

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log42

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

GENERALIZED CONTINUITY AND GENERALIZED CLOSED GRAPHS

ROBERT A. HERRMANN, Annapolis

(Received November 17, 1977)

1. Introduction. In [13], some sufficient conditions for a weakly-continuous function to be continuous are investigated. In particular, Corollary 2 [13] states that if Y is a Hausdorff space such that every closed subset is N-closed, then a weakly-continuous map $f: X \to Y$ is continuous. As we show below, a Hausdorff space such that every closed subset is N-closed is compact. Consequently, this corollary is not a particularly significant result.

The major purpose for this present investigation is to use tH-monad theory and to discuss, for an arbitrary map $f: X \to Y$, some relations between (tH, sK)-continuity, (tH, sK)-closed graphs and, if X, Y are topological spaces, topological continuity. In the process, we are able to improve upon most of the results in [13]. For example, applying our results to topological spaces X and Y, it is shown that if $A \subset X$ is compact [resp. N-closed, αA -compact, completely-compact, SA-compact] and the graph, G(f), of $f: X \to Y$ is closed [resp. has property (P), is strongly closed, is (I_X, W) -closed, is (I_X, S) -closed], then $f^{-1}[A]$ is closed in X. If Y is Hausdorff [resp. completely-Hausdorff] and each closed subset is θ -compact [resp. w-compact] and $f: X \to Y$ is almost-continuous [resp. a c-map], then f is continuous. If (Y, T) is rim- θ [resp. α]-compact, $f: (X, \tau) \to (Y, T)$ is weakly-continuous and G(f) is strongly closed [resp. has property (P)], then f is continuous. Finally, we show that every rim- θ -compact, Urysohn [resp. rim- α -compact, Hausdorff; rim-S-compact, weakly-Hausdorff, extremally disconnected] space is regular.

2. Preliminaries. In the interest of brevity, we shall rely heavily upon the definitions and results which appear in the references [6], [7], [8], [9], [12]. Recall that $f: X \to Y$ is (tH, sK)-continuous at $p \in X$ if $f[\mu_t H(p)] \subset \mu_s K(f(p))$, where $\mu_t H(p)$ and $\mu_s K(q)$ are the tH and sK-monads on X and Y, respectively [8]. For the monad of ROBINSON [16] $\mu(p)$ [resp. α -monad $\mu_{\alpha}(p)$, θ -monad $\mu_{\theta}(p)$, w-monad $\mu_{w}(p)$], we have that a map $f:(X, \tau) \to (Y, T)$ is almost-continuous [19] [resp. θ -continuous

[2], weakly-continuous [13], a c-map [3]] at $p \in X$ iff it is (I_X, α) [resp. (θ, θ) , (I_X, θ) , (I_X, w)]-continuous at $p \in X$. We note that a weakly-continuous map is also known as a weakly-continuous map. * \mathcal{M} is a highly saturated enlargement.

Definition 2.1. A map $f: X \to Y$ has a (tH, sK)-closed graph G(f) if for each $(p, q) \notin G(f)$, $\mu_{\pi}((p, q)) \cap *(G(f)) = \emptyset$, where π is generated by the tH and sK-monads (denoted by $\pi = tH \times sK$).

Let (X, τ) and (Y, T) denote topological spaces.

Example 2.1. (i) For $f:(X,\tau)\to (Y,T)$, the graph G(f) is (I_X,I_Y) -closed iff $\mu((p,q))\cap {}^*(G(f))=\emptyset$ for each $(p,q)\notin G(f)$ iff G(f) is closed in $X\times Y$.

- (ii) For $f:(X,\tau)\to (Y,T)$, G(f) is (I_X,θ) -closed iff it is strongly closed in the sense of HERRINGTON and LONG [5].
- (iii) For $f:(X,\tau)\to (Y,T)$, G(f) is (I_X,α) -closed iff it has property (P) discussed in [11] and [13].
- (iv) A map $f: X \to Y$ has a (tH, sK)-closed graph iff X G(f) is π -open, where $\pi = tH \times sK$. In general, if $t \in PTH(X)$, $s \in PSK(Y)$, then if G(f) is (tH, sK)-closed, then it is π -closed.

