

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log40

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

HEAT SOURCES AND HEAT POTENTIALS

Josef Král and Stanislav Mrzena, Praha (Received October 31, 1977)

We shall deal with potentials in R^{m+1} corresponding to the well-known kernel

(1)
$$\mathscr{E}(x,t) = \begin{cases} (4\pi t)^{-m/2} \exp\left(-\frac{|x|^2}{4t}\right), & x \in \mathbb{R}^m, \quad t > 0, \\ 0, & x \in \mathbb{R}^m, \quad t \leq 0, \end{cases}$$

which represents a fundamental solution of the heat conduction operator

(cf. [1]). The term measure will always mean a finite positive Borel measure with a compact support in a Euclidean space. Let v be a measure in R^m (describing a space distribution of heat sources) and let ϱ be a measure in R^1 . Then the heat potential of $\mu = v \otimes \varrho$ defined by

(2)
$$\mathscr{E}\mu(x,t) = \int_{\mathbb{R}^{m+1}} \mathscr{E}(x-\xi,t-\tau) \,\mathrm{d}\mu(\xi,\tau)$$

may be interpreted as the temperature resulting at the time t and the point $x \in R^m$ under the action of time-variable heat sources which are so distributed that the quantity of heat emanating from a Borel set $M \subset R^m$ during the time interval $I \subset R^1$ is given by $\mu(M \times I) = \nu(M) \varrho(I)$. We shall adopt the following

Definition. Let $\alpha \ge 0$ be a real number and suppose that ν is a measure in R^m . We shall say that ν is α -admissible if there is a non-trivial measure ϱ in R^1 such that the heat potential $u = \mathscr{E}\mu$ corresponding to $\mu = \nu \otimes \varrho$ satisfies the condition

(3)
$$u(x, t) - u(y, v) = o(|x - y|^{\alpha} + |t - v|^{\alpha/2})$$
 as $|x - y| + |t - v| \to 0 + .$

Any ϱ with the above properties will be called an α -admissible factor of ν .

$$\Omega(r, x) = \{ \xi \in R^m; \ |\xi - x| < r \}$$

denote the open ball with center x and radius r. We are going to prove the following result characterizing all α -admissible measures in R^m for $\alpha \in (0, 1)$.

Theorem. If $\alpha \in (0, 1)$, then a measure v in R^m is α -admissible if and only if

(4)
$$\sup_{x \in \mathbb{R}^m} \int_0^{\delta} r^{1-m} v(\Omega(r, x)) dr = o(\delta^{\alpha}) \quad as \quad \delta \to 0+;$$

for $\alpha \in (0, 1)$ the condition (4) may be replaced equivalently by (14).

Remark 1. Let ν be a non-trivial measure in R^m and denote by ε_{t_0} the Dirac measure (= unit point-mass) concentrated at a point t_0 in R^1 . It is known that ε_{t_0} is never a 0-admissible factor of $\nu \neq 0$ (compare [2]).

Remark 2. If $M \subset R^1$ and $\tau \in R^1$ we put

$$M-\tau=\{t-\tau;\ t\in M\}.$$

Given a measure ϱ in R^1 we may define the translated measure ϱ_{τ} by

$$\varrho_{\tau}(M) = \varrho(M - \tau)$$

on Borel sets $M \subset R^1$. Further we put for any h > 0

$$\varrho^h(\cdot) = \frac{1}{h} \int_{-h}^0 \varrho_{\tau}(\cdot) d\tau.$$

The measure ϱ^h is absolutely continuous with respect to the Lebesgue measure λ in R^1 and the corresponding Radon-Nikodym derivative is given by the function

$$t \to \lim_{\varepsilon \to 0+} \varepsilon^{-1} \varrho^h (\langle t - \varepsilon, t \rangle)$$

which is everywhere defined and finite. Besides that, $\varrho^h(R^1) = \varrho(R^1)$. If ϱ is an α -admissible factor of ν , $\mu = \nu \otimes \varrho$ and $u = \mathcal{E}\mu$ is defined by (2), then Fubini's theorem yields

$$\mathscr{E}(v \otimes \varrho^h)(x, t) = \frac{1}{h} \int_0^h u(x, t + \tau) d\tau.$$

Hence it follows that (3) is again satisfied with u replaced by $u^h = \mathscr{E}(v \otimes \varrho^h)$. In other words, ϱ^h is also an α -admissible factor of v.

