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HEAT SOURCES AND HEAT POTENTIALS

JoserF KRAL and STANISLAV MRZENA, Praha
(Received October 31, 1977)

We shall deal with potentials in R™*! corresponding to the well-known kernel

2
(4mt)~™'2 exp (— Iil—) , XeER™, t>0,
() 8x,1) = { “

0, xER"', téoy

which represents a fundamental solution of the heat conduction operator

(cf. [1]). The term measure will always mean a finite positive Borel measure with
a compact support in a Euclidean space. Let v be a measure in R™ (describing a space
distribution of heat sources) and let ¢ be a measure in R'. Then the heat potential
of u = v ® ¢ defined by

) Sulx,1) = [ 8(x — & t — 7) du(é, 7)

o Rm+1

may be interpreted as the temperature resulting at the time ¢ and the point x € R™
under the action of time-variable heat sources which are so distributed that the
quantity of heat emanating from a Borel set M = R™ during the time interval I = R!
is given by u(M x I) = v(M) ¢(I). We shall adopt the following

Definition. Let « = 0 be a real number and suppose that v is a measure in R™.
We shall say that v is a-admissible if there is a non-trivial measure ¢ in R! such that
the heat potential u = &u corresponding to u = v ® g satisfies the condition

(3) ulx,t) —u(y,v) =of]x — y|* + [t — v|?) as |x —y| + |t —v] > 0+.
Any ¢ with the above properties will be called an a-admissible factor of v.
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Let . ;
Qr,x)={¢eR™ [¢ — x| <1}
denote the open ball with center x and radius r. We are going to prove the following

result characterizing all a-admissible measures in R™ for a € €0, 1).

Theorem. If « € 0, 1), then a measure v in R™ is a-admissible if and only if
3
(4) sup J‘ rt=™(Q(r, x))dr = 0(6*) as - 0+ ;
xeR™ J o

for a €(0, 1) the condition (4) may be replaced equivalently by (14).

Remark 1. Let v be a non-trivial measure in R™ and denote by ¢, the Dirac
measure (= unit point-mass) concentrated at a point to in R'. It is known that g, is
never a 0-admissible factor of v # 0 (compare [2]). .

Remark 2. If M < R! and 7 € R! we put
M-t={t—r teM}.
Given a measure ¢ in R' we may define the translated measure g, by
e{M) = oM — 1)
on Borel sets M = R!. Further we put for any h > 0

() = %Iohg,(.)dr .

The measure g" is absolutely continuous with respect to the Lebesgue measure 4
in R! and the corresponding Radon-Nikodym derivative is given by the function

t - lim s"qK(t — & 1))

=0+

which is everywhere defined and finite. Besides that, ¢"(R') = ¢(R"). If ¢ is an a-
admissible factor of v, p = v ® ¢ and u = &uis defined by (2), then Fubini’s theorem
yields

s(v@d")(x, 1) = %Jtu(x, t+1)dr.

Hence it follows that (3) is again satisfied with u replaced by u* = &(v ® ¢*). In
other words, g" is also an a-admissible factor of v.

Proof of the theorem. Suppose first that v is an a-admissible measure in R™.
Let ¢ be an a-admissible factor of v. According to Remark 2 we may suppose that ¢
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is absolutely continuous (1) and lim ¢~ o(t — &, t)) (¢ = 0+) is everywhere defined
and finite in R'. Let us fix a 7 € R" such that

lim A=) _ qg>0 |
h=0+ h A
We have then for suitable 6 > 0 the implication
(5) 0 <h=6=1qh <o(<{t — b)) < 29h.

Let ¢ > 0 and consider the set

Alx,t,¢c) = {[¢, u]eR™; E(x — &1 —u) > ¢} =

=({[€, u]eR™; u e(r = It—tc'”’”, t) x =g < r(u)} ;
where o )
r(u) = 4(r — u) log [c(4n(z — w))y™?*]~1.

