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1. Introduction. In [13], some sufficient conditions for a weakly-continuous
function to be continuous are investigated. In particular, Corollary 2 [13] states ihat
if Y is a Hausdorff space such that every closed subset is N-closed, then a weakly-
continuous map f : X — Y is continuous. As we show below, a Hausdorff space
such that every closed subset is N-closed is compact. Consequently, this corollary is
not a particularly significant result.

The major purpose for this present investigation is to use tH-monad theory and
to discuss, for an arbitrary map f:X — Y, some relations between (¢H, sK)-con-
tinuity, (tH, sK)-closed graphs and, if X, Y are topological spaces, topological con-
tinuity. In the process, we are able to improve upon most of the results in [13]. For
example, applying our results to topological spaces X and Y, it is shown thatif 4 = X
is compact [resp. N-closed, aA-compact, completely-compact, SA-compact] and the
graph, G(f), of f:X — Y is closed [resp. has property (P), is strongly closed, is
(Ix, w)-closed, is (Ix, S)-closed], then f~'[A] is closed in X. If Yis Hausdorff [resp.
completely-Hausdorff ] and each closed subset is -compact [resp. w-compact] and
f:X - Yis almost-continuous [resp. a c-map], then f is continuous. If (Y, T) is
rim-0 [resp. a]-compact, f : (X, t) — (¥, T)is weakly-continuous and G(f) is strongly
closed [resp. has property (P)], then f is continuous. Finally, we show that every
rim-0-compact, Urysohn [resp. rim-a-compact, Hausdorff; rim-S-compact, weakly-
Hausdorff, extremally disconnected] space is regular.

2. Preliminaries. In the interest of brevity, we shall rely heavily upon the definitions
and results which appear in the references [6], [7], [8], [9], [12]. Recall that f : X —
— Y is (tH, sK)-continuous at peX if *f[u, H(p)] = u, K(f(p)), where p, H(p)
and p, K(q) are the tH and sK-monads on X and Y, respectively [8]. For the monad
of RoBINSON [16] p(p) [resp. a-monad p,(p), 6-monad pe(p), w-monad p,(p)], we
have that a map f :(X, 7) - (Y, T) is almost-continuous [19] [resp. 6-continuous
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[2], weakly-continuous [13], a c-map [3]] at pe X iff it is (Ix, @) [resp. (6, 6),
(Ix, 0), (Ix, w)]-continuous at p € X. We note that a weakly-continuous map is also
known as a weakly-0-continuous map. *.# is a highly saturated enlargement.

Definition 2.1. A map f:X — Y has a (tH, sK)-closed graph G(f) if‘for each
(. 9) ¢ G(f), pd(p> 9)) n *(G(f)) = 0, where = is generated by the tH and sK-
monads (denoted by = = tH x sK).

Let (X, 7) and (Y, T) denote topological spaces.

Example 2.1. (i) For f:(X, ) —» (Y, T), the graph G(f) is (Iy,Iy)-closed iff
(P, 9)) » *(G(f)) = 0 for each (p, q) ¢ G(f) iff G(f) is closed in X x Y.

(ii) For f:(X,t) = (Y, T), G(f) is (I, 8)-closed iff it is strongly closed in the
sense of HERRINGTON and LoNG [5].

(iii) For f: (X, 1) = (Y, T), G(f) is (Ix, a)-closed iff it has property (P) discussed
in [11] and [13].

(iv) A map f: X — Y has a (tH, sK)-closed graph iff X — G(f) is n-open, where
n = tH x sK. In general, if t e PTH(X), s € PSK(Y), then if G(f) is (tH, sK)-closed,
then it is n-closed.

Finally, we point out that many of the results in this paper also hold for the
g-monad of PuriTz [15]. However, since we are particularly interested in topological
spaces and certain closedness properties it appears more useful to concentrate upon
the tH-monad approach due to certain special filter base properties which often
appear unavoidable and which are exhibited by such nonstandard objects.

3. Major results. As stated in [6] for (X, 7), a set A = X is N-closed iff it is aA4-
compact iff *4 = U{u,(x) | x € 4}.

Theorem 3.1. Let (X, ) be Hausdorff and assume that each closed set A = X is
N-closed. Then X is compact.

Proof. Since X is N-closed (i.e. nearly-compact [18]) then X is almost-regular
[17] and Urysohn (i.e. Urysohn = distinct points are separated by closed neigh-
borhoods). Thus every closed subset of X is 6-compact, since for each p € X, p,(p) =
= pg(p). Consequently, (X, 7) is C-compact in the sense of VIGLINO [22]. Thus X
is semiregular by application of Theorem A in [22] Therefore, X is regular and this
completes the proof.

We now give an important characterization for (tH, sK)-closed graphs. For
0 + F < P(X), the power set of X, we let Nuc # = ﬂ{*FlFef} andif f: X —
- Y, then f[#] = {f[F]| Fe #}.

