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Let n : E > M be a fibre bundle. Let J'E be the first prolongation of E, i.e. J'E
is the set of 1-jets of all local cross-sections of E. Let us recall (see for example [1],
[4]) that a connection on E is a global cross-section I' : E — J'E, that is a distribu-
tion of horizontal tangent subspaces I',, where T,E = T,E, ® I',, u€ E, nu = x.
In this paper we find some relations between forms and connections on E. Our
considerations are in the category C*.

1. Let M be a differentiable manifold. Let L(M) or A(M) or S(M) be the algebra
of all forms or of all antisymmetric or of all symmetric forms, respectively, on M.
Let  : TM —» TM or ¢ : A"*'TM — TM be a vector bundle morphism or an anti-
symmetric vector bundle morphism, respectively. Let @ or ¢ be a form or an anti-
symmetric form, respectively, of degree p on M. Let f be a function on M. Put

D,f=0, df=0,
(Dy0) (X1 .. X,) = é:lw(Xl, VX0 X)),

(de) (X1 s X4 p) = Z; sgn 6e[ (X1 ..oy Xor41)s -+ s Xotr4p))
where S is the set of all such permutations of the set {1, B p} that ol < ...
o<o(r+1)0(r+2)<...<or + p).
Let us recall the following properties.

Lemma 1. The mapping D, : @ - Dywisa diﬁeréntiation of degree 0 on algebras
L(M), A(M), S(M).

Lemma 2. The mapping d, : ® - d,w is a differentiation of degree r on A(M),
that is

dv(wl A wz) = d,,a)l A (02 + (—1)" (Dl A d¢w2 )
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where w, is a p-form on M; i.e., if r is even or uneven, then d, is a differentiation
or antidifferentiation of degree r on A(M).
For ¢ e A(M) dze = Dye.

2. Let n : E > M be a fibre bundle. Let (x', y*) or (x%, )%, %), i = 1,...,dim M,
a=1,...,dim E,, be a local chart on E or on J'E, respectively. Let a connection
I' : E - J'E be locally given by (x%, y*) - (x%, y*% »} = ai(x, y)). Denote by I', the
horizontal tangent subspace determined by I’ (u), ueE. Then T.E=T,® T,E,,
x = nu. There are two canonical projections v : T,E —» T,E,, h: T,E - I', and we
have two canonical vector bundle morphisms h:TE - TE and v: TE — VTE,
where VTE denotes the fibre bundle of all vertical tangentvectors on E. Let w be a form
on E. Denote by h*w and v*w the forms wh and wv, respectively.

Proposition 1. Let o be a form of degree p on E. Then
(1) Dyw + Do = pw,

v*D,0 = p(v*w) = D,(v*w),

h*Dyw = p(h*w) = Dy(h*w).

o(Xy, .., X,) = o(hX, + 0Xy, X, .., X,) = 0(hXy, ..., X,) + o(xX,, ..., X))

......................................................................

By summation we get Dyw + D@ = pw. Then v*D,0 = p(v*w), h*Dyw = p(h*w)
and by the definitions of D,, D, we get D,(v*w) = p(v*w), Dy(h*w) = p(h*w).
Since v. h = h.v = 0, the definitions of D, and D, immediately yield

Proposition 2. The composition of D, and D, is commutative, i.e. D,. D, = D, . D,

A form w of order p on E will be said to be I'-vertical or total I'-vertical, if h*w = 0
orif w(X,, ..., X,) = 0 when at least one vector of the set {X 1> -+-» X} is horizontal.
This implies

Proposition 3. The form v*w or D,w is total I'-vertical or I'-vertical, respectively.

Proposition 4. If a form o is total I'-vertical then D,w = 0 and D,w = pw.

It is easy to see that  — h*w is I'-vertical.

