

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log70

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CONSTRUCTING THE MINIMAL DIFFERENTIAL RELATION WITH PRESCRIBED SOLUTIONS

JIŘÍ JARNÍK, Praha

(Received May 16, 1978)

Let \mathbb{R}^n be the *n*-dimensional Euclidean space, \mathscr{K}_n the system of its nonempty compact convex subsets, $\mathscr{K}_n^0 = \mathscr{K}_n \cup \{\emptyset\}$.

Let us denote by B(x, r), $\overline{B}(x, r)$ respectively the open and the closed ball in R^n with a centre x and a radius r.

Given $M \subset R^n$, then $\Omega(M, \varepsilon)$ is the ε -neighbourhood of the set M, $\overline{\Omega}(M, \varepsilon)$ the closure of the neighbourhood. The symbol $\overline{\operatorname{conv}} M$ stands for the closed convex hull of a set $M \subset R^n$, m(A) is the (one-dimensional) Lebesgue measure of a set $A \subset R$. If J is an interval, $M \subset R^n$, then the upper semicontinuity of a mapping $F: J \times M \to \mathcal{K}_n$ or $F: J \times M \to \mathcal{K}_n^0$ is defined in the usual way.

Our aim is to prove the following theorem.

Theorem. Let $\alpha < \beta$. Let Ξ denote a set of functions $x: J_x \to R^n$ with the following properties:

- (i) for each $x \in \Xi$, J_x is a closed subinterval of $J = [\alpha, \beta]$;
- (ii) x is absolutely continuous;
- (iii) there exists a function $\xi : [\alpha, \beta] \to R^+ = [0, +\infty)$ with $\int_a^\beta \xi(t) dt \le 1$ such that $|\dot{x}(t)| \le \xi(t)$ holds for almost all $t \in J_x$;
- (iv) to each $x \in \Xi$ there is $\tau_x \in J_x$ such that $|x(\tau_x)| \le 1$.

Then there exists a mapping $Q: H \to \mathcal{K}_n^0$, where $H = [\alpha, \beta] \times \overline{B}(0, 2)$, such that $Q(t, \cdot)$ is upper semicontinuous for almost all $t \in [\alpha, \beta]$, each $x \in \Xi$ is a solution of the relation

$$\dot{x} \in Q(t, x)$$

and Q is minimal in the following sense: if $S: H \to \mathcal{K}_n^0$, $S(t, \cdot)$ is upper semi-continuous for almost all $t \in [\alpha, \beta]$ and each $x \in \Xi$ is a solution (on J_x) of the relation

$$\dot{x} \in S(t, x)$$
,

$$Q(t, x) \subset S(t, x)$$

for almost all $t \in [\alpha, \beta]$ and all $x \in \overline{B}(0, 2)$.

Remarks. 1. Let us notice that the minimality property of Q guarantees its uniqueness.

- 2. In addition to the upper semicontinuity of Q, it will be clear from the proof that $Q(t, x) \subset \overline{B}(0, \xi(t))$ (cf. condition (iii) of Theorem). Hence Q satisfies assumptions for the existence of solutions of (1).
- 3. According to [1, Definition 1.4], a mapping $F: H \to \mathcal{K}_n^0$ belongs to the class $\mathscr{SD}^*(H \to \mathcal{K}_n^0)$ if it satisfies the condition: to every $\varepsilon > 0$ there is a measurable set $A_{\varepsilon} \subset R$ such that $m(R A_{\varepsilon}) < \varepsilon$ and the function $F|_{H \cap (A_{\varepsilon} \times R^n)}$ is upper semi-continuous; mappings from $\mathscr{SD}^*(H \to \mathcal{K}_n^0)$ may be called Scorza-Dragonian mappings as Scorza-Dragoni introduced the corresponding class of functions $f: H \to R$.

