLYA and G. SZEGÖ studied the inequality

(*)
$$\iint_{D} (f_x^2 + f_y^2) dx dy \ge \Lambda^2 \iint_{D} f^2 dx dy,$$

where f = 0 on the boundary C of the domain of integration D. In [2], H. D. BLOCK dealt with the corresponding discrete problem. The inequality is given for the two-dimensional array

$$\left\{x_{ij}\right\}_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}.$$

In [3] we have shown a new, simpler proof of the discrete analogues of Wirtinger's inequality in case of n numbers $x_1, ..., x_n$. The proof was based on the use of trigonometric polynomials (see [1], pp. 13-20). The paper contains also some sharpenings of the inequalities obtained.

In the present paper, we establish the two-dimensional analogues of trigonometric polynomials. Using them we prove the discrete variations of (*) in a similar way as in [3]. To simplify the proofs, the inequalities are studied for arrays of the form $\{x_{ij}\}_{i,j=1}^{n}$. The results for

$$\begin{cases} x_{ij} \end{cases}_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$$

could be proved in the same way.

Using the results established in [3] we prove some inequalities for the "asymmetrical" case, i.e. inequalities involving the series

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2} \text{ and } \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} - x_{i+1,j})^{2}.$$

1. LIST OF THEOREMS FROM [3] USED IN THE PAPER

Theorem 1.1. Let $x_1, ..., x_n$ be n real numbers such that

Let us define $x_{n+1} = x_1$. Then

(1.2)
$$\sum_{i=1}^{n} (x_i - x_{i+1})^2 \ge 4 \sin^2 \frac{\pi}{n} \sum_{i=1}^{n} x_i^2.$$

The equality in (1.2) holds if and only if

(1.3)
$$x_i = A \cos \frac{2\pi i}{n} + B \sin \frac{2\pi i}{n}, \quad i = 1, ..., n, \quad A, B = \text{const.}$$

Theorem 1.2. If $x_1, ..., x_n$ are n real numbers and $x_1 = 0$, then

(1.4)
$$\sum_{i=1}^{n-1} (x_i - x_{i+1})^2 \ge 4 \sin^2 \frac{\pi}{2(2n-1)} \sum_{i=2}^n x_i^2.$$

The equality in (1.4) holds if and only if

(1.5)
$$x_i = A \sin \frac{(i-1)\pi}{n}, \quad i = 1, ..., n, \quad A = \text{const.}$$

Theorem 1.3. If $x_1, ..., x_n$ are n real numbers, then

(1.6)
$$\sum_{i=0}^{n} (x_i - x_{i+1})^2 \ge 4 \sin^2 \frac{\pi}{2(n+1)} \sum_{i=0}^{n} x_i^2,$$

where $x_0 = x_{n+1} = 0$. The equality in (1.6) holds if and only if

(1.7)
$$x_i = A \sin \frac{i\pi}{n+1}, \quad i = 1, ..., n, \quad A = \text{const.}$$

Theorem 1.4. Let $x_1, ..., x_n$ be n real numbers satisfying (1.1). Then

(1.8)
$$\sum_{i=1}^{n-1} (x_i - x_{i+1})^2 \ge 4 \sin^2 \frac{\pi}{2n} \sum_{i=1}^n x_i^2.$$

The equality in (1.8) holds if and only if

(1.9)
$$x_i = A \cos \frac{(2i-1)\pi}{2n}, \quad i = 1, ..., n, \quad A = \text{const.}$$

2. SYMMETRICAL CASE

Notation. To simplify the form of inequalities, we shall write D^2x_{ij} instead of $(x_{ij} - x_{i+1,j})^2 + (x_{ij} - x_{i,j+1})^2$.

The basic theorem in this article is Theorem 2.1, the two-dimensional analogue of Theorem 1.1. Theorems 2.2 through 2.4 are analogues of Theorems 1.2 through 1.4. Theorem 2.5 is a sharpening of Theorem 2.1 and Theorem 2.6 is a sharpening of Theorem 2.4.

