#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1980
PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log76

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

CASOPIS PRO PESTOVANI MATEMATIKY
Vyddvd Matematicky dstav CSAV, Praha
SVAZEK 105 * PRAHA 24.11.1980 * CisLO 4
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(Received August 8, 1974, in revised form November 23, 1978)

In the first part of this paper we prove a new characteristic property of generators
of distribution semigroups of operators using only the behavior of their revolvents
on the real halfaxis. It is similar to that of OHARU [1] but does not involve the graph
spaces of powers of the generator (Theorem 1.2).

In the second part, we prove the necessity of the above mentioned property directly
from Chazarain’s condition [2] on the behavior of the resolvent in a logarithmic
domain of the complex plane (Theorem 2.5 and 2.7).

In the sequel, E will be an arbitrary Banach space over the real R or complex C
field (real in the first and complex in the second part).

If A is an arbitrary linear operator from E into E, we define formally A° = I,
I being the identity operator.

1. SEMIGROUPS AND RESOLVENTS

1.1. Lemma. For every A > 1,re{1,2,...} and pe {0, 1, ...} we have

o :
dir i

. B
== 1

Proofis easy.

1.2. Theorem. Let A be a linear operator from E into E. Then the following two
statements are equivalent:

(O) there exists a constant x = 0 such that
(@) (x, ) = (4),
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(IT) for every T > 0 there exisrk €{0,1,...} and K- 0 such that
K -

@ = 4)™" x| = Z |4%x| for every nef1,2,..}, A > _nf + %

(A -
and x e D(4"),

(C) there exists a constant w = 0 such that
(1) (@, ) < e(4),
or euery.T>. there exist 1 €40, 1, ...} and M = 0 such that
II) f 0th 1e{0,1 d 0 h th
_ Mpt
( — o)t

) for every pe{O 1,...} and

”di” A
u— + .

Proof. For the sake of simplicity we shall write R(4) = (A — 4)~' for every
Aeo(A).
It is well-known that

(1) AR(x) = p R(p) = I for every peg(A),

p
(2 :;l; R() = (—1)? p! R(u)?** for every peo(A) and pe{0,1,...}.
K :

Now we begin by proving (O) = (C).
Using (1) we easily obtain by induction on s that

(3) 3 R = R RGY - aRD)Y. -

s

Rlay*t—r =% %R(a)‘“” for every

r=1

\,l,_.

ieg(A), 2 0, aepo(4) and se{1,2,...}.

Let us now choose » = 0 so that (O) holds.

Let T > 0O be fixed. : :

For this T > 0 we can find ke {O 1,...} and K = 0 such that (O) (II) holds.
The case k = 0 is trivial according to (2) and therefore we suppose k € {1, 2,.. }

k
We write [|x]| = ¥ [47x]| for x € D(4").
j=0 .
Then we have according to (2) that

—R(l)( )| =

(4)

lem for every pe{0,1,...}, 4 > + % and

( )p+ 1
x € D(4¥). D
Using (4) we get by means of Lemma 1.1 that

(5) l—— ) (x)] = =0<P )ﬂl T ry )<

dAP A7 q/dA? A" dArT1
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%(P\ a9 Ke-a)t . _
s 5 (Dt g i

_x% q! (P=—a)! -
B qgo( )(,1 — e — 1)1 (2 — 30 — 1)P0*! Il
= (-1rK z()* et o B

dAA —%—1dAP792

- (-1rK

- p!
dz (,1_~—1)2 I+ AN TR—— =]

for every xe D(4%), re{1,2,:..}, pe{0,1,. }andl>p;: . + % + 2.

Let us now fix an arbitrary « € o(A).
It follows from (1) that there exists a K, = 0 such that
(7) |IR(x) x|| < Ko|x] for every x € E and j € {0, 1, ..., k}.
It is clear that (7) also implies
(8) ||R(x) x| £ Kol|x| for every x e E and je{0, 1, ..., k}.
Now by (3), (4), (5) and (7) (8) and by Lemma 1.1

a1 Kp!
W) = 5 R(A) = ” = (—,1 —)pn’ Kof[x[ + “kao”x” +
! K + akK + k) Kop!
* k()_ __pl)p+1 K""x“ é( (A i ® — 2)2”1017 "x"

for every xe E,pe {0, 1,...} and A >P—;:—1— + % + 2.

Taking = % + 2, | = k, M = (K + akK + k) K, we see that (9) proves (C)
because T > 0 was arbitrary.

We return to the verification of (C) = (O).

1t follows from (1) that

(10) R(2) 2 %R(A) A - iI for every Aeg(A4), A + 0.

