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VARIATIONS OF DISCRETE ANALOGUES
OF WIRTINGER’S INEQUALITY

JARMILA NOVOTNA, Praha

(Received December 20, 1977)

Discrete analogues of Wirtinger’s inequality have been already studied by dif-
ferent methods of proofs. The basic theorem of the topic dealt with in our article is
Theorem 1. Its first proof was published 1950 by I. J. SCHOENBERG (see [5]). The
author uses the complex finite Fourier series and proves Theorem 1 for complex

- numbers.

In [3], published 1955, K. FAN, O. Taussky and J. Topp discuss discrete analogues
of several integral inequalities. The main tool they use to prove them are the proper-
ties of Hermitian matrices which are known from the calculus of variations (see [3],
p. 77). In this way the authors prove the first three theorems of those which will be
dealt with in this article (Theorems 1, 2 and 3). In [3], each theorem is proved
separately.

In 1957, H. D. Brock in [2] proved the complex case of Theorem 1 using the pro-
perties of operators in the n-dimensional unitary space.

O. SHisHA published 1973 another proof of Theorem 1 (see [6]). He uses geometrical
tools based on Fenchel’s theorem for a spherical curve.

In our paper we prove the basic Theorem 1 using the real trigonometric polynomials
(see [1], pp. 13—20). The method is analogous to that used by I. J. Schoenberg. As
compared with the results achieved as far, we obtain also a sharpening of Theorem 1
(Theorem 5). We show that Theorems 2 and 3 follow immediately from Theorem 1.
Theorem 4 is a discrete analogue of the integral inequality as proved in [4], p. 595.
We derive its sharpening (Theorem 6). Theorems 4, 5, 6 are mentioned neither in [2]
nor in [3], [5], [6]-

First we give Theorems 1 through 6. Then we derive Theorems 2, 3 and 4 from the
basic one — Theorem 1 — and Theorem 6 from Theorem 5. The proofs of Theorems
1 and 5 are given afterwards.

In the last part of the paper, a geometrical application — the proof of the iso-
perimetric inequality for some polygons — via Theorems 1 and 5 is given.
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1. LIST OF THEOREMS
Theorem 1. Let x4, ..., X, be n real numbers such that
(1.1) é:lx,- =
Let us define x,,, = x,. Then
(1.2) -il(x‘ —xi ) 2 4sinzs '_ile.

The equality in (1.2) holds if and only if

211:

(1.3) x; = AcosZ® 4 Bsi , i=1,..,n, A,B=const.
n

n

Theorem 2. If x,, ..., x, are n real numbers and x, = 0, then

(14) T = e 2 4t B S

The equality in (1.4) holds if and only if

(1.5) Xy =Asin(l—_—£t, i=1,...,n, A = const.
2n —1

Theorem 3. If x4, ..., X, are n real numbers, then

(1.6) Z(x,' - xi+l)2 g 4Sin
i=0

2(n +1)

where xo = x,,, = 0. The equality in (1.6) holds if and only if

(1.7) x; = Asin i=1,...,n, A= const.

n+1’

Theorem 4. Let x,, ..., x, be n real numbers satisfying (1.1). Then

n—1

(1.8) Y (x; — xi41)* = 4sin?

T 2
~ i
i=1 2n

X .

|IM=

The equality in (1.8) holds if and only if

(2i-1mn

(1.9) x; = A cos
2n

i=1,...,n, A = const.
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Theorem 5 (sharpening of Theorem 1 for neven). Letn = 2m, n = 4, let x,, ..., X,

be n real numbers satisfying (1.1). Let us define x,,; = x;,i = 1,...,m. Then

™M=

(1.10) (¥ = xi41)* 2

1

L 28 L W o . 2T
2 (sin? = — sin? =) ¥ (x; + Xi4m)® + 4sin® = Y x}.
n n/i=t ni=1

-
[}

The equality in (1.10) holds if and only if

(1.11) x‘=Acos@+Bsin2—m+Ccos4—m+Dsin4—m,
, n n n n

i=1,...,n, A,B,C,D = const.

Remark. 1. For n > 4 the inequality sin? (2n/n) — sin® (n/n) > 0 holds.