Proof of the theorem. Suppose first that v is an α -admissible measure in R^m . Let ϱ be an α -admissible factor of v. According to Remark 2 we may suppose that ϱ

is absolutely continuous (λ) and $\lim \varepsilon^{-1} \varrho(\langle t - \varepsilon, t \rangle) (\varepsilon \to 0+)$ is everywhere defined and finite in R^1 . Let us fix a $\tau \in R^1$ such that

$$\lim_{h\to 0+}\frac{\varrho(\langle \tau-h,\tau\rangle)}{h}=q>0.$$

We have then for suitable $\delta > 0$ the implication

(5)
$$0 < h \le \delta \Rightarrow \frac{1}{2}qh \le \varrho(\langle \tau - h, \tau \rangle) \le 2qh.$$

Let c > 0 and consider the set

$$\begin{split} &A(x,\tau,c) = \left\{ \left[\xi,u \right] \in R^{m+1}; \ \mathscr{E}(x-\xi,\tau-u) > c \right\} = \\ &= \left\{ \left[\xi,u \right] \in R^{m+1}; \ u \in \left(\tau - \frac{1}{4\pi} \, c^{-2/m},\tau \right), \ \left| x - \xi \right|^2 < r(u) \right\}, \end{split}$$

where

$$r(u) = 4(\tau - u) \log [c(4\pi(\tau - u))^{m/2}]^{-1}$$
.

If $\xi \in \mathbb{R}^m$ is fixed in such a way that

(6)
$$|x - \xi| = p \sqrt{\left(\frac{m}{2\pi e}\right)} c^{-1/m}$$

with $p \in (0, 1)$, then

(7)
$$\left\{\xi\right\}\times\left\langle\tau-\frac{1}{4\pi e}\,c^{-2/m}\,,\,\,\tau-\frac{p}{4\pi e}\,c^{-2/m}\right\rangle\subset A(x,\tau,c)\,.$$

This may be verified by a simple calculation; note that $A(x, \tau, c)$ is convex and

$$\frac{m}{2\pi e} c^{-2/m} = \max \left\{ r(u); \ u \in \left(\tau - \frac{1}{4\pi} c^{-2/m}, \tau\right) \right\} = r \left(\tau - \frac{1}{4\pi e} c^{-2/m}\right).$$

According to (5) we obtain for c, p submitted to

(8)
$$\frac{1}{4\pi e} c^{-2/m} \leq \delta, \quad p \in \langle 0, \frac{1}{8} \rangle$$

the estimate

$$\varrho\left(\left\langle\tau - \frac{1}{4\pi e} c^{-2/m}, \tau - \frac{p}{4\pi e} c^{-2/m}\right\rangle\right) =$$

$$= \varrho\left(\left\langle\tau - \frac{1}{4\pi e} c^{-2/m}, \tau\right\rangle\right) - \varrho\left(\left\langle\tau - \frac{p}{4\pi e} c^{-2/m}, \tau\right\rangle\right) \ge$$

$$\ge \frac{1}{2}q \frac{1}{4\pi e} c^{-2/m} - 2q \frac{p}{4\pi e} c^{-2/m} = \frac{q}{4\pi e} \left(\frac{1}{2} - 2p\right) c^{-2/m} \ge$$