Using (10) we prov‘eieas-ily by induction on s that
(11) R(2) 2 %SR(A) 4-3 %A’"l for every A eQ(A)I, A%0 and se{l,2,...}.

r=1

Let w = 0 be such that (C) holds. ' ot
Now we fixa T > 0. t ~
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For this T > 0 we can find /€ {0, 1, ...} and M 2 0 such that (C) (II) holds. We
omit the case I = 0 which is trivial according to (2) and therefore we suppose
le{1,2,. .

It follows from (1) and (11) by means of Lemma 1.1 that

o 1 ]
_ 1 gr-1 . 1 M(n — 1)! L
(""‘ 1)" dir~ IR(A) “ é(n— 1)![(,1_60)" ”A ” +
(n AT 1 M ! j
Ty B | = B o ey e 2

A>%+w+1andxeD(A').

Taking x = @ + 1, k = [ and K = M we see that (12) proves (O) because T > 0
was arbitrary.

1.3. First Characterization Theorem. Let A be a linear operator from E into E.
Then the operator A is the generator of a regular distribution semigroup if and only
if it is densely defined and possesses the property (C) from the preceding theorem.

Proof. Immediate consequence of Theorem 1.2 and Oharu’s results from [1].

1.4. Remark. The advantage of the property (C) from the above theorems con-
sists in the possibility to extend it to a characteristic property of the correctness of
the Cauchy problem for abstract higher order equations — see Part 2 and compare
[2]- The Oharu method in this case brmgs about certain hardly surmountable dif-
ficutlies.

2. RESOLVENTS IN COMPLEX AND REAL DOMAINS

2.1. Sublemma. 1/(1 — £) < e* for every 0 < ¢ < 4.

Proof. The function e”2%(1/(1 — &)) has the value 1 at the point ¢ = 0 and the
value 2¢ ! < 1 at the point ¢ = 4. Hence it suffices to prove that it is nondecreasing
in the interval (0, ). But this is c__lear because its derivative is nonnegative.

1+c¢

exp(—2€ log )
¢ <1 forevery ¢>0 and ¢ =1%.

2.2. Sublemma. <
1-26+(1+c¢)&?
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Proof. Let ¢ > 0 be fixed. The roots of the polynomial 1 — 2¢ + (1 + c) &* are

1 1 \? 1 1 . 1 1 1
-|_- — = 1 — = i—
1+¢ 1+¢ l+c¢/ 1+4c¢ 1+4c¢ (1+¢?) 1+4¢

£i°

1+c

H

Consequently, the function 1 — 2¢ + (1 + c¢) & is positive on R and

(1+C)(¢‘—1ic‘i1\fc)(_1ic“lfc)
s el e _

l1+cl+c 1+4c¢

1-26+(1+¢)& =

v

for every £€eR.

Thus we have

(1) 1 < 1+
1-284+(1+¢)& c
On the other hand,

2¢ 25-1
(2) exp( — 2¢ log1 il = [—£ ¢ < °_ for every
c 1+¢ 1+c¢ 1+4c¢ 1+4c¢

P
Now (1) and (2) give the desired estimate.

¢ for every ¢ e R.

2.3. Lemma.

1 p+1
< e(z+ log(1+a?))Rez

z
p+1

for every a > 0 and Re z = 0 such that
1
|Im z| =-Rez
a

and for every pe{0,1,...}.

Proof. Let a > 0.
We can write

Ilp+1 1 (p+1)/2

1
g TR (R [y
p+1 p+1 p+1

for everya, fe Rand pe {0, 1,...}.

333



Taking & = a(p + 1) in Sublemma 2.1 we see from (1) that

p+1 r+1
(2) - S N éez“forevery0§a=<__&1-, BeR
a+1ﬂ o - . 2

p+1 p+1

and pe{0,1,...}.
On the other hand, we havev

2 2 2 2
@(1-—=—) + BN oo ) 41« Y1 4
p+1 p+1 p+1 a?\p+1 p+1
2 2 2
+ 2 >+i2( = = = 1+—1— 2 for every
p+1 a’\p+1 _ p+1 a’)\p + 1

o = 0 and B € R such that |B| —a and for every pe {0, 1, ...}.

It follows from (1) and (3) that

1 (R 1 (p+1)/2
__'ﬂ < forevery o = 0,
a+i

a 1 o
1 - +(1+=
p+1 p+1 a’?)\p + 1?

B € R such that |ﬂ| = g « and for every pe {0, 1,...}.
a

)

Now we obtain from (4), taking ¢ = «/(p + 1) and ¢ = 1/a* in Sublemma 2.2,
that
p+1
(5) < e84 for every o = p L |8l 2 loz and pe{0,1,...}.
_o+ 1ﬂ 2 a

p+1

Summing up (2) and (5) we get at once
1 p+1
o+ ip

< eZHlos(1+a")a for every o > 0, |ﬂ| > loz and pe{0,1,...},
1 - a
p+1

which is the desired result if we take Re z = o, Im z = .