Finally, we point out that many of the results in this paper also hold for the q-monad of Puritz [15]. However, since we are particularly interested in topological spaces and certain closedness properties it appears more useful to concentrate upon the tH-monad approach due to certain special filter base properties which often appear unavoidable and which are exhibited by such nonstandard objects.

3. Major results. As stated in [6] for (X, τ) , a set $A \subset X$ is N-closed iff it is αA -compact iff $*A \subset \bigcup \{\mu_{\alpha}(x) \mid x \in A\}$.

Theorem 3.1. Let (X, τ) be Hausdorff and assume that each closed set $A \subset X$ is N-closed. Then X is compact.

Proof. Since X is N-closed (i.e. nearly-compact [18]) then X is almost-regular [17] and Urysohn (i.e. Urysohn = distinct points are separated by closed neighborhoods). Thus every closed subset of X is θ -compact, since for each $p \in X$, $\mu_{\alpha}(p) = \mu_{\theta}(p)$. Consequently, (X, τ) is C-compact in the sense of Viglino [22]. Thus X is semiregular by application of Theorem A in [22]. Therefore, X is regular and this completes the proof.

We now give an important characterization for (tH, sK)-closed graphs. For $\emptyset \neq \mathscr{F} \subset \mathscr{P}(X)$, the power set of X, we let Nuc $\mathscr{F} = \bigcap \{ *F \mid F \in \mathscr{F} \}$ and if $f: X \to Y$, then $f[\mathscr{F}] = \{ f[F] \mid F \in \mathscr{F} \}$.

Theorem 3.2. A map $f: X \to Y$ has a (tH, sK)-closed graph, G(f), iff whenever $\emptyset \neq \text{Nuc } \mathscr{F} \subset \mu_t H(p)$, $p \in X$, $\mathscr{F} \subset \mathscr{P}(X)$, and $\text{Nuc } f[\mathscr{F}] \subset \mu_s K(q)$ for some $q \in Y$, then f(p) = q.

Proof. Let $\mathscr{F} \subset \mathscr{P}(X)$, $\emptyset + \text{Nuc } \mathscr{F} \subset \mu_t H(p)$, $p \in X$, and $\text{Nuc } f[\mathscr{F}] \subset \mu_s K(q)$ for some $q \in Y$. Assume that $x \in \text{Nuc } \mathscr{F}$ and $y \in \text{Nuc } f[\mathscr{F}]$. Hence $*(x, y) \in \mu_{\pi}((p, q))$, $\pi = tH \times sK$. Consequently, $*(F \times f[F]) \cap \mu_{\pi}((p, q)) + \emptyset$ for each $F \in \mathscr{F}$. Since $*(F \times f[F]) \subset *(G(f))$, we have that $\mu_{\pi}((p, q)) \cap *(G(f)) \neq \emptyset$. Assuming that G(f) is a (tH, sK)-closed graph this yields that f(p) = q.

Conversely, assume that whenever $\mathscr{F} \subset \mathscr{P}(X)$, $\emptyset + \operatorname{Nuc} \mathscr{F} \subset \mu_t H(p)$ and $\operatorname{Nuc} f[\mathscr{F}] \subset \mu_s K(q)$, $q \in Y$, then f(p) = q. Let $(p, q) \in (X \times Y) - G(f)$. Thus there does not exist a $\mathscr{F} \subset \mathscr{P}(X)$ such that $\emptyset + \operatorname{Nuc} \mathscr{F} \subset \mu_t H(p)$ and $\operatorname{Nuc} f[\mathscr{F}] \subset \mu_s K(q)$. Suppose that $\mu_\pi((p, q)) \cap *(G(f)) + \emptyset$. Then there exists some $x \in \mu_t H(p)$ and $y \in \mu_s K(q)$ such that $*(x, y) \in *(G(f))$. Now the ultramonad $\operatorname{Nuc} \operatorname{Fil} \{x\} = \operatorname{NF}\{x\} \subset \mu_t H(p)$ and $*f[\operatorname{NF}\{x\}] = \operatorname{NF}\{*f(x)\} = \operatorname{NF}\{y\} \subset \mu_s K(q)$. This contradiction implies that $\mu_\pi((p, q)) \cap *(G(f)) = \emptyset$ and the proof is complete.