Theorem 3.2. A map f:X — Y has a (tH, sK)-closed graph, G(f), iff whenever
0+ Nuc# < u, H(p), peX, F < #(X), and Nucf[F] < p,K(q) for some
q €Y, then f(p) = q.
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Proof. Let  « #(X), 0 + Nuc # < p, H(p), pe X, and Nuc f[F] < p, K(q)
for some geY: Assume that x € Nuc # and ye Nuc f[#]. Hence *(x, y)e
€ u((p, 9)), = = tH % sK. Consequently, *(F x f[F]) n p((p, q)) + @ for each
Fe #. Since *(F x f[F]) = *(G(f)), we have that pu((p,q)) n *(G(f)) + 0.
Assuming that G(f) is a (tH, sK)-closed graph this yields that f(p) = q.

Conversely, assume that whenever # < 2(X), 9 + Nuc # < pu, H(p) and
Nuc f[#] < 4, K(q), g€, then f(p) =g. Let (p,q)e(X x Y) — G(f). Thus
there does not exist a 7 < #(X) such that @ % NucJ < p, H(p) and Nuc f[7] =
< p,K(q). Suppose that p((p,q)) » *(G(f)) # 9. Then there exists some xe
e u, H(p) and yep,K(q) such that *(x, y) e *(G(f)). Now the ultramonad
Nuc Fil {x} = NF{x} < p, H(p) and *f[NF{x}] = NF{*f(x)} = NF{y} = u,K(q).
This contradiction implies that p((p, 4)) N *(G(f)) = @ and the proof is complete.

Recall that a space (X, 7) is compact [resp. nearly-compact [18], quasi-H-closed
[14], completely-closed [10], S-closed [21]] iff *X = (J{u(x) | x € X} [resp. *X =
UG | 3e X)X = Ulul) | x€ X)X = Ulinla) | 5 X}, *X =
=U{uS(x)|xeX} [6, 7, 8, 9, 10]]. The w-monad at peX is p,(p) =
= N{* " '[u(f(p))] | fe C(X)} and the S-monad is uS(p) = N{*(clx4)|peAe
€ SO(X)}, where SO(X) is a set of all semiopen subsets of X [1]. Also, W< *Yis
sKA—compact iff W = J{u, K(x) | x € A}.

Theorem 3.3. If f: X — Y has a (tH, sK)-closed graph and Y is sKY-compact
(i.e. sK-compact), then f is (tH, sK)-continuous.

Proof. Assume that f:X — Y has a (tH, sK)-closed graph and consider
*f[u. H(p)). By sKY-compactness, *f[u, H(p)] = U{u; K(») | y€ Y}. Assume that
*f[u: H(p)] 0 us K(q) + 9. Then there exists x € u; H(p) such that *f(x) e p, K(q).
However, NF{x} < u, H(p) and *f/[NF{x}] = NF{*f(x)} imply that *f[NF{x}] =
< p,K(g). Theorem 3.2 yields f(p) = g. Consequently, *f[u, H(p)] = u, K(f(p))
and the proof is completed.

Corollary 3.3. If f:(X,t) > (Y, T) has a (Ix, Iy)- [resp. (Ix, @), (6,1y), (6, 6),
(Ix, w), (Ix, S), (Ix, 6)]-closed graph, and Y is compact [resp. nearly-compact,
compact, quasi-H-closed, completely-closed, S-closed, quasi-H-closed], then f is
continuous [resp. almost-continuous [19], strongly-0-continuous [8], 6-continuous
[4], a c-map [3], (Ix, S)-continuous, weakly-continuous [13]].

We now present a proposition which gives a strong converse to Theorem 3.3 and
has numerous corollaries which improve upon Theorem 1 in [13]. A set Yis (sK, uV)-
separated if for distinct p,ge Y, u, K(p) n p, V(q) = 0.

Theorem 3.4. Let f: X — Y be (fH, sK)-continuous and Y be (sK, uV)-separated.
Then f has a (tH, uV)-closed graph.

Proof. Assume that § + Nuc & < y, H(p), pe X, # < #(X), and Nuc f[#] =
< u, V(q), g€ Y. Then (tH, sK)-continuity implies that Nuc f[#] < u, K(f(p)).
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Since Nuc f[#] # 0, then (sK, uV)-separation implies that f(p) = g. Hence f has
a (tH, uV)-closed graph.

Corollary 3.4.1. If f:(X,1) - (Y, T) is continuous [resp. almost-continuous,
strongly-0-continuous, 0-continuous, weakly-continuous] and Y is Hausdroff, then f
has a closed [resp. (I, 0)-closed, (8, 0)-closed, (0, «)-closed, (Ix, a)-closed] graph.

Corollary 3.4.2. If f:(X,7) > (Y, T) is weakly-continuous [resp. a c-map,
(Ix, S)-continuous] Y is Urysohn [resp. completely-Hausdorff, weakly-Hausdorff],
then f has a (I, 0) [resp. (Ix, w), (Ix, @)]-closed graph.

Proof. The above results follow from Theorem 1;4 and 1.5 [6] and the result
that if a space Y is completely-Hausdorff [resp. weakly-Hausdorff [20]], then for

distinct p, g € Y, pu(p) N p(q) = 0 [resp. u(p) 0 1 S(q) = 9]

Remark 3.1. If f : X — Y has a (tH, sK)-closed graph and we have an rJ-monad
system on X and a uV-monad system on Y such that for each pe X and q€ Y,
tr J(p) = n H(p) and p, V(q) = p,K(g), then f has an (rJ, uV)-closed graph.
Hence each of the (tH, sK)-continuous maps in the hypothesis of Corollaries 3.4.1
and 3.4.2 has a closed graph.