2.4. Proposition. Let A be an oﬁen subset of C and R a mapping of A into E.
If the function R is analytic in A and if there exista 20,b =2 0,K 2 0andv = 0
so that

(@) {z:zeC,Rez > alog(l + |Imz|)+b} c A,
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(B) |R(z)| = K(1 + |2|)" for every z € C such that Re z > alog(l + [Imz|) + b,
then there exist M 20, ® 20, y€{0,1,...} and me {0, 1, ...} such that

(3) (@ oo)cA

®) |5

'
,l)” < ——Aigi“forevery Te{l,2,..},A>wand pe{0,1,...}

T (4 - wpt!

p+1

d/lp le+m

such that 1 = + o

Note. If the constants a 2 0, b =20, K 2 0 and v = 0 are given so that the
assumptions (o), (B) hold, then the constants M 20, w 2 0, x€{0,1,...} and
me {0, 1, ...} can be chosen, for example, in the following way:
2K(1 + a)_

2 ’

M = =b+2, y—1<4a+2log(l +a*) <y,

m-—-1<v+2=<m.
Proof. Let us first fix constants a = 0, b 2 0, K = 0 and v = 0 so that the as-
sumptions (o) and (B) hold.
For the sake of simplicity we shall denote
(1) @={z:Rez > alog(l + [Imz|) + b},
(@ r={z:Rez=ualog(l + |[Imz|) + b + 2},
B)w=0>b+2
Further, we need the function
(4) z(&) = alog(1 + Iél + b+ 2+ié for £eR.
It is clear from (1), (2) and (4) that
(5) r={z(¢):¢eR} = Q,
(6) z'(¢) = I—_:_M + i for every e R.'
Regarding (1) we can rewrite the assumptions of Proposmon 2.4 in the form
(7) the function R is analytic in €,
(8) [|R(z)| = K(1 + |2|)” for every z € Q.
It is easy to prove from (1)—(3), (7) and (8) by means of Cauchy’s integral theorem

that
L | _p! R(z)
@; JiHv2 R()‘) = RJ‘rszz(Z _ ).)p+l dz

for every A > w, 1€{0,1,...} and pe{0, 1, ...}.
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This identity can by written in the following form used below:

— )Pt gr
o) (A—opttd 1 R(,l)—L. _R(2) ( — O\piry,
P! dﬂ.p AH-H'Z 2ri . Zl+v+2 7z — ;L

forevery A > o, 1€{0,1,...} and pe {0, 1, ...}.
Let us recall that, as is well known,

Further, (4) and (6) immediately imply
(11) 1_-4-(];)(_6)[ <2, |z(5)| 2 /(2 + ¢, |z’(£)| <14 a forevery éeR.
z

Let us now consider the case a = 0.
In this case we have

A—w.= A—w _ A—w |= A—ow <1
-0 [2)-0-(G-0) [E-@G-0) [(A-op+e]2"

for every A > w and £ € R and consequently

p+1
<1 forevery A > w and ¢ eR.

(12)

z(é) -
Let us denote by m an integer such that
MB)ym-1<v+2=m
It is clear from (11) and (13) that

(14)

< 1 for every EeR

EG (5)|'" T

It follows from (4), (5) and (8)—(14) that

o [ 8 - [ B0 o

p! dar im

J‘ (1+ |z(f)| 2nJ' Ldé =

e lz(€)|v+2 e 2 4 62

2K (® 1 2K
< dé £ for every A > w and pe{0,1,...}.
2n j_w 1+¢& 2 g pef )

Now we suppose a > 0.
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We easily see from (3), (4) and (6) that under this hypothesis
(16) Re z(¢) — @ 2 0 and [Im (z(¢) — »)| 2 ! Re (z(¢) — ) for every &eR.
a

Using Lemma 2.3 we obtain from (16) that

(17)’A—w|"+1= - p+1=—»-_1———p+1=
2(¢) - 4| () -0 - (- o) ) -
A—®
| 1 Y en on(l 44 Re (z(¢) - @)
} (p+nA)=e = p[(2+lg(1+ L e ]
| - A— o
| p+1 |

for every £€R, A > w and pe{0,1,...}.
For the sake of brevity let us now denote by y an integer such that

(18) x — 1 < 2{[2 + log (1 + a?)] a} < x.
It follows from (4), (6), (17 and (18) that

i | _S_expli(Z + log (1 + a?) (p + I)M] =
- o

(19)

z(&) — 2

= (1 + |¢|)@D@*+DIG=0) for every € R, A > wand pe {0, 1,...}.
Finally, let us recall two elementary facts:

(20) ;—+I§2[ <1 for every (e R;
+

(21) T(i+ ! )§ 1 forevery T> 0, A > w and pe{0,1,...} such that
)