The main result [1, Theorem 1.5] applied to the mapping $Q: H \to \mathcal{K}_n^0$ with the properties specified in Theorem yields that there exists a Scorza-Dragonian mapping $Q_0: H \to \mathcal{K}_n^0$ which fulfils $Q_0(t, x) \subset Q(t, x)$ for almost all $t \in [\alpha, \beta]$ and all $x \in \overline{B}(0, 2)$, and each $u \in \Xi$ is a solution of the relation

$$\dot{x}\in Q_0(t,x).$$

Hence necessarily $Q \equiv Q_0$, i.e. Q is Scorza-Dragonian.

Proof of Theorem. If x, y are two functions satisfying conditions (i)—(iv), let us introduce the distance $\varrho(x, y)$ in the following way:

Denote by $J_x = [a_x, b_x]$, $J_y = [a_y, b_y]$ the definition intervals of x, y, respectively, and set

$$\overline{x}(t) = \begin{cases} x(t) & \text{for } t \in J_x, \\ x(a_x) & \text{for } \alpha \le t < a_x, \\ x(b_x) & \text{for } b_x < t \le \beta; \end{cases}$$

then $\bar{x}: J \to R^n$. Introducing $\bar{y}: J \to R^n$ analogously, we define

$$\varrho(x, y) = \max_{t \in I} |\bar{x}(t) - \bar{y}(t)| + |a_x - a_y| + |b_x - b_y|.$$

It is easily verified that this formula defines a metric on the set of functions satisfying (i)—(iv). We shall show that the set Ξ has an at most countable dense (with respect to ϱ) subset. Indeed, set

$$\Gamma = \{x : J \to R^n \mid x \text{ satisfies (ii), (iii), (iv)} \}$$
.

The set Ξ with the above defined metric ϱ is naturally imbedded into the Cartesian product $\Gamma \times J \times J$. As Γ is separable in virtue of (ii)—(iv), we conclude that Ξ is separable as well.

Consequently, there is an at most countable dense subset of Ξ , say

$$V = \{v_1, v_2, \ldots\} \subset \mathcal{Z} .$$

Let us denote

$$\Lambda_i = \left\{ t \in J_{v_i} \middle| \dot{v}_i(t) \text{ does not exist} \right\}, \quad i = 1, 2, \dots,$$

$$\Lambda = J - \bigcup_{i=1}^{\infty} \Lambda_i.$$

Then $m(\Lambda) = \beta - \alpha$.

Let us define functions $Q_i: [\alpha, \beta] \times \overline{B}(0, 2) \to \mathcal{X}_n^0, i = 1, 2, ...$ by

(2)
$$Q_{i}(t, x) = \begin{cases} \{0\} & \text{for } t \in [\alpha, \beta] - \Lambda \\ \overline{\text{conv}} \left\{ \dot{v}_{p}(t) \mid v_{p}(t) \in \overline{B}(x, i^{-1}) \right\} & \text{for } t \in \Lambda \end{cases}$$

and put

$$Q(t, x) = \bigcap_{i=1}^{\infty} Q_i(t, x).$$

We shall prove that the mapping Q has the properties from Theorem. First, let us introduce an auxiliary result.

Lemma. Let $x_j : [\alpha, \beta] \to R^n$ satisfy the assumptions (ii), (iii) of Theorem (with x replaced by x_i). Let there exist $x : [\alpha, \beta] \to R^n$,

$$x(t) = \lim_{j \to \infty} x_j(t)$$

for all $t \in [\alpha, \beta]$.

Then

$$\dot{x}(t) \in \bigcap_{j=1}^{\infty} \overline{\text{conv}} \left\{ \dot{x}_j(t), \dot{x}_{j+1}(t), \ldots \right\}$$

for almost all $t \in [\alpha, \beta]$.

For this lemma, see [2, p. 395, Theorem D 18.3.10] or [3, Lemma 2]. Now we shall prove that each $u \in \mathcal{Z}$ satisfies the relation

$$\dot{u}(t) \in Q(t, u(t))$$

for almost all $t \in J_u$.