Recall that a space (X, τ) is compact [resp. nearly-compact [18], quasi-H-closed [14], completely-closed [10], S-closed [21]] iff $*X = \bigcup \{\mu(x) \mid x \in X\}$ [resp. $*X = \bigcup \{\mu_{\alpha}(x) \mid x \in X\}$, $*X = \bigcup \{\mu_{\theta}(x) \mid x \in X\}$, $*X = \bigcup \{\mu_{\omega}(x) \mid x \in X\}$, $*X = \bigcup \{\mu_{\omega}(x) \mid x \in X\}$, $*X = \bigcup \{\mu_{\omega}(x) \mid x \in X\}$ [6, 7, 8, 9, 10]]. The w-monad at $p \in X$ is $\mu_{\omega}(p) = \bigcap \{*f^{-1}[\mu(f(p))] \mid f \in C(X)\}$ and the S-monad is $\mu S(p) = \bigcap \{*(\operatorname{cl}_X A) \mid p \in A \in \in SO(X)\}$, where SO(X) is a set of all semiopen subsets of X [1]. Also, $W \subset *Y$ is sKA—compact iff $W \subset \bigcup \{\mu_s K(x) \mid x \in A\}$.

Theorem 3.3. If $f: X \to Y$ has a (tH, sK)-closed graph and Y is sKY-compact (i.e. sK-compact), then f is (tH, sK)-continuous.

Proof. Assume that $f: X \to Y$ has a (tH, sK)-closed graph and consider ${}^*f[\mu_t H(p)]$. By sKY-compactness, ${}^*f[\mu_t H(p)] \subset \bigcup \{\mu_s K(y) \mid y \in Y\}$. Assume that ${}^*f[\mu_t H(p)] \cap \mu_s K(q) \neq \emptyset$. Then there exists $x \in \mu_t H(p)$ such that ${}^*f(x) \in \mu_s K(q)$. However, $NF\{x\} \subset \mu_t H(p)$ and ${}^*f[NF\{x\}] = NF\{{}^*f(x)\}$ imply that ${}^*f[NF\{x\}] \subset \mu_s K(q)$. Theorem 3.2 yields f(p) = q. Consequently, ${}^*f[\mu_t H(p)] \subset \mu_s K(f(p))$ and the proof is completed.

Corollary 3.3. If $f:(X,\tau) \to (Y,T)$ has a (I_X,I_Y) - [resp. (I_X,α) , (θ,I_Y) , (θ,θ) , (I_X,w) , (I_X,S) , (I_X,θ)]-closed graph, and Y is compact [resp. nearly-compact, compact, quasi-H-closed, completely-closed, S-closed, quasi-H-closed], then f is continuous [resp. almost-continuous [19], strongly- θ -continuous [8], θ -continuous [4], a c-map [3], (I_X,S) -continuous, weakly-continuous [13]].

We now present a proposition which gives a strong converse to Theorem 3.3 and has numerous corollaries which improve upon Theorem 1 in [13]. A set Y is (sK, uV)-separated if for distinct $p, q \in Y$, $\mu_s K(p) \cap \mu_u V(q) = \emptyset$.

Theorem 3.4. Let $f: X \to Y$ be (tH, sK)-continuous and Y be (sK, uV)-separated. Then f has a (tH, uV)-closed graph.