Using (4), (5), (8)—(11), (13), (14) and (18)—(21) we obtain

_ p+1 P
() A= & L g -
p!  dap pxTHm

AR
*5e_por o o —d POl

T 2n
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1 K(+ IZ(é)l) U 1ENE @ DI (1 4
< 1+ [¢])* (1 d¢ =
j o (\/(2 + 52))1T+2| (al |f|) 4+ a) ¢

K(l + a) 1 + |z(§)l (1 & lél)(l/z)((p+l)/(1 o '1 3
’f ( z(§)| ) W2+ T 2482 d_é =

< K( + a)J' 2v(1 +|g)erper birG-en o
@+ 1+

2"K(1 K(1+a)(* (1L+ ¢y 1
f_m(z + 62)1T/2 1 4 EZ

B 2"1((1 + a)J' _2K(L+ 2)

d¢ =

ol + 52 2

foreveryTe{lZ J,A>wand pe{0,1,...} suchthat A = (p + 1)/T + w.

The statement of our proposition follows from (1) ) (6), (13), (14), (17) and (20)
if we take M = 2" K(1 + a)|2. ' S

2.5. Theorem. Let A be a linear operator from E into E. If there exist a = 0,
b=0,K = 0andv = 0 such that
(@) {z:zeC, Rez > alog(l + |Imz|) + b} < Q(A)

(B) ||(z1 — 4)~ 1|| < K(1 + |z|)" forevery z € C such that Re z > a log (1 + |Im z|
+ b, . .

then the following condition is fulfilled: :
(D) there exist M 2 0,0 2 0, xe{0,1,...} and mg {0, 1, ...} such that
(a) (@, ) = e(4),

® |7

| :
‘é-&_% for' every Te{l,2,.:.},A>w and

At = A)

d}.p 11T+m

pe{0,1,...} such that 1 2 E—%l + .

Proof. Let us denote A4 = g(A4) = the résolvent set of the operator A and R(z) =

= (zI — A)™" for z e o(A). It is well known that the set A is open and the funclion R
is in this case analytic on A. Thus our theorem immediately follows from Proposi-
tion 2.4.

2.6. Remark. The converse of Theorem 2.5, provided the operator A is densely
defined, follows from Oharu’s results in [1] and from Theorem 1.2. A direct proof
of this converse is not known to the author. It would be desirable to construct a proof
not involving sufficiently “smoth” elements, i.e., elements of higher powers of the
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operator 4, which is not convenient in particular if we consider the Cauchy problem
for equations of higher degrees (cf. [2] and the following Theorem 2.9) because in
this case great difficulties arise connected with the use of “smooth” elements produced
by many noncommutative unbounded operators.

2.7. Second Characterisation Theorem. Let A be a linear operator from E into E.
Then the operator A is the generator of regular distribution semigroup if and
only if it is densely defined and possesses the property (D) from the preceding
theorem.

Proof. Immediate consequ,enc.e of Theorems 1.3 and 2.5 and of O.haru’s results
from [1]. '

2.8. Remark. For régulaf distribution semigroups it is possible to prove the
following growth property (D), similar and closely related to the property (D)
from Theorem 2.5.

Let D(R) be the linear space of infinitely differentiable real-valued functions on R
with compact support.

If 7, as.a mapping of D(R) into L(E), is a regular distribution semigroup, then
(D’) there exist M 2 0, w 2 0, y€{0,1,...} and me {0, 1,...} such that

|[70)] = Me"" sup (Jo'e™(e))

for every Te{l,2, } and ¢ € D(R) satisfying support (¢) < (— oo, T].

2.9. Theorem. Let A, Aj,..., A, ne{l,2,...}, be linear operators from E
into E. If the operators A,, A,, ..., A, are closed and if there exist a 2 0, b = 0,
K = 0and v = 0 such that

(@) z"I + z""'A; + ... + A, is a one-to-one operator and its inverse is everywhere
defined and bounded for every Rez > alog(l + |Im z|) + b,

(B) [Adz"T + 2" 'A4; + ... + A,)7| S K(1 + |2|)" for every ie{1,2,...,n} and
for every z € C such that Re z > alog (1 + |Im zl) + b,

then there exist M 2 0, w 2 0, xe {0, 1, ...} and me {0, 1, ...} such that

(@) AT + A""'A; + ... + A, is a one-to-one operator and its inverse is every-
where defined and bounded for every A > w,

dar 1

E}Tp JxT+m

Mp!
<—-—— for every Te
=G oy i y
€{1,2,..}, A>w «nd pe{0,1,...} such that 4> (p + 1)|[T + w and for
every ie{l,2,...,n}.

(b)

AT+ A 'A 4+ .+ A)7!

Proof. Let us denote by A the set of all z e C such that z"I + 2"~ 14, + ... + 4,
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