Indeed, since V is a set dense in Ξ , there exists a sequence $w_j = v_{k_j} \in V, j = 1, 2, ...$ such that

(4)
$$u(t) = \lim_{j \to \infty} w_j(t).$$
 According to Lemma there is a set $A \subset [\alpha, \beta]$, $m(A) = \beta - \alpha$, such that

$$\dot{u}(t) \in \bigcap_{j=1}^{\infty} \overline{\text{conv}} \left\{ \dot{w}_j(t), \, \dot{w}_{j+1}(t), \, \ldots \right\}$$

for all $t \in A \cap J_{\mathbf{w}}$.

Given $t \in A \cap A$, there exists for every positive integer i a positive integer j such that

$$\overline{\operatorname{conv}}\left\{\dot{w}_{i}(t), \dot{w}_{i+1}(t), \ldots\right\} \subset Q_{i}(t, u(t)).$$

(To this aim it is sufficient to choose j large enough to satisfy $|w_q(t) - u(t)| \le i^{-1}$ for all $q \ge j$.)

Hence

$$\dot{u}(t) \in Q_i(t, u(t)), \quad i = 1, 2, ...$$

for almost all t which implies (3) immediately.

Further, we shall prove that the mapping $Q(t, \cdot)$ is upper semicontinuous for almost all $t \in [\alpha, \beta]$.

Let us first mention an elementary assertion which is an immediate consequence of the compactness of the sets $Q_i(t, x)$, i = 1, 2, ... For every $\varepsilon > 0$ there is a positive integer $i(\varepsilon)$ such that

(5)
$$Q_i(t, x) \subset \Omega(Q(t, x), \varepsilon)$$

for all $i \ge i(\varepsilon)$. Indeed, if this were not the case and if $Q(t, x) \ne \emptyset$ then we could choose $\eta > 0$ and a sequence $z_i \in Q_i(t, x), |z_i - y| \ge \eta > 0$ for $y \in Q(t, x)$. However, passing to a convergent subsequence if necessary we obtain $z_0 \in Q(t, x)$ for $z_0 = \lim z_i$, a contradiction. On the other hand, if $Q(t, x) = \emptyset$ then $Q_i(t, x) = \emptyset$ for i sufficiently large and (5) is obvious.

Now let $(t, x_0) \in H$ and $\varepsilon > 0$. Find $i(\varepsilon)$ so that (5) holds for $i \ge i(\varepsilon)$ and suppose $|x - x_0| < (2i(\varepsilon))^{-1}$, $z \in Q(t, x)$. Then also $z \in Q_{2i(\varepsilon)}(t, x)$, i.e. for every $\eta > 0$ there exists a convex combination

$$\sum_{j=1}^{p} \beta_{j} \dot{v}_{j}(t), \quad \sum_{j=1}^{p} \beta_{j} = 1, \quad \beta_{j} > 0$$

with $v_i \in V$ so that

$$\left|z - \sum_{j=1}^{p} \beta_{j} \, \dot{v}_{j}(t)\right| < \eta$$

and simultaneously

$$\left|x - \sum_{j=1}^{p} \beta_{j} v_{j}(t)\right| \leq \frac{1}{2i(\varepsilon)},$$

hence

$$\left|x_0 - \sum_{j=1}^p \beta_j v_j(t)\right| < \frac{1}{i(\varepsilon)}.$$

This means $z \in Q_{i(\varepsilon)}(t, x_0)$. Now we conclude from (5) that

$$Q(t, x) \subset Q_{2i(\epsilon)}(t, x) \subset Q_{i(\epsilon)}(t, x_0) \subset \Omega(Q(t, x), \epsilon)$$

provided $|x - x_0| < \delta = (2i(\varepsilon))^{-1}$ which proves the upper semicontinuity of the map Q.

It remains to prove that Q is minimal in the sense mentioned in the theorem. Let us suppose that S has the properties from the theorem, i.e. $S: H \to \mathcal{X}_n^0$, $S(t, \cdot)$ is upper semicontinuous for almost all $t \in [\alpha, \beta]$ and each $u \in \Xi$ is a solution of the relation

$$\dot{x} = S(t, x).$$