2. Choosing a number g, 0 < p < sin? (2n/n) — sin? (n/n), we can derive in the
same way as in the proof of (1.10) (see the proof of (3.9)) that the following inequality
holds:

(1.10") Y (% = Xi41)? 2 1Y (% + Xigm)? + 4sin? " Y %2,

i=1 i=1 ni=1
where the numbers x,, ..., x, satisfy the assumptions of Theorem 5. The equality
in (1.10") holds if and only if x; satisfy (1.3).

Theorem 6 (sharpening of Theorem 4). Let x,, ..., x, be n real numbers satis-
fying (1.1), n = 2. Then
n—-1

(1.12) % (= xan)? 2

i=
> (sin? " — sin? -E) Y (% + Xpe1-0)® + 4sin? ~ Y%7 .
n 2n/ i=1 2n i=1
The equality in (1.12) holds if and only if

(2_'__1)_“+Bcos£2—l:—1)—", i=L..n,

(1.13) x; = Acos
2n n

A, B = const .

2. APPLICATION OF THE BASIC THEOREMS

Now it will be shown how to derive Theorem 2 from Theorem 1. Let y,, ..., ¥Y2(20-1)
be 2(2n — 1) real numbers defined as follows:
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, Xi s k=1,....n,
_ Xon—k+1 > k=n+1,...,2n—l,
(2.1) =) —xesiomms k=2n,..,3n—1,
—X4n_k Py k = 3", ey 2(2" = 1) .
2(2n-1)
Since Z ¥« = 0, we can, putting y,,_; = ¥, apply the results of Theorem 1 to

(2.1). As x; = 0, the following equalities hold:

2(2n-1) 2(2n-1)

Z .Vk = 42’% ’ 2 (.Vk - J’k+1)2 = 4:;1(&- - le)z ;

Hence, (1.4) holds. The equality will hold for (1.5), since y; = 0 in the new computa-
tion.

In an analogous way Theorems 3 and 4 can be derived from Theorem 1. We shall
show, only schematically, how to define the numbers {y,}.
For Theorem 3:

(22 0, X1, Xg5 eees Xps 0y —Xg, —Xgyeeey —Xp .
For Theorem 4:
(2.3) Kis Xauovve Xy s Xys moop Xgy Xy »

Theorem 6, a sharpening of Theorem 4, can be derived from Theorem 5 via (2.3).
Here, ny = 2m.

Remark. Theorem 2 can be derived from Theorem 3 when the numbers {y,}s¢; "
are defined as follows (schematically written):

X2y X35 000y Xy Xpyeoey X2y
Yo = Yan-1 = X = 0.

3. PROOFS OF THE BASIC THEOREMS

In [1], p. 13—20, W. BLASCHKE has defined trigonometric polynomials. Let
Zy, «..y Z, De n numbers. First we assume n odd n = 2m + 1.In [1] it is shown that

we can choose such numbers &, &y, ..., &y &1, ..., En that the following equalities
hold:

(3.1) z, =& + ), (ékcoskpﬁ+§{sinkpg), p=1,..,n,
k=1 n n

(3.2) Lyzoailye@eay,
np= 2 k=1
(33) L S (g, = 20 = 23(8 + Esin? k
n p=1 k=1
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Let now n be even, n = 2m. We can choose numbers cg, Cy, ..., Cpy C1» vy Chyq iN

an analogous way, but now
(3.1

m-—1
2 : 2 2n
Z,=Co + 2, (ckcoskp—n + c,fsmkp—n> +c,cosmp=—, p=1,...,n.
n n n

Inserting

(34) bo=cos &=, G=c, k=1,..,m—1,
=V em, & =0,

the equalities (3.2) and (3.3) will hold, too.

It can be easily shown that if Z z, = 0, then
p=1

(3.5) & =0.

The proof of Theorem 1 is now very simple. Using (3.2), (3.3) and (3.5) for x4, ...
..., X, We conclude that (1.2) will hold, provided
(3.6) sin?¥E 5 it ® k=1, .., m,
n n

is satisfied. (3.6) is true, since 0 < kn/n < nf2, k = 1,..., m. For x € <0, m/2) the
function sin x is growing. The equality in (1.2) holds if and only if &, = &F = 0,
i=2,..,m,¢&, & are arbitrary, i.e. if and only if (1.3) is satisfied.