Proof. Assume that $\emptyset \neq \text{Nuc } \mathscr{F} \subset \mu_t H(p), p \in X, \mathscr{F} \subset \mathscr{P}(X)$, and $\text{Nuc } f[\mathscr{F}] \subset \mu_u V(q), q \in Y$. Then (tH, sK)-continuity implies that $\text{Nuc } f[\mathscr{F}] \subset \mu_s K(f(p))$.

Since Nuc $f[\mathcal{F}] \neq \emptyset$, then (sK, uV)-separation implies that f(p) = q. Hence f has a (tH, uV)-closed graph.

Corollary 3.4.1. If $f:(X,\tau) \to (Y,T)$ is continuous [resp. almost-continuous, strongly- θ -continuous, θ -continuous, weakly-continuous] and Y is Hausdroff, then f has a closed [resp. (I_X, θ) -closed, (θ, θ) -closed, (θ, α) -closed, (I_X, α) -closed] graph.

Corollary 3.4.2. If $f:(X,\tau) \to (Y,T)$ is weakly-continuous [resp. a c-map, (I_X, S) -continuous] Y is Urysohn [resp. completely-Hausdorff, weakly-Hausdorff], then f has a (I_X, θ) [resp. (I_X, w) , (I_X, α)]-closed graph.

Proof. The above results follow from Theorem 1.4 and 1.5 [6] and the result that if a space Y is completely-Hausdorff [resp. weakly-Hausdorff [20]], then for distinct $p, q \in Y$, $\mu_w(p) \cap \mu_w(q) = \emptyset$ [resp. $\mu_\alpha(p) \cap \mu S(q) = \emptyset$].

Remark 3.1. If $f: X \to Y$ has a (tH, sK)-closed graph and we have an rJ-monad system on X and a uV-monad system on Y such that for each $p \in X$ and $q \in Y$, $\mu_r J(p) \subset \mu_t H(p)$ and $\mu_u V(q) \subset \mu_s K(q)$, then f has an (rJ, uV)-closed graph. Hence each of the (tH, sK)-continuous maps in the hypothesis of Corollaries 3.4.1 and 3.4.2 has a closed graph.

Recall that for $W \subset {}^*X$, $St_t H(W) = \{x \mid [x \in X] \land [\mu_t H(p) \cap W \neq \emptyset]\}.$

Theorem 3.5. Let $W \subset {}^*Y$ be sKA-compact. If $f: X \to Y$ has a (tH, sK)-closed graph, then

$$St_tH(*f^{-1}\lceil W\rceil) \subset f^{-1}\lceil A\rceil$$
.

Proof. We know that $W \subset \bigcup \{\mu_s K(x) \mid x \in A\}$. Thus $f^{-1}[W] \subset \bigcup \{f^{-1}[\mu_s K(x)] \mid x \in A\}$. Let $p \in St_tH(f^{-1}[W])$. Then $\mu_t H(p) \cap f^{-1}[W] \neq \emptyset$. Hence $f[\mu_t H(p)] \cap W \neq \emptyset$. Consequently, there exists $f[\mu_t H(p)] \cap \mu_s K(x) \neq \emptyset$. Thus there exists $f[\mu_t H(p)] \cap \mu_s K(x) \neq \emptyset$. Thus there exists $f[\mu_t H(p)] \cap \mu_s K(x) \neq \emptyset$. Therefore, $f[f(r)] \subset \mu_s K(p)$. Now $f[f(r)] \subset \mu_s K(p)$. Now $f[f(r)] \subset \mu_s K(p)$. Now $f[f(r)] \subset \mu_s K(p)$. Hence,

$$St_tH(*f^{-1}[W]) \subset f^{-1}[A].$$

Corollary 3.5.1. Let $A \subset Y$ be sKA-compact and for each $p \in X$, let $t \in PTH(p)$. If $f: X \to Y$ has a (tH, sK)-closed graph, then $f^{-1}[A]$ is tH-closed.