$$\ge \frac{q}{16\pi e} c^{-2/m}.$$

In view of (7), (6) we have the inclusion

$$\left\{ \left[\xi, u \right]; \left| \xi - x \right| \le \frac{1}{8} \sqrt{\left(\frac{m}{2\pi e} \right) c^{-1/m}}, \ \tau - \frac{1}{4\pi e} c^{-2/m} \le u \le \right. \\
\le \tau - \frac{1}{2} \left| x - \xi \right| c^{-1/m} \frac{1}{\sqrt{(2\pi e m)}} \right\} \subset A(x, \tau, c)$$

whence we get

$$(9) \qquad (v \otimes \varrho) (A(x, \tau, c)) \geq \frac{q}{16\pi e} c^{-2/m} v \left(\Omega \left(\frac{1}{8} \sqrt{\left(\frac{m}{2\pi e} \right)} c^{-1/m}, x \right) \right).$$

Consider first the case $\alpha = 0$. If $\mu = \nu \otimes \varrho$ and

(10)
$$\mathscr{E}\mu(x,t)\left(=\int_0^\infty \mu(A(x,t,c))\,\mathrm{d}c\right)$$

is a continuous function of the variables x, t, then

(11)
$$\lim_{a\to\infty} \sup_{x,t} \int_a^\infty \mu(A(x,t,c)) dc = 0$$

(compare Proposition below). Employing (9) we obtain for

$$\frac{1}{4\pi e} a^{-2/m} \le \delta$$
, $s = \frac{q}{16\pi e}$, $z = \frac{1}{8} \sqrt{\left(\frac{m}{2\pi e}\right)}$

the inequality

$$\int_{a}^{\infty} \mu(A(x,\tau,c)) dc \ge s \int_{a}^{\infty} c^{-2/m} \nu(\Omega(zc^{-1/m},x)) dc =$$

$$= smz^{m-2} \int_{0}^{za^{-1/m}} r^{1-m} \nu(\Omega(r,x)) dr$$

which combined with (11) yields (4) for $\alpha = 0$.

Conversely, suppose that (4) holds with $\alpha = 0$. Fix an arbitrary measure ϱ in R^1 satisfying for a suitable K > 0 the estimate

(12)
$$\varrho(\langle \tau - \delta, \tau \rangle) \leq K\delta \quad (\tau \in \mathbb{R}^1, \ \delta > 0)$$

and put $\mu = \nu \otimes \varrho$. The inclusion

$$A(x, \tau, c) \subset \Omega\left(\sqrt{\left(\frac{m}{2\pi e}\right)c^{-1/m}}, x\right) \times \left(\tau - \frac{1}{4\pi}c^{-2/m}, \tau\right)$$

together with (12) gives

$$\mu(A(x, \tau, c)) \leq \frac{K}{4\pi} c^{-2/m} v \left(\Omega\left(\sqrt{\left(\frac{m}{2\pi e}\right)} c^{-1/m}, x\right),\right)$$

whence (putting $\zeta = \sqrt{(m/2\pi e)}$)

$$\int_a^\infty \mu(A(\vec{x},\tau,c)) dc \leq \frac{K}{4\pi} m \zeta^{m-2} \int_0^{\zeta a^{-1/m}} r^{1-m} \nu(\Omega(r,x)) dr.$$

Using (4) with $\alpha = 0$ we arrive at

$$\lim_{a\to\infty}\sup_{x,t}\int_a^\infty \mu(A(x,\,\tau,\,c))\,\mathrm{d}c=0$$

which quarantees that the potential (10) is a uniformly continuous function of the variable $[x, t] \in R^{m+1}$ (compare Proposition below). Thus the theorem is proved for $\alpha = 0$.

Now consider the case $\alpha \in (0, 1)$. Let μ be a measure in R^{m+1} and denote by $u = \mathcal{E}\mu$ its heat potential. Then the equation

$$\Delta u = \mu$$

holds in R^{m+1} in the sense of the distribution theory. Suppose now that for all [x, t], [y, t'] in

$$\overline{\Omega(2r,\xi)} \times \langle \tau - (2r)^2, \ \tau + (2r)^2 \rangle$$

the estimate

$$|u(x, t) - u(y, t')| \le Q(r)(|x - y|^{\alpha} + |t - t'|^{\alpha/2})$$

holds.

