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EXPRESSING RATIONALS AS A SUM OF A SMALL NUMBER
OF UNIT FRACTIONS

WiLLiaAM A. WEBB, Pullman

(Received May 11, 1977)

I. INTRODUCTION

For a given rational number a / b, we wish to consider the solvability of the equation

(1) gt 3 + L

b x; x, Xp
where the x; are integers (not necessarily positive). For a fixed positive integer a,
let L = L(a) be the smallest value of n for which (1) is solvable for all sufficiently
large integers b.

Even if the x; are required to be positive, it is clear that L £ a. Although a well-
known conjecture of SCHINZEL [2] is that L = 3 for all a 2 3, no one has succeeded
in finding an improvement on the trivial estimate for even one value of a.

A similar result is conjectured for the case under discussion, where the x; may be
negative. This problem has proved to be somewhat easier, and it is known that L = 3
for 3 < a £ 35. This result can be used to show that

wor(])

where [ ] is the greatest integer function. Also, some minor improvements of this
estimate are fairly easy to obtain.

The principal objective of this paper is to obtain a significantly better upper bound
for L; namely one of order log a.

II. APPROXIMATIONS USING SMALL NUMERATORS
Before proving the estimate meniioned above, we will need some preliminary

results. These results, concerning Farey fractions and approximations using small
numerators, are also interesting in their own right.
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Most problems in rational approximation involve the existence of a good approxi-
mation c¢/d to some number, where d is small. We will be interested in approximating,
or more precisely, in decomposing a given rational, using fractions with small numer-
ators. .

Let a/b be a reduced rational number, 0 < a/b < 1. We will approximate a/b
using a sequence of fractions ao/by, = afb, a,[b,, a,[b, ..., to be defined below.

Let &, denote the Farey series of order n. We will also use the following special
notation. Write the triple T = (i j k) to mean a;/b; < a;[b; < a;[b, are three con-
secutive elements of &,,. Note that this implies a; + a;, = a; and b; + b, = b,
Also, write the five-tuple F = (ij k : x y) to mean T = (ij k) and a = xa; + ya,.
b = xb; + yb,.

We now define the sequence {ai/bi} by specifying successive triples T,,.Let T, =
= (102), so that a,/b; < ao[by < a,|b, are consecutive elements of F,, = Fp-
Note that F; = (102: 11).

Now, given a triple T,,_, = (i j k) we define T,,_, by choosing a,,/b,, such that

(ikm) if bi<bk’
Ty = . :
(mlk) if bi>bk‘
Note that the only case in which b; = b, is when (i j k) represents 2 } 1, at which
point the sequence must terminate anyway. The fraction a,,/b,, is the next term in
the sequence.

Lemmal. If F,_,=(ijk: xy) then F,_y =(mik: xx+y) or Fp_, =
(ikm: x +yy).

Proof. By definition of the sequence {a;/b;} we know that either T,,_, = (m i k)
or T,_, =(ikm). In the former case a = xa; + ya; = x(a, + a;) + ya, =
= xa, + (x + y) a. In the later case a = xa; + ya, = xa; + y(a, + a,) =
= (x + y) a; + ya,, Similar calculations hold for b.

Lemma 2. If F, = (i j k: x y) then ab; — ba; = y and ab, — ba, = —x.

Proof. Use induction on n. F; = (102:11) and ab, — ba, = 1, ab, — ba, =
= —1 by the well-known property of &;. [1, Theorem 28]

Now suppose the result is true for F,,_, = (ijk:x y). If F,,_; = (mik:xx + y)
then ab,, — ba,, = a(b; — by) — b(a; — a,) = (ab; — ba;) — (ab, — bay) =y + x
by the induction hypothesis. (ab, — ba, = —x following immediately from the
induction hypothesis.) A similar calculation holds if F,_, = (ikm:x + yy).
Note that the conclusion of Lemma 2 can be witten as:

a;
=—+ , —=— = —,
b; ;

(S IR
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In the above procedure it is clear that x + y is monotonically increasing, and the
sequence does not terminate until x + y = b > a. Thus, for any real number 4,
1 < A < a, we eventually encounter an F,, where x < A, y <A, and x + y = A.
When this occurs we must have either a; < afA or a, < aA, for the following reasons.
Assume a; 2 afA and a, 2 afA. Then a = xa; + ya; 2 (x + y)a[A 2 a with
strict inequality (and hence a contradiction) if a; > afA or a, > a[A or x + y > A.
Also,if a; = a; = afAand x + y = Athen by Lemma 2, A=x + y = ba, — ab, +
+ ab; — ba; = a(b; — by). So b; — b, = Ala and thus A/a and a2 are both integers
which implies a = A contradicting the fact that A < a.

Theorem 1. For 0 < a/b < 1 and every integer n > 1, there exist integers x,, z,
such that

n
¢ = Y Xt and |xi| < a'/™.
b =1z

Proof. Let A = a'/”. By the above remarks

g . 41 where |xi| < a'* and A; < afi =a®""V",
b z; B
Similarly,
= W + Az where |x,| < a'™ and A, < 4;[A < a[A* = a®~ P/,
B, z; B,

Proceeding in this manner, we obtain in general

X1

A
+ «.. + X,z, + — where lx,-l < a'™ and
zl Br

4, < A.-_lll <o < a/},’ < q—nin
Letting r = n — 1, we obtain the desired result.

Professor M. J. KNIGHT, in a private communication, has noted that Theorem 1
can also be proved using geometry of numbers.

[S NS

III. AN ESTIMATE FOR L

We are now ready to state and prove our principal result.

Theorem 2. For a given positive integer a and all integers b sufficiently large,
the equation (1) is solvable in integers x;, where n < 3 log aflog 36 + 3.

Proof. Following the same procedure as in the proof of Theorem 1, with A = 36,
we obtain

s
i=1 2Z;

S|

)

where |y;| <36 and 4, < af36°.

SR
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Choose s so that 36° £ a < 36°*1. Then

+

s+1
E=ZX5 where Iy,|<36.
b =1z

By [3, Theorem 4] each

1 1 1
v_t 11

zi xil xiz xl'g

so L < 3(s + 1). The condition that b is sufficiently large guarantees that the z; are
sufficiently large also. We now note that s < log aflog 36, which completes the proof
of the theorem. We also note that for large values of a, n < 3logaflog 36 + 3 <
< log a where log denotes the natural logarithm.

IV. CONCLUDING REMARKS

The bound on L given in Theorem 2 is still a long way from the conjectured result,
so an improved estimate would be of interest. The same conjecture suggests that the
result in Theorem 1 is probably not the best possible when n = 3. However, we do
have the following result when n = 2.

Theorem. 3 For 0 < a[b < 1 there exist integers Xy, X,, 2y, z such that

S, % gpg |x:| < a.
b z; =z,

Moreover, the bound on the Ix,l is the best possible.

Proof. By Theorem 1, we need only prove the last statement.

Leta = (n + 1)* — 1 = n*® + 2nandlet b be a prime such that b = n + 1 (mod a).
Infinitely many such primes exist since (n + 1, a)=1.

By Theorem 1

©)

Xt 4 %2 ghere x| < n.

Zy 2,

SR

Now, assume (2) holds where |x;| < n — 1. Then by Theorem 1’ of [4] there exist
dy, d, | b such that x,d, + x,d, = ka for some integer k =% 0. Since b is prime, its
only divisors are +1, +b. If |d,d,| = 1 or b® then x,d; + x,d, = ka is possible
only for k = 0, which is the excluded case.
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