

## Werk

Label: Article **Jahr:** 1980

**PURL:** https://resolver.sub.uni-goettingen.de/purl?31311157X\_0105|log46

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## ON THE EXISTENCE OF A 3-FACTOR IN THE FOURTH POWER OF A GRAPH

Ladislav Nebeský, Praha (Received December 9, 1977)

Let G be a graph in the sense of [1] or [2]. We denote by V(G) and E(G) its vertex set and edge set, respectively. The cardinality |V(G)| of V(G) is referred to as the order of G. If W is a nonempty subset of V(G), then we denote by  $\langle W \rangle_G$  the subgraph of G induced by W. A regular graph of degree m which is a spanning subgraph of G is called an m-factor of G. It is well-known if G has an m-factor for some odd m, then the order of G is even. If n is a positive integer, then by the n-th power  $G^n$  of G we mean the graph G' with the properties that V(G') = V(G) and

$$E(G') = \{uv; u, v \in V(G) \text{ such that } 1 \le d(u, v) \le n\},$$

where  $d(w_1, w_2)$  denotes the distance of vertices  $w_1$  and  $w_2$  in G.

CHARTRAND, POLIMENI and STEWART [2], and SUMNER [5] proved that if G is a connected graph of even order, then  $G^2$  has a 1-factor.

The second power of none of the connected graphs in Fig. 1 has a 2-factor. But if G is a connected graph of an order  $p \ge 3$ , then  $G^3$  has a 2-factor; this follows from a theorem due to Sekanina [4], which asserts that the third power of any connected graph is hamiltonian connected.

The third power of none of the connected graphs of even order which are given in Fig. 2 has a 3-factor. But for the fourth power the situation is different:

**Theorem.** Let G be a connected graph of an even order  $p \ge 4$ . Then  $G^4$  has a 3-factor, each component of which is either  $K_4$  or  $K_2 \times K_3$ .





Fig. 2.

Note that  $K_n$  denotes the complete graph of order n, and  $K_2 \times K_3$  denotes the product of  $K_2$  and  $K_3$  (see Fig. 3).

Before proving the theorem we establish one lemma. Let T be a nontrivial tree. Consider adjacent vertices u and v. Obviously, T-uv has exactly two components, say  $T_1$  and  $T_2$ . Without loss of generality we assume that  $u \in V(T_1)$  and  $v \in V(T_2)$ . Denote  $V(T, u, v) = V(T_1)$  and  $V(T, v, u) = V(T_2)$ .



Fig. 3.

**Lemma.** Let T be a tree of an order  $p \ge 5$ . Then there exist adjacent vertices u and v such that

- (i)  $|V(T, u, v)| \ge 4$  and
- (ii)  $|V(T, w, u)| \le 3$  for every vertex  $w \ne v$  such that  $uw \in E(T)$ .

Proof of the lemma. Assume that to every pair of adjacent vertices u and v such that  $|V(T, u, v)| \ge 4$ , there exists a vertex  $w \ne v$  such that  $uw \in E(T)$  and  $|V(T, w, u)| \ge 4$ . Since  $p \ge 5$ , it is possible to find an infinite sequence of vertices  $v_0, v_1, v_2, \ldots$  in T such that

- (a)  $v_0$  has degree one;
- (b)  $v_0v_1, v_1v_2, v_2v_3, \ldots \in E(T)$ ;
- (c)  $v_2 \neq v_0$ ,  $v_3 \neq v_1$ ,  $v_4 \neq v_2$ , ...; and
- (d)  $|V(T, v_1, v_0)| \ge 4$ ,  $|V(T, v_2, v_1)| \ge 4$ ,  $|V(T, v_3, v_2)| \ge 4$ , ...

Since T is a tree, (b) and (c) imply that the vertices  $v_0, v_1, v_2, \ldots$  are mutually different, which is a contradiction. Hence the lemma follows.

Proof of the theorem. Since G is connected, it contains a spanning tree, say T. First, let p = 4, 6, or 8. If p = 4, then  $G^4 = T^4 = K_4$ .

Let p = 6. Then T is isomorphic to one of the six trees of order six (see the list in [3], p. 233). It is easy to see that  $T^4$  and therefore  $G^4$  contains a 3-factor isomorphic to  $K_2 \times K_3$ .

Let p = 8. By Lemma there exist adjacent vertices u and v of T such that (i) and (ii) hold. If |V(T, u, v)| = 4, then  $T^4$  (and therefore  $G^4$ ) contains a 3-factor which consists of two disjoint copies of  $K_4$ . Let  $|V(T, u, v)| \ge 5$ . Since p = 8, we have  $|V(T, w, u)| \le 3$  for every vertex w adjacent to u,  $w \ne v$ . Then there exists a set R of two, three, or four vertices adjacent to u such that

$$\langle \bigcup_{r \in R} V(T, r, u) \rangle_T$$

is isomorphic to one of the graphs  $F_1 - F_4$  in Fig. 4. Denote

$$V_R = \bigcup_{r \in R} V(T, r, u).$$



It is clear that  $\langle V_R \rangle_{T^4} = K_4$ . Since  $T - V_R$  is a tree of order four, we conclude that  $G^4$  has a 3-factor which consists of two disjoint copies of  $K_4$ .

Next, let  $p \ge 10$ . Assume that for every connected graph G' of order p-6 or p-4 we have proved that  $(G')^4$  has a 3-factor, each component of which is either  $K_4$  or  $K_2 \times K_3$ . By Lemma there exist adjacent vertices u and v of T such that (i) and (ii) hold. Let |V(T,u,v)| = 4 or 6; then  $\langle V(T,u,v) \rangle_{T^4}$  contains a 3-factor isomorphic to either  $K_4$  or  $K_2 \times K_3$ ; since G - V(T,u,v) is connected, by the induction assumption  $(G - V(T,u,v))^4$  has a 3-factor, each component of which is either  $K_4$  or  $K_2 \times K_3$ ; hence  $G^4$  has a 3-factor with the required property. Now, let either |V(T,u,v)| = 5 or  $|V(T,u,v)| \ge 7$ . Then there exists a set S of two, three, or four vertices adjacent to u such that

$$\langle \bigcup_{s \in S} V(T, s, u) \rangle_T$$

is isomorphic to one of the graphs  $F_1 - F_5$  in Fig. 4. Denote

$$V_{S} = \bigcup_{s \in S} V(T, s, u).$$

Since  $T - V_S$  is a tree, we conclude that  $G - V_S$  is a connected graph. According to the induction assumption  $(G - V_S)^4$  has a 3-factor, each component of which is