Recall that for W = *X, St, HW) = {x | [xe X] A [u H(p) n W + 0]}.

Theorem 3.5. Let W = *Y be sKA-compact. If f:X — Y has a (tH, sK)-closed

graph, then
SLHCS W) < 1[4

Proof. We know that W < (J{u, K(x) | x € A}. Thus *f~'[W]
e U{* [ K(x)] | x€ A}. Let pe St,H(*f~'[W]). Then p, H(p) n *f~'[W] +
+ 0. Hence *f[u, H(p)] n W % 0. Consequently, there exists x € 4 such that
*fLue H(p)] 0 ps K(x) #+ 0. Thus there exists r € u, H(p) such that NF{r} < u, H(p)
and *f(r) € p; K(x). Therefore, NF{*f(r)} = u, K(p). Now (tH, sK)-closed graph
implies by Theorem 3.2 that f(p) = x. (i.e. p e f ~*(x)). Hence,

StH(*f ~'[W]) = f~'[4] .

Corollary 3.5.1. Let A c Y be sKA-compact and for each p e X, let t e PTH(p).
If f : X - Y has a (tH, sK)-closed graph, then f ~*[A] is tH-closed.

Corollary 3.5.2. Let A = Y be compact [resp. N-closed, SA-compact, completely-
closed, SA-compact]. If f:(X,t) - (Y, T) has a (Ix,Iy) [resp. (Ix, @), (Ix, ),
(Ix, w), (Ix, S)]-closed graph, then f ~'[A] is closed in X.

Corollary 3.5.3. Let A = Y be compact. If f : (X, t) = (Y, T) has a (6, Iy)-closed
graph, then f [ A] is closed in X.
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Example 2 in Viglino’s paper [22] is that of a Hausdorff, non-Urysohn, non-
compact space in which each closed set is 8-compact. He calls such a space C-compact
and notes that a C-cempact Urysohn space is compact. SOUNDARARAJAN [20] gives
an example of a compact weakly-Hausdorff space which is not Hausdorff. The next.
result improves somewhat upon Corollary 2 in [13].

Theorem 3.6. Let Y be Hausdorff [resp. completely-Hausdorff] and each closed
subset of Y is 6-compact [resp. w-compact]. If f:(X, 1) - (Y, T) is almost-con-
tinuous [resp. a c-map), then f is continuous.

Remark 3.2. In Theorem 3.6, we have not included weakly-Hausdorff spaces in
which every closed subset is S-closed. The reason for this is that a weakly-Hausdorff
space which is S-closed is H-closed Urysohn and extremally disconnected. Such
a space is thus N-closed and if a subset is S-closed, then it is N-closed. Con-
sequently, Theorem 3.1 would imply that a weakly-Hausdorff space in which every
closed subset if S-closed is a compact Hausdorff space.

As far as rim-compact spaces are concerned, we are able to extend or improve
upon Theorems 3 and 4 in [13]. A space (X, 7) is rim-tH-compact if for each pe X
and each neighborhood Ve 7 of p there exists some neighborhood G, € 7 of p such
that Fr(G,) = clxG — G is tH(Fr(G,))-compact and G, = V. Gross and VIGLINO
[4] show than any C-compact Hausdorff space is rim-6-compact. Viglino’s example
[22] is a C-compact Hausdorff, nonregular; hence, non-rim-compact but rim-6-
compact space.

We now modify the proof of Theorem 3 in [13] in order to obtain the following
proposition.

Theorem 3.7. If (Y. T) is rim-sK-compact and f:(X,t) > (Y, T) is weakly-
continuous with a (Iy, sK)-closed graph, then f is continuous.

Proof. Let pe X and f(p) € Ve T. Then there exists some W e T such that f(p) e
e W< V and Fr(W) is sK(Fr(W))-compact. Clearly f(p) ¢ Fr(W). Thus for each
y e Fr(W), (p, y) ¢ G(f). Since G(f) is (I, sK)-closed, then *f[u(p)] N u; K(y) = 0
for each y e Fr(W). Consequently, *f[u(p)] N (U{us K(y) | y € Fr(W)}) = 0. Hence,
*f[u(p)] » *(Fr(W)) = 9. Weak-continuity implies that *f[u(p)] = ul(f(p)) =
< *(clyW). Therefore,

*flu(p)] 0 *(Y = W) = *f[u(p)] 0 *(Fr(W)) = 0.
Hence, *f[u(p)] = *W < *V. Since V is an arbitrary open neighborhood of f(p),
then *f [y.(p)] < u(f(p)) and the proof is complete.

Corollary 3.7.1. If (Y, T) is rim-8-compact [resp. rim-a-compact] and f : (X, ©) >
= (Y, T) is weakly-continuous where G(f) is stronlgy closed [resp. has property
(P)], then f is continuous.
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