#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1980
PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105 | log58

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

&asopis pro péstovini matematiky, roé. 105 (1980), Praha

INTEGRAL REPRESENTATION OF ORTHOGONAL
EXPONENTIAL POLYNOMIALS

OTAKAR JAROCH

(Received December 6, 1977)

An integral representation is derived for the orthogonal exponential polynomials
which have been used in engineering and science.

INTRODUCTION

The coefficients d,, in the linear combination of exponential functions Z,'EZ? e F =

= y,(t) can be chosen so that, for n = 1,2, 3, ..., a system of orthogonal functions
over [0, + o) is obtained.

Definition. Let t be a real variable and n = 1,2, 3, .... The functions

1) oep,(1) =k=i1 bue ™™, by = (—1)"“‘(2) (n :f 1 1)

will be called orthogonal exponential polynomials. [5]

The following equations are valid for arbitrary m,n =1,2,3,...: oep,,(O) =1,
oep,(+ ) = lim,_, , , oep,(t) = 0 and (3 oep,(t) oep,(t) dt = 5,,(2n)"*, where §,,,
is the Kronecker delta function. Orthogonal exponential polynomials have been used
in Automatic Control Theory and in Electrical Circuits Theory. One of the more
recent publications is Dmitriyev’s book on the applications of orthogonal exponential
polynomials in Hydrometeorology [4] However, not much detailed information is
available on the properties of orthogonal exponential polynomials, which might,
under certain circumstances, be treated as special functions sui generis. Orthogonal
exponential polynomials are entire transcendental functions if ¢ in Definition (1)
is considered complex.

Orthogonal exponential polynomials result by orthogonalization from the system
of exponential functions e, e™%, e~%, ... over (0, +o0) with the weight function
w(t) = 1, that is to say in L,(0, + o). The notation ¢,(t) or y,(t) was used for ortho-
gonal exponential polynomials in [5], [6], [8]. In this paper the acronym oep,
is used to denote orthogonal exponential polynomials so that a specific meaning
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need not be ascribed to Greek letters ¢ and y. The standardization oep,(0) = 1
for all natural n is implied.

INTEGRAL REPRESENTATION

First and Second Integral Representations of orthogonal exponential polynomials
will be derived. The terminology is analogous to that used by Lavrentyev and Shabat
to describe integral representations of Legendre polynomials [9].

First Integral Representation. Theorem I. Let ¥ be a closed Jordan’s curve of
finite length and assume that the point z, = e~ " lies inside €. Let oep,(t) be an

orthogonal exponential polynomial in accordance with Definition (1). Then, for
arealt,

@)  oepdr) = (2mi)* izn(z Ptz —e )"z, n=1,23,....

Proof. The connection between the orthogonal exponential polynomials and the
Jacobi polynomials as shown in [5],

(3) oep,(t) = (=1 ' ne™'6,-4(2.2,¢7"), n=1,23,...,

can be conveniently used to prove (2). The Jacobi polynomials G,(p, g, x) are ortho-
gonal over (0, 1) with respect to the weight function x?~*(1 — x)P"%, 4 > 0,p — g >
> —1, and their standardization is G,(p, ¢, 0) = 1 for all n (Courant-Hilbert [3]).
Rodrigues’ formula will be used in the form

(4) Go-1(2,2,x) = (xn))"' D" Ix"1 — x)""', n=1,2,3,...,

where the m-th derivative is denoted by D™. The function z > z*(1 — z)"! is an
entire function of the complex variable z so that Cauchy’s formula can be employed
to express the derivative in (4), and for arbitrary z, we find

() G,-1(2, 2, zo) = (2nmiz,)~* §¢Z"(1 — 2P (z = z,) " dz,

where € is a closed Jordan’s curve of finite length and the point z, lies inside €.
Equation (2) follows from (3) and (5) if z, is replaced by e™*. [

Remark. First Integral Representation is an analogue to the Schlafli integral
for Legendre polynomials [1], [9]. The proof of Theorem I is valid for any complex
t + co. First Integral Representation yields .

