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OF THE LAPLACE TRANSFORM

MiRroSLAV Sova, Praha
(Received February 28, 1977)

It is well-known that Widder’s theory [1] of representability by Laplace transform
of numerical functions gives necessary and sufficient conditions for the existence of
originals of certain classes. These conditions are especially simple for the class of
images of exponentially bounded measurable functions and we shall deal in the sequel
only with this type.

Widder’s theory was generalized to reflexive Banach spaces by MIYADERA [2] and
further results and generalizations to non-reflexive Banach spaces were obtained by
the author in [3] and [4].

All above mentioned results are of Widder’s type, i.e. they are based on the be-
havior of the derivatives of the Laplace images on the real halfaxis. But there are
also other sufficient conditions based on the behavior of the images on lines parallel
to the imaginary axis. In the sequel we shall show a simple way how to get also con-
ditions of complex character from Widder’s type theories.

For the sake of simplicity we restrict ourselves to reflexive spaces only because
Miyadera’s theorem [2] will be our basic tool. But it is easy to obtain in this way
also the corresponding results for the situations examined in [3] and [4].

1. We shall use the following notation: (1) R — the real number field, (2) R* — the
set of all positive real numbers, (3) (@, ) — the set of all real numbers greater
than o if ® € R, (4) C — the complex number field, (5) (Re z > w) — the set of all
complex numbers whose real part is greater than o if w e R, (6) M; —» M , — the
set of all mappings of the whole set M, into the set M,.

2. In the whole paper,

3. Functional analysis (including the theory of vector-valued functions) is used to
the extent of the first three chapters of [7], certain special subjects (e.g. I1.4, II1.3)
being omitted. The reader interested only in the numerical case needs nothing more
than the basic facts from the modern differential and integral calculus.
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4. Lemma. Let aeR, Je{z:Rez 2 a} > Eand ke {0,1,...}. If
() the function J is continuous on the set {z : Re z 2 a},
(B) the function J is analytic on the set {z : Re z > a}, .
(Y) thereisa K Z 0 so that | J(z)| < K(1 + |z|)"for everyzeC,Rez = a,
then

JP() = (_l)pl’_!Jm Jo+iB) 4
2t ) o (A —a —ippp*?

forevery A>aand pe{k + 1,k + 2,...}.

Proof. Letusfixa A > a.

Further, let K > 0 be chosen so that (y) holds.

By virtue of Cauchy’s integral theorem we obtain from () and (B) that (a sketch
will be helpful)

2% Gy — N J(a + ip)
(1) p! J (;L) J'—N (a +ip — ;t)p+1 dg +

JN J(a + 2N + ip) (M J(x+ 71 +iN)

dg +1i dn —
_n(x+2N +ip — 2p*! . o (@+n+iN — ap*! ik

_; N J(a + n —iN)
o @+ n—iN — AP+

forevery pe {0,1,...} and N > 34.
Using (), we obtain _
J(x + ip)

@ (a + if — Ap*1

for every pe R and pe{0,1,...}.
N J(@ + 2N + ip) N[+ (@ + 2N) + BAVATF
®) ,[ = K_[_N [(A — « + 2N)? + p*]e+Di2 df =

—n (@ + 2N +ip — 2)p*? dp
<[ [L+(@+2N) + N)PT g = 2NK[1 + ((« + 2N)* + N?*)'/7}
R (A —a+ 2N)P*! (A — a+ 2N)p*! ’

_ (1 + (@ + )72y
- ((}. - a)z & ﬁZ)(p+ 1)/2

N J(« + n + iN) -
o (@ +n+iN— Ap*!

2N [1 + ((a + n)z 4 NZ)I/Z]k . <
T o [(A+n —a)? + NJ@r2 0=
M+ (= + 2N)* + N)VPRE _ 2K[1 + ((« + 2N)* + N2
0 NP1 2 NP ’

<K
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M J(a + n — iN) an | < 2K[1 + ((« + 2N)* + N?)'/2]¢
(¢ +n +iN — 2)p*! = NP

for every pe {0, 1,...} and N > }4.

