

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log56

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

l_{∞} -NORM OF ITERATES AND THE SPECTRAL RADIUS OF MATRICES

ZDENĚK DOSTÁL, Ostrava

(Received October 18, 1977)

Let B be a finite dimensional Banach space. Let L(B) denote the algebra of all linear operators on B and let the operator norm and the spectral radius of $A \in L(B)$ be denoted by |A| and $|A|_{\sigma}$, respectively.

If $A \in L(B)$ and |A| = 1, then the spectral radius formula suggests the conjecture that for some natural number m, nontrivial bounds for $|A^m|$ in terms of $|A|_{\sigma}$ and vice versa may be given.

The first positive result of the kind was presented by V. PTÁK and J. MAŘÍK [1], who have computed the critical exponent of the l_{∞} -space. If we denote the complex *n*-dimensional vector space by $B_{n,\infty}$, the norm $|x|_{\infty}$ of the vector $x = (x_1, ..., x_n)$ being defined by the formula

$$|x|_{\infty} = \max_{i=1,\ldots,n} |x_i|,$$

then their theorem says that the spectral radius of $A \in L(B_{n,\infty})$, $|A|_{\infty} = |A^{n^2-n+1}|_{\infty} = 1$, is equal to one.

Later, V. Pták [2] introduced for 0 < r < 1 the quantity

$$C(B, r, m) = \sup \{ |A^m| : A \in L(B), |A| \leq 1, |A|_{\sigma} \leq r \}$$

and found, for an *n*-dimensional Hilbert space H_n , a certain operator $A \in L(H_n)$ such that |A| = 1, $|A|_{\sigma} = r$ and $|A^n| = C(H_n, r, n)$. Recently, the present author [3] has proved that this extremal operator is unique up to multiplication by a complex unit and similarity by a unitary mapping. For further references see [2].

The purpose of this note was originally to find the extremal operators in $L(B_{n,\infty})$. We have not succeeded in general, nevertheless, we have found for each $r, 0 \le r \le 2^{1/n} - 1$, an operator $A \in L(B_{n,\infty})$ such that $|A|_{\infty} = 1$, $|A|_{\sigma} = r$ and $|A^m|_{\infty} = C(B_{n,\infty}, r, m)$ for all natural m.

Let n be a fixed natural number and let M_n denote the algebra of all $n \times n$ complex valued matrices.

Regarding a matrix $A = (a_{ij})$ as an operator on $B_{n,\infty}$, we can write

$$|A|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$$

Let $\alpha_1, ..., \alpha_n$ be given complex numbers. Consider the recursive relation

$$(1) x_{k+n} = \alpha_1 x_k + \ldots + \alpha_n x_{k+n-1}.$$

For each $i, 1 \le i \le n$, we denote by $w_i(\alpha_1, ..., \alpha_n)$ the solution $(w_{i0}, w_{i1}, w_{i2}, ...)$ of this relation with initial conditions

(2)
$$w_{ik}(\alpha_1,...,\alpha_n) = \delta_{i,k+1}, \quad 0 \le k \le n-1.$$

In the following lemma we shall learn the meaning of w_{ik} :

Lemma 1. Let $A \in M_n$ and

$$A^n = \alpha_1 E + \alpha_2 A + \ldots + \alpha_n A^{n-1}.$$

Then for all $k \geq 0$,

(4)
$$A^{k} = w_{1k}E + w_{2k}A + \ldots + w_{nk}A^{n-1}.$$

Proof. The statement is obvious for $k \le n$. To prove the lemma for k > n by induction, suppose that s > n and that (4) holds for k = 0, 1, ..., s - 1. Put q = s - n. If we multiply (3) by A^q and use the induction hypothesis, we successively get

$$A^{s} = \sum_{i=1}^{n} \alpha_{i} A^{q+i-1} = \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{n} w_{j,q+i-1} A^{j-1} =$$
$$= \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \alpha_{i} w_{j,q+i-1} \right) A^{j-1} = \sum_{j=1}^{n} w_{js} A^{j-1}.$$

Let us denote now the companion matrix of the equation

$$(5) xn = \alpha_1 + \alpha_2 x + \ldots + \alpha_n x^{n-1}$$

by $T(\alpha_1, ..., \alpha_n)$, that is

$$T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n \end{bmatrix},$$

and observe that (5) is the characteristic equation of T. Thus by Cayley-Hamilton's theorem T satisfies the assumptions of Lemma 1 and we can write for each k = 0, 1, 2, ...