There is an infinitely differentiable function $\varphi(x, t)$ vanishing outside

$$\overline{\Omega(2r,\xi)} \times \langle \tau - (2r)^2, \tau + (2r)^2 \rangle$$

such that $\varphi = 1$ on $\overline{\Omega(r,\xi)} \times \langle \tau - r^2, \tau \rangle$, $0 \le \varphi \le 1$ and

$$\left|\frac{\partial \varphi}{\partial t}\right| + \sum_{i=1}^{m} \left|\frac{\partial^{2} \varphi}{\partial x_{i}^{2}}\right| \leq 2(m+1) r^{-2}.$$

Then

$$\overline{\mu(\Omega(r,\xi))} \times \langle \tau - r^2, \tau \rangle) \leq \int_{R^{m+1}} \varphi \, d\mu =$$

$$= -\int_{R^{m+1}} \left(\frac{\partial \varphi(x,t)}{\partial t} + \sum_{i=1}^m \frac{\partial^2 \varphi(x,t)}{\partial x_i^2} \right) \left[u(x,t) - u(\xi,\tau) \right] dx dt.$$

Hence we conclude that

(13)
$$\mu\overline{(\Omega(r,\xi)}\times\langle\tau-r^2,\tau\rangle)\leq k\ Q(r)\ r^{m+\alpha}$$

with an absolute constant k (independent of r, μ). Assuming $\mu = v \otimes \varrho$ with ϱ

absolutely continuous (λ) and having an everywhere defined finite density $\lim_{\varepsilon \to 0+} \varepsilon^{-1} \varrho(\langle t - \varepsilon, t \rangle)$, we may again choose $\tau \in R^1$ and $q, \delta > 0$ such that (5) holds. Combining (13) and (5) we get for $r^2 \le \delta$

$$\nu(\Omega(r,\,\xi)) \leq 2k \,\, Q(r) \,\, q^{-1} r^{m-2+\alpha} \,.$$

If (3) holds, then $\lim_{r\to 0+} Q(r) = 0$ and we obtain

(14)
$$\sup_{x} \nu(\Omega(r, x)) = o(r^{m-2+\alpha}) \quad \text{as} \quad r \to 0+.$$

Conversely, assume (14) and fix an arbitrary measure ϱ in R^1 satisfying (12). Then $\mu = \nu \otimes \varrho$ satisfies

$$\sup_{x,\tau} \mu(\Omega(r,x) \times \langle \tau - r^2, \tau \rangle) = o(r^{m+\alpha}) \quad \text{as} \quad r \to 0+ ,$$

which implies that $u = \mathcal{E}\mu$ fulfils (3) (compare Remark 5 and Lemma 4 in [3] and note that the derivatives of u have zero limits at infinity). To make the proof complete it remains to observe that (4) and (14) are equivalent for $\alpha \in (0, 1)$.

Remark 3. The assertion of the theorem (but not that of Remark 1) remains valid if o is replaced by O simultaneously in (4) and in the relation (3) occurring in the definition of α -admissibility (compare also [4]), provided $\alpha > 0$.

We shall now complete the detailed proof of the condition for continuity of the heat potential that has been useful in the course of the proof of the theorem.