It follows from (2) that

(4) J- (a-;-]—(:‘ﬂt%)‘”i dp exists forevery pe{k + 1,k +2,...},

) _JetiB) g, 7 _JetiD)
(x + i — 2)P+! —w (@ +if — 2)pP*!
forevery pe{k + 1,k +2,...}.
Further, by (3) we obtain

N J(a + 2N + ip)

“N-oow 0 ’

N J(@ + n + iN)
o (@ +n+iN — 2P+t

d" “Now 0 ’

2N J(« + n — iN)
o (x+n—iN — 2yt

dr’ “Noow 0

forevery pe{k + 1,k + 2,...}.
The desired result follows from (1), (4), (5) and (6).

5. Proposition. Let M, @ be two nonnegative constants and F € (Re z > w) — E.
If the function F is analytic in the domain (Re z > w), then the following two
statements (A), (B) are equivalent:

(A) () for every a > w, there exist a ke{0,1,...} and a K 20 so that
IFG)| = KQ1 + Izl)" for every zeC, Re z > «,

(IT) for every « > w, there exists an 1€ {0, 1, ...} so that

1_ 2 F(oc+1ﬂ) dp
—w (1 —isB)
for every s > 0 and re{l +2,1+3,..}

() F(2) >0 (2> o0, 1> w);

(p) _
(B) IFP@)] < - ),,ﬂ

for every A > w and pe{0, 1, ...}.

=M
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Proof. (A) = (B). We first fix an arbitrary o« > o.

Now we choose k, I € {0, 1, ...} so that the assumptions A (), (II) hold.

Denoting J(z) = F(z) for ze C, Re z > a, we observe that according to (A) (I),
all assumptions of Lemma 4 are fulfilled and consequently we obtain

© F(a + if)
1 FO) = (-1 & ¢t g
0 = e
foreveryA > aand pe{k + 1,k + 2,...}.
Further, we write
(2) q = max(k, ).
It follows from (A) (II) and from (1) and (2) that
(= F(a+ip)
3 FOQ)| == —t V. df =
© ol =2 | [~ Gl et |
_n 1 Fari) ol M
G | (Y T
| —® 4 ‘
forevery A > aand pe{g + 1,9 + 2,...}.
Let us now define
( 1) g plat+1)
4 Fo(2) = T(u - PF () ap for 2> a
A

which is admissible according to (3).

Further, we obtain easily from (3) and (4) that

(5) FP(%) —( 1) J (p = 27 "F“‘“)(u) du forevery A>a and

pef{0, 1, ...,q} s
(6) F¢*V(A) = F*'(2) forevery A>a.

Now we are able to prove that

0 1R s ;2

P!
)',+1 forevery A>a and pe{0,1,...,q +1}.
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Indeed we see from (5) that

(8) FP(%) =j FP*D (u)dp forevery A>oa and pe{0,1,...,4}.

A

By (3) and (6)

!
©) |FE* D)) < g% for every 4> a.

Now (7) follows from (8) and (9) by a simple finite induction.

On the other hand, we see from (6) that F, — F is a polynomial. Further, by
assumption (A) (III) and by (7), Fo(4) — F(4) =, 0. Both these facts imply that

(10) Fo(A) = F(2) forevery A > a.

Since @ >  was chosen arbitrary, we see from (3), (7) and (10) that

!
(1) [Fo()| g(}\lv[# forevery « >w, A>a and pe{0,1,...}.
-

Now letting & — @, in (11) we obtain at once the desired property (B).

The proof of (A) = (B) is complete.
(B) = (A). We need the following relation

1 A—|A—2z|>,,,Rez forevery zeC, Rez>0.
P!

A>Rez

Indeed, we can write

A—]A—z| =4-[(A - Rez)* + (Imz)?]"? =

] 271/2 __
—i-(A-Rez)[1+ —I’l”—> =
A—Rez
271/2 2711/2
- i1 = |12 $ Rez|y 4 [IB2_ =
A — Rez A—Rez

A (Imz/(A-Rez))2 1 Imz 2711/2
-—c — ~ _ _da+Rez|1l4+(—2F .
2)o 1+ )2 A—Rez

Clearly the second member in the last term tends to Re z as A — oo. The first
tends to zero because

(Im/(A—Rez))? . 2
1 1 de < 2 Im z .
o 1+ )2 A— Rez

Hence (1) holds.
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According to (1), for every z € C, Re z > ', there exists 4(z) > o so that
(2 - A—w>|z -4 forevery A> A(z).
Because the function F is assumed analytic in the domain (Re z > ) we obtain

from (B) and (2) that
© (k)
3 Wl g s

© IF@l = | 5 28 -

k

M & (|z - A\
=M z — Af = =
Z:(,1. w)"“l | wkzo(l—w)
= M : = M forevery zeC,
).—a)l_z-/l l—w—lz—).l
A—ow
Rez>w and 4> A2).
Letting A — o0, we get from (1) and (3) that
4 ||F(z)||§——M—— forevery zeC, Rez > .
Rez — o

It is clear from (4) that the conditions (A) (I), (III) are fulfilled and it remains to
prove (A) (II).