If £ e R™ is fixed in such a way that

(6) |x—¢=p \/(2_':;) e /m

with p e <0, 1), then

(7) {é} bd <1 = 4L c=2m , T — Lc—2/m> e A(x, T, C).
ne

4me

This may be verified by a simple calculation; note that A(x, , c) is convex and

oM o oy r(u);ue(r - 1 c~2m W= (7 - ._l._c—2/m )
2me 4n 4me

According to (5) we obtain for ¢, p submitted to

(8) %mc'”" <5, ped0,d)

Q 1_-1_(:_2/"" T—LC_Z/M =
4me 4me
= T — l é_z/m’ T = Q T — _B_ C_Z/m, T g
4me 4re

| S P _ q ;. -
g — 2/m_2_c 2/m _ 1 = 2 CZ/mg
4 4me 4 4me 4ne (‘} p)

the estimate

g q c—2/m.
16me
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In view of (7), (6) we have the inclusion

{[é, ul; |¢ — x| < i_ls \/(ﬂ) cim o 1 -m <us<

2ne 4me

St—dx - gctm

1 } e Alxz, )

J/(2rem)
whence we get

©) (0 ® Q) (A 7 6) 2 L7y (g (% \/(5%) c-iim x)) :

‘Consider first the case « = 0. If y = v ® ¢ and
(10) Sulx, 1 (= j WA, 1, ) dc)
0

is a continuous function of the variables x, t, then

(11) lim sup J " WA(x, t, &) de = 0

a-o x,t J,

(compare Proposition below). Employing (9) we obtain for

La—z/méa’ g z=} m
4re 16me 8 2ne

I " WA, 7, ) de = s J ¥ e=2imy(Q(zc=1m, x)) de =

the inequality

zg=1/m"
= smz"'"ZJ. rt=m™y(Q(r, x)) dr

0
which combined with (11) yields (4) for a = 0.

Conversely, suppose that (4) holds with « = 0. Fix an arbitrary measure ¢ in R!
satisfying for a suitable K > 0 the estimate

(12) o<t —6,7)) < Ké (teR! 6>0)
and put 4 = v ® ¢. The inclusion ‘

A(x,7,¢) = @ (\/(%) c=m, x) x (z - le-tc-zl"', 1:)

together with (12) gives

HA(x, 7, 0)) ﬁ c2/my (Q ( \/(ﬁ) ¢ m, x) :

187



whence (putting { = \/(m/2ne))

J‘wp(A(x', 1,¢))de < 45 m{m™~? J‘:a-llmr“’"v(ﬂ(r, x))dr.

i T

Using (4) with « = 0 we arrive at

lim supj H(A(x, 7, ¢))dc =0

a—w X,t a

which quarantées that the potential (10) is a uniformly continuous function of the
variable [x, ] € R™*! (compare Proposition below). Thus the theorem is proved
for a = 0.

Now consider the case a €(0,1). Let u be a measure in R™*! and denote by
u = &p its heat potential. Then the equation

,Q.u:ﬂ

holds in R™** in the sense of the distribution theory. Suppose now that for all [x, ],
[v,¢] in
Q(2r, &) x {t = (2r)% = + 2r)»
the estimate
|u(x, 1) — u(y, )| < Q(r) (|x — ¥ + |t — |73
holds.
There is an infinitely differentiable function ¢(x, t) vanishing outside

21, &) x (T = (2r)% T+ (2r))
such that ¢ = 1 on (r, &) x ¢t —r%,1),0< ¢ < 1 and

do =
=t +
ot 1§1

Pe
ox?

S2m+1)r 2.

Then

wQ(r, &) x < — 1, 1)) éJ.” pdu =
Rm+1 !

- Lm“ ("‘Pg’: ) , 5 Zolx ‘)) [ulx, £) — u(&, ¥)] dx dt .

