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Let R" be the n-dimensional Euclidean space, &, the system of its nonempty
compact convex subsets, Xy = X, U {0}.

Let us denote by B(x, r), B(x, r) respectively the open and the closed ball in R*
with a centre x and a radius r.

Given M < R", then Q(M, ¢) is the e-neighbourhood of the set M, (M, ¢) the
closure of the neighbourhood. The symbol conv M stands for the closed convex
hull of a set M = R", m(A) is the (one-dimensional) Lebesgue measure of a set A —R.
If J is an interval, M < R", then the upper semicontinuity of a mapping F : J X
X M- A ,orF:J x M- A0 is defined in the usual way.

Our aim is to prove the following theorem:.

Theorem. Let « < f. Let E denote a set of functions x : J, = R" with the following
properties:

(i) for each x € &, J, is a closed subinterval of J = [a, B];
(ii) x is absolutely continuous;

(iii) there exists a function & : [a, f] » R* = [0, + ) with [% &(t)dt < 1 such
that |%(t)| < &(t) holds for almost all te J,;

(iv) to each x € E there is T, € J, such that |x(z,)| S 1.

Then there exists a mapping Q :H — X, where H = [a, f] x B(0, 2), such
that Q(t, ) is upper semicontinuous for almost all t € [a, B], each x € Z is a solution
of the relation

(1) %€ Q(t, x)

and Q is minimal in the following sense: if S:H — A3, S(t, *) is upper semi-
continuous for almost all t € [, B] and each x € & is a solution (on J,) of the rela-
tion

xeS(t x),
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then
Q(t, x) = S(t, x)
for almost all t € [a, B] and all x € B(0, 2).

Remarks. 1. Let us notice that the minimality property of Q guarantees its
uniqueness.

2. In addition to the upper semicontinuity of Q, it will be clear from the proof
that Q(t, x) = B(0, &(t)) (cf. condition (jii) of Theorem). Hence Q satisfies as-
sumptions for the existence of solutions of (1).

3. According to [1, Definition 1.4], a mapping F : H — X' belongs to the class
F9*(H — A7) if it satisfies the condition: to every ¢ > 0 there is a measurable
set A, = R such that m(R — 4,) < ¢ and the function F|g,c,xgn) is upper semi-
continuous; mappings from ¥2*H — #J) may be called Scorza-Dragonian
mappings as Scorza-Dragoni introduced the corresponding class of functions
f:H->R.

The main result [1, Theorem 1.5] applied to the mapping Q : H — %7 with the
properties specified in Theorem yields that there exists a Scorza-Dragonian mapping
Qo : H » X, which fulfils Qo(t, x) = Q(t, x) for almost all te [, ] and all xe
€ B(0, 2), and each u € Z is a solution of the relation

% € Qyt, x) .
Hence necessarily Q = Q,, i.e. Q is Scorza-Dragonian.
Proof of Theorem. If x, y are two functions satisfying conditions (i)—(iv),
let us introduce the distance g(x, y) in the following way:

Denote by J, = [a,, b,], J, = [a,, b,] the definition intervals of x, y, respectively,
and set

x(t) for telJ,,
x(t) = {x(a,) for a £t <a,,
x(b,) for b, <t=p;

then X : J — R". Introducing y : J — R" analogously, we define
o(x, y) = ma-l'x |%(t) = 5(1)] + |ax — a,| + |bx — b)| .
te.

It is easily verified that this formula defines a metric on the set of functions satisfying
(i)—(iv). We shall show that the set = has an at most countable dense (with respect
to g) subset. Indeed, set

I = {x:J - R"| x satisfies (ii), (iii), (iv)} -

The set = with the above defined metric g is naturally imbedded into the Cartesian
product I' x J x J. As I is separable in virtue of (ii)—(iv), we conclude that Z is
separable as well.
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Consequently, there is an at most countable dense subset of =, say
V= {vl, Uy, ...} cE.
Let us denote
A; = {teJ, | o) does not exist}, i=1,2,...,
A =J-U 4;.
i=1
Then m(A) = B — a.
Let us define functions Q; : [«, f] x B(0,2) » X5, i=1,2,... by

_ ({0} for te[a,p]—4
@ g“x)‘%iﬁ{%m|%meﬁaﬁﬂn for ted
and put @
o(t, x) =iDlQi(" x).

We shall prove that the mapping Q has the properties from Theorem. First, let us
introduce an auxiliary result.

Lemma. Let x; : [a, B] = R" satisfy the assumptions (ii), (iii) of Theorem (with x
replaced by x;). Let there exist x : [a, f] - R,

x(0) = lim x,()

for all te[a, B].
Then

(1) ejam (0, %1a1(D), )

for almost all t € [a, B].
For this lemma, see [2, p. 395, Theorem D 18.3.10] or [3, Lemma 2].
Now we shall prove that each u € E satisfies the relation

(3) a(r) € (1, u(1))
for almost all t e J,. /

Indeed, since Vis a set dense in Z, there exists a sequence w; = v, € V,j = 1,2, ...,
such that

4 u(f) = lim w(t) .
jo o
According to Lemma there is a set A < [a, ], m(4) = B — a, such that
u(r) e.ﬂlconv {w;(8), wy41(0), ...}
=

forallte An J,.
Given t € A n A, there exists forevery positive integer i a positive integer j such that

conv {w;(t), w;+4(t), ...} = Qi(t, u(?)) .
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(To this aim it is sufficient to choose j large enough to satisfy |w,(t) — u(f)| < i™*
for all g = j.)

Hence :

u(t)e Qt,u(t), i=1,2,...

for almost all t which implies (3) immediately.

Further, we shall prove that the mapping Q(t, -) is upper semicontinuous for almost
all te[a, B].

Let us first mention an elementary assertion which is an immediate consequence
of the compactness of the sets Q(t, x), i = 1,2, .... For every ¢ > 0 there is a positive
integer i(e) such that

(5) , Qi(t, x) = Q(Q(t, x), €)
for all i = i(e). Indeed, if this were not the case and if Q(t, x) + @ then we could
choose n > 0and a sequence z; € Q(t, x), |z; — y| = n > Ofor y € Q(t, x). However,
passing to a convergent subsequence if necessary we obtain z, € Q(t, x) for z, =
= lim z;, a contradiction. On the other hand, if Q(t, x) = @ then Q(t, x) =0 for i
sufficiently large and (5) is obvious.

Now let (¢, x,) € H and & > 0. Find i(e) so that (5) holds for i 2 i(¢) and suppose
|x — xo| < (2i(e))™", z € Q(t, x). Thenalso z & Qy;)(t, x), i.e. for every n > 0 there
exists a convex combination

ilﬂj 0,(t) 'glﬁj =1, ;>0

with v; e V so that

p
|2 “,Zlﬁj o(0)] <n
j=
and simultaneously
1

}x -_iiﬂj v,(t)] = 2i(e) ’

hence
P 1
[xo = X B vi(0)] < —.
=1 i(e)
This means z € Q;,(t, x,). Now we conclude from (5) that

Q(t, x) = Qaie(t: X) = Qi1 Xo) = 2(Q(t, %), €)

provided |x — xo| < 6 = (2i(¢))™* which proves the upper semicontinuity of the
map Q.

It remains to prove that Q is minimal in the sense mentioned in the theorem.
Let us suppose that S has the properties from the theorem, i.e. S : H = %5, S(t, *)
is upper semicontinuous for almost all t € [«, f] and each u € £ is a solution of the
relation

(6 %=5(x).
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