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THE HEAT AND ADJOINT HEAT POTENTIALS

MirosLAv DonNT, Praha

(Received November 17, 1977)

Let G stand for the fundamental solution of the heat equation in R"*?, i.e.
2
G(x, 1) = (4nt)"'/2exp(— li—'—) for xeR", t>0,
t

G(x,1) =0 for xeR", t<0.

By the term measure we mean a finite Borel measure with compact support in R™.
If pis a measure in R"*!, the heat potential G is defined by the equality

G,(x,1) =J Gx — & t —1)du(é, 7).
Rn+1
Similarly one can define the adjoint heat potential G;’ by

Gi(x, 1) = J. G*(x — &, t — 1)du(&, 1),

Rn+1

where G* is the fundamental solution of the adjoint heat equation; G*(x,t) =
= G(x, —1). ’

Let u be a measure in R**1. It is known (see [1], [3], [4]) that for « € (0, 1) the
condition

(1) , sup {[Gu(x1, 1) = Gulx2, 12)| 5
X1, X, € R", |x1 - x2| <, |tl - t2| < ¢’} < K&

(i.e. G, is a Holder-continuous function with the coefficient « in the variable x and
the coefficient 4« in the variable ¢) is fulfilled if and only if the condition

(2) sup {u({(x, 1) e R™*Y; |x - él <e lr — tl < €}); (¢, 1)eR™} < Me*®

holds. As the condition (2) is “symmetric in the variable ¢”, an analogous condition
to (1) is fulfilled for the adjoint heat potential G} if and only if (2) holds. It is seen
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from this that the potential G} is a H6lder-continuous function with the coefficient o
in the variable x and with the coefficient 3« in the variable ¢ if and only if the potential
G, possesses the same property. We will show that the assumption a > 0 is essential.
It holds (see [3], [4]) that the potentlal G, is uniformly continuous on R"*! if and
only if the condition

6) T (sup { fu(A(x, £, c))des (x, e R"“}) —0

a— o

is fulfilled, where
A(x, t, ¢) = {(&, 1:)eR"’rl G(x — &t — -r) >c} (¢>0).

For the uniform continuity of the adjoint heat potential G:‘ we have an analogous
condition under which G} is uniformly continuous:

@ fitn (sup { I :Ou(A*(x, &2 465 [, s R"“} )= 0,

where
A*(x, t, o) ={(& )R GHx - & t—1)> ¢} (c>0).

However, the conditions (3), (4) are not “symmetric in the variable ¢ which raises
the following question: are the conditions (3), (4) equivalent to each other, or in
other words, is it right that the potential G} is uniformly continuous if and only if
the potential G, is? The following example shows that the answer to that question is
negative.

If a measure p in R"*! is of the form p = 6,, ® 4, where x, € R" (4., is a Dirac
measure in R"), A is a measure on R', then the conditions (3), (4) are reduced to the
conditions

(3) i (sup{ ri <<t - i =2, t>)dc; teRl}) =0,
0 pm(en{[3( ko)

(cf. [4])-

Let us now consider the case n = 1. Let 4 be a measure on R! with its support
supp 4 = <0, e '), which is defined by the density h (with respect to the Lebesgue
measure)

0
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h(f) = 0 for te R' — (0, e™"). First let us show that for each a > 0

[l #({(nae e+



i.e. the condition (4') (for n = 1) is not fulfilled. Let a > % ,/(e/x). Then

[t o[ )

(1/4m-=d WDEE g (1/4ma2 o g
= — t _— -
J‘ 0 J o J(@)Int J.o (J(t) Int

dt = + 00

(1/4n)a~2 dt
< 400, —j

(1/4n)a- 2 a q
t _— =
_[0 J@)Int o 2/(r)tnt

Note that if u is a measure in R? which is, for instance, of the form y = 6, ® A
(60 is the Dirac measure in R' supported by the point 0), then one can even calculate
the value

since

e~ 1

G*(0,0) = L G*(—¢, —1) du(t, ) = J' G*(0, —1) h(z) d =

[}

1 1 - o,
J-o 2 J(r7) /(r)In = il

Now let us prove that the condition (3') (for n = 1) is fulfilled, i.e. for u = 5, ® A
the potential G, is uniformly continuous on R2. It is obvious that it suffices to show
that

(3") lim (sup {J- A (<t ot ¢ 3 t>) de; €0, C_l>}) =
a— a 4r
as (for any ¢ > 0)
A(<t - Lc"z,t>> =0 for t<0,
4n

,1(<t — —l—c'z, t>) < A<<e‘1 - ic‘z, e">) for t=e"!.
4n 4r

Lette(0, e™'). In order to calculate the value A({t — (1 J4r) =2, t)) let us distinguish
the following two cases:

a) t— 4ic-2 <0 (ie. c < ¥(n)12),
T

b) t - e 20 (ie.c2¥n)" 12,
4r
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In the case a) we have

e[ om
(- t) o e
6] I:ol(<t - erz c2, t>) i o J-‘('l/z)(m)-vz ch-; ‘\/_(‘STIT': B

0 't
a1 Ji-rame-2 /(D) 0 T

for a < (nt)~/%. In the case a = }(nt)”'/? we have

0 [t L]

The integral I, is evidently finite. The integrals I,, I; are also finite, since

(7) 1 [ dr

J" dr
t—(1/4m)c=2 \/(T) Int |l" II t—(1/4r)c=2 \/T

~ o (V)

1 1 1 1
w2

= one? in o (\/(t) " \/(t'_ 41_uc_2)) ¢ 2nfln ¢/t

It is easily seen that for a fixed @ > 0 the function

- {32

is continuous on the interval (0, e~ !). Since the integral I, is finite, it holds for each
te(0,e!) that

IIA

(8) f)=>0 for a— 4+
monotonically. Let us show that for each a > 0
) limf,(f)=0.

t=+0+
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