Corollary 3.5.2. Let $A \subset Y$ be compact [resp. N-closed, SA-compact, completely-closed, SA-compact]. If $f:(X,\tau) \to (Y,T)$ has a (I_X,I_Y) [resp. (I_X,α) , (I_X,θ) , (I_X,w) , (I_X,S)]-closed graph, then $f^{-1}[A]$ is closed in X.

Corollary 3.5.3. Let $A \subset Y$ be compact. If $f:(X,\tau) \to (Y,T)$ has a (θ,I_Y) -closed graph, then $f^{-1}[A]$ is closed in X.

Example 2 in Viglino's paper [22] is that of a Hausdorff, non-Urysohn, non-compact space in which each closed set is θ -compact. He calls such a space C-compact and notes that a C-compact Urysohn space is compact. SOUNDARARAJAN [20] gives an example of a compact weakly-Hausdorff space which is not Hausdorff. The next result improves somewhat upon Corollary 2 in [13].

Theorem 3.6. Let Y be Hausdorff [resp. completely-Hausdorff] and each closed subset of Y is θ -compact [resp. w-compact]. If $f:(X,\tau)\to (Y,T)$ is almost-continuous [resp. a c-map], then f is continuous.

Remark 3.2. In Theorem 3.6, we have not included weakly-Hausdorff spaces in which every closed subset is S-closed. The reason for this is that a weakly-Hausdorff space which is S-closed is H-closed Urysohn and extremally disconnected. Such a space is thus N-closed and if a subset is S-closed, then it is N-closed. Consequently, Theorem 3.1 would imply that a weakly-Hausdorff space in which every closed subset if S-closed is a compact Hausdorff space.

As far as rim-compact spaces are concerned, we are able to extend or improve upon Theorems 3 and 4 in [13]. A space (X, τ) is rim-tH-compact if for each $p \in X$ and each neighborhood $V \in \tau$ of p there exists some neighborhood $G_p \in \tau$ of p such that $Fr(G_p) = \operatorname{cl}_X G - G$ is $tH(Fr(G_p))$ -compact and $G_p \subset V$. Gross and Viglino [4] show than any C-compact Hausdorff space is $rim-\theta$ -compact. Viglino's example [22] is a C-compact Hausdorff, nonregular; hence, non-rim-compact but $rim-\theta$ -compact space.

We now modify the proof of Theorem 3 in [13] in order to obtain the following proposition.

Theorem 3.7. If (Y, T) is rim-sK-compact and $f: (X, \tau) \to (Y, T)$ is weakly-continuous with a (I_X, sK) -closed graph, then f is continuous.

Proof. Let $p \in X$ and $f(p) \in V \in T$. Then there exists some $W \in T$ such that $f(p) \in W \subset V$ and Fr(W) is sK(Fr(W))-compact. Clearly $f(p) \notin Fr(W)$. Thus for each $y \in Fr(W)$, $(p, y) \notin G(f)$. Since G(f) is (I_X, sK) -closed, then $*f[\mu(p)] \cap \mu_s K(y) = \emptyset$ for each $y \in Fr(W)$. Consequently, $*f[\mu(p)] \cap (\bigcup \{\mu_s K(y) \mid y \in Fr(W)\}) = \emptyset$. Hence, $*f[\mu(p)] \cap *(Fr(W)) = \emptyset$. Weak-continuity implies that $*f[\mu(p)] \subset \mu_{\theta}(f(p)) \subset C$ (cl_YW). Therefore,

$$*f[\mu(p)] \cap *(Y - W) = *f[\mu(p)] \cap *(Fr(W)) = \emptyset.$$

Hence, ${}^*f[\mu(p)] \subset {}^*W \subset {}^*V$. Since V is an arbitrary open neighborhood of f(p), then ${}^*f[\mu(p)] \subset \mu(f(p))$ and the proof is complete.

Corollary 3.7.1. If (Y, T) is $rim-\theta$ -compact [resp. $rim-\alpha$ -compact] and $f:(X, \tau) \to (Y, T)$ is weakly-continuous where G(f) is strongly closed [resp. has property (P)], then f is continuous.