Given a fixed @ > w, let us denote J(z) = F(z) for ze C, Re z 2 a, we see from
(4) that all assumptions of Lemma 4 are fulfilled with k = 0 and consequently we
obtain

©) ro = (- 2" T

forevery a>w, A>a and pe{l,2,...}.

dp

Writing A —a =sand p + 1 = rin (5) we obtain that
1 [ Fla+ lﬁ)
6 1)?
©) 2nf_w(1 — isp) # == (r - 1)'
forevery a>w, s>0 and re{23,...}.
It is now immediate that (B) and (6) give (A) (II) with [ = 0.
The proof of (B) = (A) is complete.

FC=U(s + a)

‘6. Auxiliary theorem (Miyadera [2], Widder [1] in the numerical case). Let M,
be two nonnegative constants and F € (w, ©) — E. If the space E is reflexive, then
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the following two statements (A), (B) are equivalent:

(A)  (I) the function F is infinitely differentiable on (w, o),
!
Mp! for every A > w and

@ [0 = g2

pe{0,1,...};

(B) there exists a function fe R* — E such that

(I) f is measurable on R*,

(I |f@| s Me** for almost all teR*,

0

(m) F(A) = Jw e ¥ f(t)dt for every 1> w.

7. Theorem. Let M, ® be two nonnegative constants and F € (Rez > w) » E.
If the space E is reflexive, then the following two statements (A), (B) are equivalent:
(A) (1) the function F is analytic in the domain (Re z > ),

(IT) for every a > w, there exist a ke{0,1,...} and a K 20 so that
|F(z)| < K(1 + |2|)* for every zeC, Re z > a,
(ITI)  for every a > w, there exists an 1€ {0, 1, ...} so that
ae [ ] =¥
forevery s >0 and re{l +2,1+3,...},
(IV) F(A4) >0 (2> o0, 1 > w);

(B) there exists a function fe R* — E such that
(I) f is measurable on R*,
(I) | f()]| £ Me“* for almost every teR*,
(1) j e"* f(r)dt = F(z) forevery zeC, Rez> .
0
Proof. Immediate consequence of Theorem 6 and Proposition 5.
8. Remark. In an analogous way as above, it is possible to get complex characteri-
zations of Laplace transforms of exponentially Lipschitzian and exponentially weakly
compactly bounded functions — cf. [3], [4] — and also of analogous types of in-

tegrable functions.
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In the case of exponentially Lipschitzian functions the reader obtains easily the
corresponding result from Theorem 4 of [3] by means of Proposition 5 which plays
the fundamental role in the relation between “real” and “complex” characteristic
properties of Laplace transform.

In the case of exponentially weakly compactly bounded functions, we apply
Theorem 13 of [4] but before applying Proposition 5, this must be somewhat modified.
Namely, we first choose a convex circled closed subset C of E and replace the
inequality in (A) (III) by

1 (= Fle+if)

— ——~>dfeC forevery a>w, s>0 and re{l+2,1+3, ..},
2n ) _, (1 — isp)y

and further (B) by

!
F(p)(,{)e_iF C forevery A>w and pe{0,1,...}.

(4 - @)

The proof of such a modified Proposition 5 proceeds without essential changes
and may be left to the reader.

9. Remark. The condition (A) (III) of Theorem 7 represents a weakening of clas-
sically known sufficient conditions of the type of absolute integrability of F over
lines parallel to imaginary axis, i.e. of the type

j |F(x +iB)] 4B < .
See, for example, [5, Chap. VII] or [6].

10. Remark. It is clear that the inequality in (A) (III) of Theorem 7 cannot be
replaced by

1 [ |F@+ip)|
2n f_,, |(x - isg)| h=M

foreverys >0andre{l +2,1+3,..},

since this implies, by Fatou’s lemma,
1= ) .
1 f |F( + iB)| dB < M
2n ) _,

and this inequality is essentially less general than that of (A) (III) as may be seen
from the function F(z) = 1/z.
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