0ep,(0) = (2mi)~* § Mz —1)"'dz =1
€
for all natural n and this agrees with the standardization as accepted for oep,,.
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The integrand in (2) has an n-th order pole in z = e™* as long as t + 0. The
numerator is

zn(z _ 1).-—1 =y (_1)n+k(n - 1) k=1
=1 k-1
If the residue theorem is used we find

1

T n— _ . 2 _
oep,,(t) =k;1(_1)"+k (k - 1) zljee_st[z"*" l(z - ¢ t) ] =1§1bnke o

aekfnY(n+ k-1 c
e ()T, et

and this again agrees with Definition ( 1). Another expression for orthogonal exponen-
tial polynomials is found if the numerator in (2) is written as

éo (Z) (z = 1p+et,

where

We have

(6) oep,(t) =kngognk(1 — ey gy = (=1 (Z) (" * :— 1) :

If no changes are made in the numerator, the result is
(7) Oepn(t) = Z hnke_kl(l _ e—()n—k : h,,k - (_1)"+k n n—1 .
k=1 k/)\k -1

Y huy = 2" oep,(In 2).
k=1

Clearly, equations (1), (6), (7) follow directly from (4) if analogous changes are made
in Rodrigues’ formula.

Second Integral Representation. Theorem II. Let oep,(t) be an orthogonal exponen-
tial polynomial in accordance with Definition (1). Then, for a nonnegative t and
n=1,23,..., we have

®) oep,(t) = "_I‘J' [e™* +i(e™* — e )2 cos 0] .
0
267" — 1 + 2i(e" — e™2)!/2 cos 6]~ df .

Proof. Equation (8) is evidently valid for t = 0 as oep,(0) = n~! § df = 1 for
all n. Thus, only t € (0, +o0) needs to be considered. Suppose that in (2) a circle
with a radius (e™* — e~2*)!/? and its centre at z, = e * is chosen as &, that is to
sayz =¢" ' + ¢e'%e™" — e 2%)"2, G el, and I is an arbitrary real interval the length
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of which is 2n. We find dz = i(z — e™*) d6 and if the corresponding substitution is
made in (2) the result is

oep..(t) = (21!)'1‘[[6-' . (e—t _ e—zz)l/z eio] )
I
. [2e_l =1 Zi(e—l — e—zr)l/z sin 0],._1 de.

Replacing 0 by 6 + n/2 and choosing I = (—m, nt) we find

+=x
oep,(t) = (21!:)_1.‘. [e7F +i(e™* — e~ #)12el?],
(27" =1 4 2i(e™" — e )2 cos 0] dO,
and this is clearly equivalent to (8). [

Remark. The integrand in Second Integral Representation (8) is a complex
function of a real variable. Despite of this the result is evidently real. As a matter of
fact, Second Integral Representation can be rewritten as

n/2
) oep,(t) = (2/r) Rej [e™* +i(e”" — e™2) 2 cos 0] .
0
2e7t =1 4+ 2i(e™" — e72) 2 cos 0]" 1 d .
Second Integral Representation (8) is an analogue to the Laplace integral for the
Legendre polynomials [1], [9], [11]:
(10) P,(u) = n“J [u +i(1 — u?)% cos 6]"d0 .
0
Comparing (8) and (10) we find an important connection between the orthogonal
exponential polynomials and the Legendre polynomials:
(11) oep,(t) = 3[P,2e7* = 1) + P,_;(2¢7* = 1)]; n=1,2,3,....

For 0 < 0 < mand t = 0 the following inequalities hold: |e" +i(e™" — e72)12,
. COS 6| <1and |2e" — 1+ 2i(e™* — e ?)2 cos 0| < 1. As a result Ioep,,(t)l <1
forallt 2 0and n=1,2,3,.... Finally, Second Integral Representation may be
used for the calculation of values of orthogonal exponential polynomials. E.g.

oep,(In 2) = (2n)~* j (1 + icos ) (icos 6)*~* df .
0
The result is oep,(In 2) = } and, for k = 1,2,3,...:
(12) oepy(In 2) = oepyi44(In 2) = (—1)* 3(2k — 1)1/(2k)"!
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