(6)
$$T^{k} = w_{1k}E + w_{2k}T + \dots + w_{nk}T^{n-1}.$$

This equation enables us to solve the special maximum problem:

Lemma 2. Let $A \in M_n$, $|A|_{\infty} \leq 1$. If the characteristic equation (5) of the matrix A fulfils

$$\sum_{i=1}^{n} |\alpha_i| \leq 1 ,$$

then for all $k \ge 0$,

$$|A^k|_{\infty} \leq T(\alpha_1, ..., \alpha_n)^k = \sum_{i=1}^n |w_{ik}|.$$

Proof. We may apply Lemma 1 to get

$$|A^{k}|_{\infty} = \Big|\sum_{i=1}^{n} w_{ik} A^{i-1}\Big|_{\infty} \le \sum_{i=1}^{n} |w_{ik}| |A^{i-1}|_{\infty} \le \sum_{i=1}^{n} |w_{ik}|$$

for each A under the assumptions. Note that, in particular, T satisfies the assumptions. The first row of T^k being $(w_{1k}, w_{2k}, ..., w_{nk})$ (see (6)), we get

$$|T^k|_{\infty} = \sum_{i=1}^n |w_{ik}|.$$

Now we shall denote, for $1 \le i \le n$, by E_i the polynomial

(8)
$$E_{i}(x_{1},...,x_{n}) = \sum_{\substack{e_{j} \in \{0,1\}\\e_{1}+...+e_{n}=i}} x_{1}^{e_{1}} x_{2}^{e_{2}} ... x_{n}^{e_{n}}.$$

For any complex numbers $\varrho_1, ..., \varrho_n$ and i = 1, 2, ..., n, we put

$$\alpha_i(\varrho_1, ..., \varrho_n) = (-1)^{n-i} E_{n-i+1}(\varrho_1, ..., \varrho_n),$$

so that the roots of the equation (5) with coefficients $\alpha_i = \alpha_i(\varrho_1, ..., \varrho_n)$ are exactly $\varrho_1, ..., \varrho_n$.

Let us compute an upper bound for such r's that $|\varrho_i| \leq r$ implies

(9)
$$\sum_{i=1}^{n} |\alpha_{i}(\varrho_{1}, \ldots, \varrho_{n})| \leq 1.$$

Lemma 3. Let $\varrho_1, ..., \varrho_n$ be any complex numbers. If $|\varrho_i| \le 2^{1/n} - 1$ for all i = 1, ..., n, then the inequality (9) holds true.

Proof. Let 0 < r < 1 and note that

$$\alpha_i(r, r, ..., \dot{r}) = (-1)^{n-i} \binom{n}{n-i+1} r^{n-i+1},$$

i=1,...,n. If $|\varrho_i| \le r$ holds for all i=1,...,n, then $|\alpha_i(\varrho_1,...,\varrho_n)| \le |\alpha_i(r,r,...,r)|$. Thus the supremum r_0 of the set of all r's we are interested in is the only positive root of the equation

$$1 - \sum_{i=1}^n \binom{n}{i} x^i = 0.$$

Easy computation shows that $r_0 = 2^{1/n} - 1$. To compute $C(B_{n,\infty}, r, k)$ for $r \le 2^{1/n} - 1$ and given k, it is enough to find

$$\max_{|\varrho_1| \leq r, \dots, |\varrho_n| \leq r} \sum_{i=1}^n |w_{ik}(\varrho_1, \dots, \varrho_n)|.$$

The fact that the maximum is attained for all natural k if $\varrho_i = r$ is an easy consequence of the following lemma, which was proved by V. KNICHAL ([2], Lemma 7).

Lemma 4. For each i = 1, 2, ..., n and each $k \ge n$,

$$w_{ik}(\varrho_1, \ldots, \varrho_n) = \varepsilon_i Q_{ik}(\varrho_1, \ldots, \varrho_n),$$

where $\varepsilon_i = (-1)^{n-i}$ and

$$Q_{ik}(\varrho_1, ..., \varrho_n) = \sum_{\substack{e_j \ge 0 \\ e_1 + ... + e_n = k - i + 1}} c_{ik}(e_1, ..., e_n) \varrho_1^{e_1} ... \varrho_n^{e_n},$$

where all $c_{ik}(e_1, ..., e_n) \geq 0$.

The point of the lemma is that for $k \ge n$ and i fixed, all the coefficients of w_{ik} are of the same sign. Thus if $|\varrho_i| \le r$ for i = 1, ..., n, then

$$|w_{ik}(\varrho_1, ..., \varrho_n)| = |Q_{ik}(\varrho_1, ..., \varrho_n)| \le$$

$$\le |Q_{ik}(r, ..., r)| = |w_{ik}(r, ..., r)|, \quad i = 1, ..., n.$$

We can sum up our results into the following theorem:

Theorem 1. Let $0 < r \le 2^{1/n} - 1$, let

$$\alpha_i = (-1)^{n-i} \binom{n}{n-i+1} r^{n-i+1}$$

for i = 1, ..., n and let

$$T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \dots & \alpha_n \end{bmatrix}.$$

Then $|T|_{\infty} = 1$, $|T|_{\sigma} = r$ and for each natural k,

$$|T^k|_{\infty} = \sum_{i=1}^n |w_{ik}| = C(B_{n,\infty}, r, k),$$

where wik are the solutions of the recurrent relation

$$x_{s+n} = \alpha_1 x_s + \alpha_2 x_{s+1} + \ldots + \alpha_n x_{s+n-1}$$

with initial conditions $w_{ij} = \delta_{i,j+1}, i = 1, ..., n, j = 0, 1, ..., n - 1$.