To prove Theorem 5 we shall use (3.2), (3.3) (with (3.4)) and (3.5).

The equality

(3.7) Xi+ Xjom =D, {C,‘ [cos kiar + cos k(i + m) 2—"] +
k=1 n n
+ & [sin ki 2" 4 sin k(i + m) 2—“]}
n n
implies by virtue of (3.2) and (3.5) that

(3.8)

S | =

13

Z"(xi + Xipm) -l i(éf + &7 (1 + cos km 2_1r>2
=1 o 2k=1 n

Y&+ e+ (-0,
k=1 . ° -
(1.10) will hold if the inequality

(22 = st ) 2 St + e + (-0 +

N | =
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+2nsin? " Y (& + &) <2 Y (& + &) sin2 kT
nk=1 k=1 n

is fulfilled, i.e.

(39) Y (& +¢&?) {sinz PLISCLI <sin2 2 _ sin? 5) [1+ (—1)"]2} 20.
k=1 n 4 n n

n

Let us denote

o =sin?k~ —sin2 " — 1<sin2E — sin? E) [T+ (=1)]%.
n n 4 n n

In case of k odd,

P NPT
ox =sin k- —sin2= =0
n n

(see (3.6)) with the equality holding only for k = 1. In case of k even,

: T o5, 200
ox = sin? k= — sin? =
n n

and (3.6) implies again g, = 0. Here the equality holds only for k = 2. The ine-
quality (1.10) with the equality condition (1.11) is proved.

Remark. The inequality (1.10") follows immediately from the proof of (1.10)
given above. The form of the numbers g, in this case is

g,‘=sin2kE—sinZEgO for k odd,
n n

. T ., T
o =sin?k= —sin?= —u >0 for k even.
n n

Now g, > Ofor k > 1, ¢, = 0. The equality condition (1.3) for (1.10) is an immediate
consequence of this fact.
4. GEOMETRICAL APPLICATION

Let P = A, ... A, denote an equilateral closed n-gon in E, of area F and peri-
meter L. In [1], p. 13—20, the inequality

(4.1) ?z4ntglF
n

is proved on the basis of trigonometric polynomials. The equality in (4.1) holds if
and only if P is a regular n-gon.
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(4.1) can be derived from Theorem 1. Let us choose a cartesian coordinate system
S = {0, x, y} in E, with O being the centroid of P. Let 4; = [x;, y;],i = 1,...,n,
in S. Let us denote 4,,, = A4,. Then the equalities

M:

x;=0, Zlyi=0, Xnt1 = X15 Yn4e1 = V1
i i=

hold and the assumptions of Theorem 1 for the numbers {x,}, {y,} are fulfilled.
For P the following relations hold:

(4.2) %2 =§=:1[(xi+l — %) + (Vier — 1%

1

]

(4.3) F = Hi;(xi)’in - .thi+1)| = I%i‘;[(xi + Xis1) (Vi — Yier) +

+ (Vi + Yiwr) (i = x1)]| -
Using (4.3) we can write

(44) 8tg F=
n

n o _ _
= 2tg; _Zl[(xi + X)) (£ F yirr) + i + Yisd) (%0010 Fx)]

M=

=
i

- T
l(iyi F yisr)® + t82; _Zl(xi + Xi41)” +

o - T
+ .Zl(ix"“ Fx)+ tgz; ‘Zl()’i + Yiser)? =

=x‘z::1[(xi = Xie1)? + (Vi — yisr)?’] +
+ tg? :1_': ‘3221{[4"? = (xi + xi00)"] + [497 = i = yinn)']} =
= i {(1 — tg? g) [(xi = xisa)® + (i — y“'l)z]} +

+ 4tg2£ PCESHE

Now, using (1.2), (4.4) and (4.2), we derive the following inequality:
(45 8tg F <
n

L

2
n

n T 1
§Z 1 —tg2—+ [(x('—xi+l)2 +(-Vi‘ yi+l)2] =2
i=1 ; n 2T ‘
cos” —
n
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