Theorem 2.1. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that

(2.1)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} = 0.$$

Let us define $x_{i,n+1} = x_{i1}, x_{n+1,i} = x_{1i}, i = 1, ..., n$. Then

(2.2)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} D^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2}.$$

The equality in (2.2) holds if and only if

(2.3)
$$x_{ij} = A \cos \frac{2\pi i}{n} + B \sin \frac{2\pi i}{n} + C \cos \frac{2\pi j}{n} + D \sin \frac{2\pi j}{n},$$
$$i, j = 1, ..., n, A, B, C, D = \text{const.}$$

The proof of Theorem 2.1 will be given in Section 4.

Theorem 2.2. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that $x_{i1} = x_{1i} = 0$, i = 1, ..., n. Then (putting $x_{n+1,j} = x_{nj}, x_{j,n+1} = x_{jn}$)

(2.4)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} D^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{2(2n-1)} \sum_{i=2}^{n} \sum_{j=2}^{n} x_{ij}^{2} .$$

The equality in (2.4) holds if and only if

(2.5)
$$x_{ij} = A \sin \frac{\pi(i-1)}{2n-1} + B \sin \frac{\pi(j-1)}{2n-1},$$
$$i, j = 1, ..., n, A, B = \text{const.}$$

Proof. We apply Theorem 2.1 to a new array $\{y_{kl}\}_{k,l=1}^{2(2n-1)}$ (analogously to the proof of Theorem 2 in [3]) defined as follows (schematically written in the form of a matrix):

$$x_{11}, \ldots, x_{1n}, x_{1n}, x_{1n}, \ldots, x_{12}, -x_{11}, \ldots, -x_{1n}, -x_{1n}, \ldots, -x_{12}$$
 \vdots
 $x_{n1}, \ldots, x_{nn}, x_{nn}, x_{nn}, \ldots, x_{n2}, -x_{n1}, \ldots, -x_{nn}, -x_{nn}, \ldots, -x_{n2}$
 $x_{n1}, \ldots, x_{nn}, x_{nn}, x_{nn}, \ldots, x_{n2}, -x_{n1}, \ldots, -x_{nn}, -x_{nn}, \ldots, -x_{n2}$
 \vdots
 $x_{21}, \ldots, x_{2n}, x_{2n}, \ldots, x_{22}, -x_{21}, \ldots, -x_{2n}, -x_{2n}, \ldots, -x_{22}$
 $-x_{11}, \ldots, -x_{1n}, -x_{1n}, \ldots, -x_{12}, x_{11}, \ldots, x_{1n}, x_{1n}, \ldots, x_{12}$
 \vdots
 $-x_{n1}, \ldots, -x_{nn}, -x_{nn}, \ldots, -x_{n2}, x_{n1}, \ldots, x_{nn}, x_{nn}, \ldots, x_{n2}$
 \vdots
 $-x_{n1}, \ldots, -x_{nn}, -x_{nn}, \ldots, -x_{n2}, x_{n1}, \ldots, x_{nn}, x_{nn}, \ldots, x_{n2}$
 \vdots
 $-x_{21}, \ldots, -x_{2n}, -x_{2n}, \ldots, -x_{22}, x_{21}, \ldots, x_{2n}, x_{2n}, \ldots, x_{22}, x_{2n}, \ldots$
 $y_{4n-1,l} = y_{l,4n-1} = 0$

(2.5) follows from (2.3) for y_{kl} and from the equalities

$$y_{11} = y_{2n,1}, \quad y_{11} = y_{1,2n}.$$

Theorem 2.3. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that $x_{0j} = x_{n+1,j} = x_{j0} = x_{j,n+1} = 0, j = 1, ..., n$. Then

(2.6)
$$\sum_{i=0}^{n} \sum_{j=0}^{n} D^{2} x_{ij} \ge 8 \sin^{2} \frac{\pi}{2(n+1)} \sum_{i=0}^{n} \sum_{j=0}^{n} x_{ij}^{2}.$$

The equality in (2.6) holds if and only if

(2.7)
$$x_{ij} = A \sin \frac{i\pi}{n+1} \sin \frac{j\pi}{n+1}, \quad i, j = 1, ..., n, \quad A = \text{const.}$$

Remark. 1. (2.6) is a discrete analogue of (*) for a special case $D = (0, \pi) \times (0, \pi)$, $\Lambda^2 = 2$. This inequality can be derived from (2.6).