Proposition. The heat potential $\mathcal{E}\mu$ corresponding to a measure μ in R^{m+1} is finite and continuous on R^{m+1} if and only if

(15)
$$\lim_{a\to\infty} \sup_{x,t} \int_a^\infty \mu(A(x, t, c)) dc = 0.$$

Proof. Put for $a \ge 0$

$$\mathscr{E}_a = \min(a, \mathscr{E}), \quad \mathscr{E}_a \mu(x, t) = \int_{\mathbb{R}^{m+1}} \mathscr{E}_a(x - \xi, t - \tau) \, \mathrm{d}\mu(\xi, \tau).$$

For any $x_0 \in R^m$ and $t > t_0$ the estimate

(16)
$$\mathscr{E}\mu(x_0,t) \geq \left[4\pi(t-t_0)\right]^{-1/m}\mu(\{[x_0,t_0]\})$$

shows that $\mu(\{[x_0, t_0]\}) = 0$ whenever $\mathscr{E}\mu$ is locally bounded. Suppose now that $\mathscr{E}\mu$ is finite and continuous. Then $\mathscr{E}_a(x - \xi, t - \tau) \to \mathscr{E}_a(x_0 - \xi, t_0 - \tau)$ for μ -almost every $[\xi, \tau] \in R^{m+1}$ (i.e. for every $[\xi, \tau] \neq [x_0, t_0]$) as $[x, t] \to [x_0, t_0]$, so that $\mathscr{E}_a\mu$ is continuous on R^{m+1} . Since $\mathscr{E}_a\mu \nearrow \mathscr{E}\mu$ as $a \nearrow \infty$ we conclude from Dini's theorem (which may be applied to the Aleksandrov compactification of R^{m+1} , because all the

functions in question tend to zero at infinity) that

(17)
$$\lim_{a\to\infty} \sup_{x,t} \left[\mathscr{E}\mu(x,t) - \mathscr{E}_a\mu(x,t) \right] = 0.$$

Noting that, for fixed $[x, t] \in R^{m+1}$, $\mathscr{E}(x - \xi, t - \tau) - \mathscr{E}_a(x - \xi, t - \tau)$ vanishes outside A(x, t, a) and equals $\mathscr{E}(x - \xi, t - \tau) - a$ for $[\xi, \tau] \in A(x, t, a)$ we get

$$\mathscr{E}\chi(x,t) - \mathscr{E}_a\mu(x,t) = \int_{A(x,t,a)} \left[\mathscr{E}(x-\xi,t-\tau)-a\right] d\mu(\xi,\tau) =$$

$$= \int_0^\infty \mu(\left\{\left[\xi,\tau\right] \in A(x,t,a); \, \mathscr{E}(x-\xi,t-\tau) > a+c\right\}) dc = \int_a^\infty \mu(A(x,t,c)) dc.$$

The equality

(18)
$$\mathscr{E}\mu(x,t) - \mathscr{E}_a\mu(x,t) = \int_a^\infty \mu(A(x,t,c)) dc$$

together with (17) yields (15). Conversely, assume (15). In view of (18), $\mathscr{E}_{a}\mu \nearrow \mathscr{E}\mu$ uniformly as $a\nearrow\infty$. Since the functions $\mathscr{E}_{a}\mu$ are bounded, the same holds of $\mathscr{E}\mu$ and (16) shows that μ does not charge points. As we have seen above, this implies the uniform continuity of $\mathscr{E}_{a}\mu$ and, consequently, of $\mathscr{E}_{\mu}\mu$ as well.

Remark 4. If v is a measure in R^m and $m \ge 2$, then we denote by

$$U v(x) = \int_{\mathbb{R}^m} p(x - \xi) \, \mathrm{d}v(\xi)$$

its Newtonian (in the case m > 2) or logarithmic (in the case m = 2) potential corresponding to the kernel

$$p(x) = \left\langle \begin{array}{ccc} |x|^{2-m} & \text{if } m > 2, \\ \log \frac{1}{|x|} & \text{if } m = 2. \end{array} \right.$$

If $\alpha \in (0, 1)$, then ν satisfies (4) if and only if

(19)
$$U v(x) - U v(y) = o(|x - y|^{\alpha}) \text{ as } |x - y| \to 0+.$$

This assertion remains valid for $\alpha > 0$ if o is replaced by O in (19) and (4) simultaneously (compare [5]-[9]).