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1,-NORM OF ITERATES AND THE SPECTRAL
RADIUS OF MATRICES

ZpeNEK DosTAL, Ostrava

(Received October 18, 1977)

Let B be a finite dimensional Banach space. Let L(B) denote the algebra of all
linear operators on B and let the operator norm and the spectral radius of 4 e L(B)
be denoted by |A| and |A|,, respectively.

If Ae L(B) and |4| = 1, then the spectral radius formula suggests the conjecture
that for some natural number m, nontrivial bounds for |A”'| in terms of |A|a and vice
versa may be given.

The first positive result of the kind was presented by V. PTAK and J. Makik [1],
who have computed the critical exponent of the I -space. If we denote the complex
n-dimensional vector space by B, ., the norm |x|w of the vector x = (xy, ..., X,)
being defined by the formula

|x|w = max |xi| s
i=1,..,n
then their theorem says that the spectral radius of 4 € L(B, ), |4|., = [4"7"*!|, =
= 1, is equal to one.

Later, V. Ptak [2] introduced for 0 < r < 1 the quantity

C(B,r,m) = sup {|A™| : Ae L(B), |4| = 1, |4|, £ 1}
and found, for an n-dimensional Hilbert space H,, a certain operator A € L(H,)
such that |A| = 1, |A|, = r and |A"| = C(H,, r, n). Recently, the present author [3]
has proved that this extremal operator is unique up to multiplication by a complex
unit and similarity by a unitary mapping. For further references see [2].

The purpose of this note was originally to find the extremal operators in L(B,
We have not succeeded in general, nevertheless, we have found for each r, 0 < r
< 2'" — 1, an operator A€ L(B, ) such that |4, =1, |4|, = r and |4"|,
= C(B,,«, r, m) for all natural m.

Let n be a fixed natural number and let M, denote the-algebra of alln x n complex
valued matrices.

Regarding a matrix 4 = (a;,) as an operator on B, ,, we can write

e

I IIA

n
|4]o = max ¥ |a;| .
i j=1
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Let «, ..., a, be given complex numbers. Consider the recursive relation
(1) Xgan = 0 X+ oo+ OpXppp—y -

For each i, 1 £ i < n, we denote by wyay, ..., a,) the solution (W, Wiy, Wiy, ...)

of this relation with initial conditions

-

(2 Wiotys oo @) = G441, 0SkSn—1.
In the following lemma we shall learn the meaning of w;:
Lemma 1. Let Ae M, and

(3) A" = E + 0,4 + ... + o, 4"

Then for all k = 0,

(4) A* = W E + wyd + ... + wu A"t

Proof. The statement is obvious for k < n. To prove the lemma for k > n by
induction, suppose that s > n and that (4) holds for k =0,1,...,s — 1. Put g =
= s — n. If we multiply (3) by A? and use the induction hypothesis, we successively
get

A=Yaqd* " =YY w4 =
s e i

i=1 i=1 j=

Let us denote now the companion matrix of the equation
5) X" =0y + apx + ... + o x""1

by T(ay, ..., a,), that is

010 ...07
0 01 .0
T=|+« ¢ & su35 = |s
000 ...1
oy Oty Oz ... O,

and observe that (5) is the characteristic equation of T. Thus by Cayley-Hamilton’s
theorem T satisfies the assumptions of Lemma 1 and we can write for each k =
=0,1,2,...

(6) T = wyE + wy T+ ... + w " 1.

This equation enables us to solve the special maximum problem:
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Lemma 2. Let A € M,, |A|OQ < 1. If the characteristic equation (5) of the matrix A

Sfulfils
) 3

then for all k = 0,
IAk|°o < T(ay, ..., o) =_=Z:1|W:k| .

-

1,

IIA

Proof. We may apply Lemma 1 to get
IAkloo = |i§1wik‘4i_llw éi;JWik' |Ai_1|w éizzllwikl

for each A under the assumptions. Note that, in particular, T'satisfies the assumptions.

The first row of T* being (wyy, W, - - ., W) (see (6)), we get

n
k| —
7o = X [wad
i=1

Now we shall denote, for 1 £ i < n, by E; the polynomial

€n

(8) Efxg, ... x) = Y  x§x5...x3.
eje{0,1}
ej+...te,=1i

For any complex numbers g, ...,0,and i = 1,2, ..., n, we put
ai(Ql; CRE) Qn) = (—l)n_i n—i+1(91’ CERP) Qn) P

so that the roots of the equation (5) with coefficients a; = «,(gy, ..., 0,) are exactly

le 2009 Qn‘
Let us compute an upper bound for such r’s that |Q,~| < r implies

©9) __leai(gl,f..., o) 1.
Lemma 3. Let g,,...,0, be any complex numbers. If |Qi| <2 — 1 for all
i =1,...,n, then the inequality (9) holds true.

Proof. Let 0 < r < 1 and note that

. e n -
o(r, 7, .. #) = (= 1) i(n — i+ l)r" o,

i=1,..,nIf |Q,| < r holds for all i = 1, ..., n, then la‘(gl, ey Q,,)| < |a,(r, r,
T r)l Thus the supremum r, of the set of all r’s we are interested in is the only

1—i('i')x"=0.

i=1

positive root of the equation
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Easy computation shows that r, = 2'/* — 1.
To compute C(B, , r, k) for r < 2'/" — 1 and given k, it is enough to find

n
max Z |Wik(Ql’ ceny Qn)l .
leil Sr,..slen| Sri=1

The fact that the maximum is attained for all natural k if g, = r is an easy con-
sequence of the following lemma, which was proved by V. KNicHAL ([2], Lemma 7).

Lemma 4. For each i = 1,2,...,n and each k = n,

Wik(Ql’ R} Qn) = 8iQik(le ceey Qn) >
where &, = (—1)""" and

Qik(Ql""’ Qn) = Z cik(eh"" en)Q‘ll’l "'Q:"9
e;j20
er+...+te,=k—i+1

where all cyley, ..., e,) = 0.
The point of the lemma is that for kK = n and i fixed, all the coefficients of w;,
are of the same sign. Thus if IQ:| <rfori=1,...,n, then ¢

lwik(Qli suey Qn)l = |Qik(gl, 5483 Qn)l =
§|Qik(r, ey r)| = Iw,-k(r, ey r)| , i=1,...,n.
We can sum up our results into the following theorem:

Theorem 1. Let 0 < r < 2" — 1, let

— (_1\—i h n—i+1
@ = (1) (n—i+1)r

fori=1,...,n and let

010 .07
0 01 .0\
T=|. . . ....
000 ... 1
Loy oy 03 ... 0t |

Then |T|°° =1, |T|,'= r and for each natural k,

n
k - p—
IT loo = Z Iwik| - C(Bn,oo’ r, k) )
i=1
where wy, are the solutions of the recurrent relation
Xs+n = Oy X + G2 Xs5+1 + s OpXs+n—1

with initial conditions w;; = 0;;44, i=1,..,n,j=0,1,..,n — 1.
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