2. Using the method of the proof of Theorem 2.2 with $\{y_{kl}\}_{k,l=1}^{2(n+1)}$ defined as follows (analogously to the proof of Theorem 3 in [3]):

 $y_{2n+3,l} = y_{1,2n+3} = 0$, we could derive an inequality similar to (2.6) with the constant 4 instead of 8 at the right hand side and with the equality achieved only for $x_{ij} = 0$, i, j = 1, ..., n.

Proof. Choosing i fix, $1 \le i \le n$, we can apply Theorem 1.3 to the numbers x_{ij} , j = 1, ..., n. Adding these inequalities for i, $1 \le i \le n$, and applying similarly Theorem 1.3 to the numbers x_{ij} , i = 1, ..., n, for j fix, $1 \le j \le n$, we obtain (2.6), (2.7).

Theorem 2.4. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers satisfying (2.1). Then (putting $x_{n+1,j} = x_{nj}, x_{j,n+1} = x_{jn}$)

(2.8)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} D^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2}.$$

The equality in (2.8) holds if and only if

(2.9)
$$x_{ij} = A \cos \frac{(2i-1)\pi}{2n} + B \cos \frac{(2j-1)\pi}{2n}$$
, $i, j = 1, ..., n$, $A, B = \text{const.}$

Proof. Let us apply Theorem 2.1 to a new array $\{y_{kl}\}_{k,l=1}^{2n}$ defined as follows (analogously to the proof of Theorem 4 in [3]):

 $y_{2n+1,l} = y_{l,2n+1} = y_{l1}$, which also satisfies (2.1). Then (2.8), (2.9) follow from (2.2), (2.3).

Theorem 2.5 (sharpening of Theorem 2.1 for n even). Let n = 2m, $n \ge 4$. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers satisfying (2.1). Let us define $x_{n+i,n+j} = x_{ij}$, i, j = 1, ..., m. Then

$$(2.10) \sum_{i=1}^{n} \sum_{j=1}^{n} D^{2} x_{ij} \ge \frac{1}{4} \sin^{2} \frac{\pi}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} + x_{i+m,j+m})^{2} + 4 \sin^{2} \frac{\pi}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2}.$$

The equality in (2.10) holds if and only if x_{ij} satisfy (2.3).

The proof of Theorem 2.5 will be given in Section 4.

3. ASYMMETRICAL CASE

Here we shall study inequalities involving $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^2$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} - x_{i+1,j})^2$. To simplify the form of inequalities, we shall denote $A^2 x_{ij} = (x_{ij} - x_{i+1,j})^2$. To derive these inequalities we shall use Theorems 1.1 through 1.4.

Theorem 3.1. Let n = 2m. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that $x_{i1} = x_{i,m+1} = c, i = 1, ..., n, and$

(3.1)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} = 0.$$

Let us define $x_{n+1,j} = x_{1j}$, j = 1, ..., n. Then

(3.2)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} A^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2} + 4n^{2} c^{2} \sin^{2} \frac{\pi}{n}.$$

The equality in (3.2) holds if and only if

(3.3)
$$x_{ij} = \begin{cases} c + A_i \sin \frac{(j-1)\pi}{m}, & j = 1, ..., m, i = 1, ..., n, \\ c + B_i \sin \frac{(j-m-1)\pi}{m}, & j = m+1, ..., n, i = 1, ..., n, \end{cases}$$

where the numbers A_i , B_i do not depend on j and satisfy the relation

(3.4)
$$n^2c + \cot g \frac{\pi}{n} \sum_{i=1}^n (A_i + B_i) = 0.$$

Proof. Take i fix, $1 \le i \le n$. Let us define one-dimensional arrays $\{y_k\}_{k=0}^m$, $\{z_k\}_{k=0}^m$ as follows: $y_k = x_{i,k+1} - c$, $z_k = x_{i,m+k+1} - c$. Then $y_0 = y_m = z_0 = z_m = 0$; applying Theorem 1.3 to the arrays $\{y_k\}_{k=1}^{m-1}$, $\{z_k\}_{k=1}^{m-1}$ and adding the obtained relations for i, $1 \le i \le n$, we obtain the statement of Theorem 3.1.