2
i=1 6x‘

Hence we conélude that -

(13) (e, &) x (v - 1)) S k (r) e i i

with an absolute ‘constant k (indep;eiideﬁt of 7, ). As_suminé p. =y @ ¢ with ¢
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absolutely continuous (4) and having an everywhere defined finite density
lim ™ g({t — &, t)), we may again choose 7 € R* and g, 6 > 0 such that (5) holds.

&0+
Combining (13) and (5) we get for > < 6
' W(&A(r, &)) < 2k Q(r) g~ 1rm2*=.
If (3) holds, then lim Q(r) = 0 and we obtain
r-0+

(14) Sl’.l‘p Q(r, x)) = o(r"~2*%) as r—0+.

Conversely, assume (14) and fix an arbitrary measure g in R* satisfying (12). Then
U = v ® g satisfies

sup w(Q(r, x) x <t — r*, 1)) = o(r™**) as r -0+,

which implies that u = & fulfils (3) (compare Remark 5 and Lemma 4 in [3] and
note that the derivatives of u have zero limits at infinity). To make the proof complete
it remains to observe that (4) and (14) are equivalent for « € (0, 1).

Remark 3. The assertion of the theorem (but not that of Remark 1) remains valid
if ois replaced by O simultaneously in (4) and in the relation (3) occurring in the
definition of a-admissibility (compare also [4]), provided « > 0.

We shall now complete the detailed proof of the condition for continuity of the
heat potential that has been useful in the course of the proof of the theorem.

Proposition. The heat potential &u corresponding to a measure pin R™*1 s finite
and continuous on R™*! if and only if

a—- o x,t

(15) lim sup-[wy(A(x, t,c))de =0.

Proof. Put for a =2 0
&, =min(a, &), &.u(x,1) =I Ex — & t=r1)du(¢, 7).
Rm+l

For any x,€ R™ and t > ¢, the estimate

(16) S 1) = [4n(t — 0] u{{[xor 1o]})

shows that u({[xo, tc]}) = O whenever &y is locally bounded. Suppose now that &u
is finite and continuous. Then &,(x — &, t — 1) = &,(xo — &, to — 7) for p-almost
every [&,t] e R™*! (i.e. for every [&, t] + [xo, to]) as [x, f] = [xo, to), 80 that &,u
is continuous on R™*!, Since &,4 » uasa » o we conclude from Dini’s theorem
(which may be applied to the Aleksandrov compactification of R™**, because all the
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functions in question tend to zero at infinity) that

(17) . limsup [&u(x,t) — &u(x,1)] = 0.

a-+c Xx,t

Noting that, for fixed [x,t] e R™*!, 8(x — &t — 1) — 8 (x — &, t — 1) vanishes
outside A(x, t, @) and equals &(x — &, t — 1) — a for [£, t] € A(x, 1, a) we get

Ex(x, 1) — .u(x,t) = [6(x - ¢t —1)— a]du(t,7) =

A(x,t,a)

= J.:It({[f, t]eA(x,t,a); &(x — & t —1)>a + c})dc = Jmu(A(x, t,c))dc .

The equality '

(18) Eu(x, 1) — Epu(x, 1) = -[mp(A(x, t, ¢))dc

together with (17) yields (15). Conversely, assume (15). In view of (18), &,u » &u
uniformly as a » o. Since the functions &,u are bounded, the same holds of &u
and (16) shows that p does not charge points. As we have seen above, this implies
the uniform continuity of &,u and, consequently, of &u as well.

Remark 4. If v is a measure in R™ and m = 2, then we denote by
Us(x) = f o — & an®)
Rm .

its Newtonian (in the case m > 2) or logarithmic (in the case m = 2) potential cor-
responding to the kernel

. [x2~™ if m>2,
o) = \logi if m=2.
[+
If @ €0, 1), then v satisfies (4) if and only if ‘
(19) Uvx) —UwWy) =of]x — y) as |x—y|->0+.

This assertion remains valid for & > 0 if o is replaced by O in (19) and (4) simulta-
neously (compare [5]—[9]).
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