Theorem 3.2. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers satisfying (3.1) and such that $x_{i1} = c, i = 1, ..., n$. Then

$$(3.5) \qquad \sum_{i=1}^{n} \sum_{j=1}^{n-1} A^2 x_{ij} \ge 4 \sin^2 \frac{\pi}{2(2n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^2 + 4n^2 c^2 \sin^2 \frac{\pi}{2(2n-1)}.$$

The equality in (3.5) holds if and only if

(3.6)
$$x_{ij} = c + A_i \sin \frac{(j-1)\pi}{2n-1},$$

where the numbers A_i do not depend on j and satisfy the relation

(3.7)
$$2n^2c + \cot g \frac{\pi}{2(2n-1)} \sum_{i=1}^n A_i = 0.$$

Proof is similar to the previous one, but we apply Theorem 1.2 to the one-dimensional array $\{y_k\}_{k=1}^n$, $y_k = x_{ik} - c$, i fixed.

Theorem 3.3. Let $\{x_{ij}\}_{i,j=1}^n$ satisfy the assumption of Theorem 3.2. Let us define $x_{n+1,j}=x_{1j}=c,\ j=1,...,n$. Then

(3.8)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} A^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{2} + 4n^{2}c^{2} \sin^{2} \frac{\pi}{2n}.$$

The equality in (3.8) holds if and only if

(3.9)
$$x_{ij} = c + A_i \sin \frac{(j-1)\pi}{n}, \quad i, j = 1, ..., n,$$

where the numbers A_i do not depend on j and satisfy the relation

(3.10)
$$n^2c + \cot g \frac{\pi}{2n} \sum_{i=1}^n A_i = 0.$$

Proof. Theorem 3.3 follows from Theorem 1.3 in a similar way as the previous two theorems or from Theorem 3.1 when defining the two-dimensional array $\{y_{kl}\}_{k,l=1}^{2n}$ as follows:

$$x_{11}, ..., x_{1n}, x_{11}, ..., x_{1n}$$
 \vdots
 $x_{n1}, ..., x_{nn}, x_{n1}, ..., x_{nn}$
 $x_{11}, ..., x_{1n}, x_{11}, ..., x_{1n}$
 \vdots
 $x_{n1}, ..., x_{nn}, x_{n1}, ..., x_{nn}$

In the previous three theorems the assumption (3.1) was very important. Now we shall show two more theorems without using this assumption. However, we have to assume that the constant c=0. Theorems follow from Thorem 3.1 in a way analogous to the proofs in Section 2. We shall only define new arrays in the schematic form of a matrix.

Theorem 3.4. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that $x_{i1}=0, i=1,...,n$. Then

(3.11)
$$\sum_{i=1}^{n} \sum_{j=1}^{n-1} A^2 x_{ij} \ge 4 \sin^2 \frac{\pi}{2(2n-1)} \sum_{i=1}^{n} \sum_{j=2}^{n} x_{ij}^2.$$

The equality in (3.11) holds if and only if

(3.12)
$$x_{ij} = A_i \sin \frac{(j-1)\pi}{2n-1}$$
, $i, j = 1, ..., n$, A_i do not depend on j .

Proof.
$$\{y_{kl}\}_{k,l=1}^{2(2n-1)}$$
:
 $x_{11}, ..., x_{1n}, x_{1n}, ..., x_{12}, -x_{11}, ..., -x_{1n}, -x_{1n}, ..., -x_{12}$
 \vdots
 $x_{n1}, ..., x_{nn}, x_{nn}, ..., x_{n2}, -x_{n1}, ..., -x_{nn}, -x_{nn}, ..., -x_{n2}$
 0 .

 $y_{4n-1,l} = y_{1l}$; then c = 0, $n_1 = 2(2n - 1)$.

Theorem 3.5. Let $\{x_{ij}\}_{i,j=1}^n$ be n^2 real numbers such that $x_{i0} = x_{i,n+1} = 0$, i = 1, ..., n. Then

(3.13)
$$\sum_{i=1}^{n} \sum_{j=0}^{n} A^{2} x_{ij} \ge 4 \sin^{2} \frac{\pi}{2(n+1)} \sum_{i=1}^{n} \sum_{j=0}^{n} x_{ij}^{2}.$$

The equality in (3.13) holds if and only if

(3.14)
$$x_{ij} = A_i \sin \frac{j\pi}{n+1}, \quad i, j = 1, ..., n, \quad A_i \text{ do not depend on } j.$$

Proof. $\{y_{kl}\}_{k,l=1}^{2(n+1)}$:

$$0, x_{11}, ..., x_{1n}, 0, -x_{11}, ..., -x_{1n}$$

$$\vdots$$

$$0, x_{n1}, ..., x_{nn}, 0, -x_{n1}, ..., -x_{nn}$$

$$0,$$

 $y_{2n+3,l} = y_{1l}$; then c = 0, $n_1 = 2(n+1)$.

4. PROOFS OF THEOREMS 2.1 AND 2.5

In a way analogous to the introduction of trigonometric polynomials in [1] we can show that for any array $\{x_{ij}\}_{i,j=1}^n$ there exist such numbers ξ_0 , ξ_p , ξ_p^* , η_p , η_p^* , $p=1,\ldots,m$, θ_{st} , θ_{st}^* , μ_{st} , μ_{st}^* , s, $t=1,\ldots,m$, that

$$(4.1) x_{ij} = \xi_0 + \sum_{p=1}^m \left(\xi_p \cos pi \frac{2\pi}{n} + \xi_p^* \sin pi \frac{2\pi}{n} + \eta_p \cos pj \frac{2\pi}{n} + \eta_p \cos pj \frac{2\pi}{n} + \eta_p^* \sin pj \frac{2\pi}{n} \right) + \sum_{s=1}^m \sum_{t=1}^m \left(\vartheta_{st} \cos si \frac{2\pi}{n} \sin tj \frac{2\pi}{n} + \vartheta_{st}^* \sin si \frac{2\pi}{n} \cos tj \frac{2\pi}{n} + \eta_s \cos si \frac{2\pi}{n} \cos tj \frac{2\pi}{n} + \eta_s^* \sin si \frac{2\pi}{n} \sin tj \frac{2\pi}{n} \right), \quad i, j = 1, ..., n,$$

$$(4.2) \sum_{i=1}^n \sum_{j=1}^n x_{ij}^2 = n^2 \xi_0^2 + \frac{n^2}{2} \sum_{p=1}^m (\xi_p^2 + \xi_p^{*2} + \eta_p^2 + \eta_p^{*2}) + \eta_p^2 + \eta_p^2$$

From (2.1) it follows that

$$\xi_0 = 0.$$

Theorem 2.1 follows immediately from (4.1)-(4.4).

Using (4.1) and (4.2) we derive

(4.5)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} + x_{i+m,j+m})^{2} =$$

$$= \frac{n^{2}}{2} \sum_{p=1}^{m} (\xi_{p}^{2} + \xi_{p}^{*2} + \eta_{p}^{2} + \eta_{p}^{*2}) \left[1 + (-1)^{p}\right]^{2} +$$

$$+ \frac{n^{2}}{4} \sum_{s=1}^{m} \sum_{t=1}^{m} (\vartheta_{st}^{2} + \vartheta_{st}^{*2} + \mu_{st}^{2} + \mu_{st}^{*2}) \cdot \left[1 + (-1)^{s} + (-1)^{t} + (-1)^{st}\right]^{2}.$$

Theorem 2.5 is a consequence of (4.1)-(4.5) in an analogous way as in [3] (the proof of Theorem 2.5).