Let us recall (see [2]) that a form o is semi-basic if w(Xy,...,X,) = 0 when
die{l,...,p} : X, € VTE. Therefore an antisymmetric p-form is semi-basic if and
only if iyw = O for any vertical tangent vector Y, where i,w denotes the contraction
of @ by Y. Locally, a form w is semi-basic if

w = ah".‘pdxh ® “es ® dxip .
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If w is semi-basic then D,w = 0 and D,w = pw.
An antisymmetric p-form on E will be said to be quasi-semi-basic if iyw is semi-
basic for any Ye VTE. Locally, o is quasi-semi-basic if and only if

3) ow=a

By the definition of Dy, D, we have D (dx’) = 0, D,(dy*) = dy* — a%dx’, D,(dx’) =
= dx', Dy(dy*) = a’dx’. This gives

i dx" A ... A dX'P 4 a

it..dp

dx™ A ... A dx't A dy*t.

tenip—1a

Proposition 5. If w is quasi-semi-basic but not semi-basic then D,w and D,w are
quasi-semi-basic but not semi-basic.
Recall (see for example [1], [4]) that the curvature form of I' is an antisymmetric
2-morphism
®:TEQ® TE - TE

&(X,, Y,) = o([hX, hY]),

where [hX, hY] is the Lie bracket of such fields X, Yon E that X, € X, Y,e Y,u € E.
Locally

) o= L[( 20k _ 295 g5 0% 045 g g axt| @ 2 =
21\ ayf oy? ox)  oxk 0y*

= JA5dx7 A dx* @ — .

oy
The mapping dgy is an antidifferentiation of the first degree and
(5) do(dx’) = 0, dg(dy*) = 3A45dx’ A dx*.
Proposition 6. Let ¢ be the curvature form of the connection I'. Then dgdy = 0.
Proof. The mapping dy being an antidifferentiation of A(E) with the property
dof = 0 for any function f on E, it is determined by its action on A'(E). Using (5)

we get our assertion.
Denote H, = {®(X, Y): X, Ye T,E}.

Proposition 7. Let  be a (p — 1)-form on E. Let iyw = 0 for any vector tangent
field, the value of which lie in the spaces H,. Then dgw = 0.

Proof. dew(X,, ..., X,41) = ), sgn oa(D(X,,, Xs,), Xss 00 X, ) =

s Aspiq
oeS

=) sgn ori,,,(xwxsz)w(Xh, .--s X,,,,)- This completes our proof.

oeS

Quite analogously, if iyw = 0 for any horizontal tangent vector Y then w € Ker D,
Let d denote the exterior differentiation on A(E). Then d = D,d — dD, is an anti-
differentiation of degree 1 on A(E). By Proposition 3 we get

) W*d = —h*dD, .
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Proposition 8. Let w be a p-form on E. Then
s h*(dw) = —h*dyw .
Proof. h*dD,w(X,, ..., X,+;) = dDw(hX,, ..., hX,;,) =
N P
= = Z(—l)‘+‘,D”w([hXi, hXJ], th, ey h.Xi, ey hXj, ey th+1) ==
i<j

N\ N
= - izj(— 1) Ja(o[hX s, hX ] hX gy ooy BX ooy By oy BX i y) =

N N
- ;;,(—1).-_1+j_2w(¢(hx,., hX ), hX gy ooy WXy oy hX s ooy hX ) =

= dew(hXy, ..., hX ,4,) = h*dew(X, ..., X,+1), where the symbol ~ indicates
that a vector X is dropped. The relation (6) completes our proof.

Proposition 9. If the form D,w is closed then dw is I'-vertical. If the form w is
closed then D, is closed if and only if dw = 0.
Proof follows from the definition of d.

3. In the sequel we are going to study in detail some relations between bilinear
forms and connections on E. Let @ = a;dx’ @ dx’ + a,dy* ® dx' + a,dx' ®
® dy* + a,zdy* @ dy*® be a bilinear form on E. Then D,w is quasi-semi-basic. Let
Y = b*(0/0y") be a vertical tangent field. Then

iyw = a,bdx' + a,b*dy?, h*(iyw) = (a, + agaf) b*dx’.

The form w will be said to be associated with a connection I' on E if h*iyw = 0 for
any vertical tangent vector Y. Locally, a bilinear form o is associated with a connec-
tion I' on E if and only if

)] A + apaf =0.

Let °T, = {X € T,E : iy o(X) = O for any Ye T,E,,, nu = m}. The bilinear form w
on E will be called connecting if the distribution of the tangent subspaces “T,
determineds a connection on E. If w is connecting then the connection of the tangent
subspaces “T, will be denoted by “I".

Asdim {iyw : Ye T,E,} < dim E,,, we have dim “T, > dim M. Then the mapping
u — “T, is a connection if and only if the assertion

(ZET.E, A Ze°T)=>Z =0

is true for any u € E. Locally, let Z = ¢%(/dy"). Then Z € °T,, if and only if iy o(Z) =
= O for any Ye T,E,, i.c. if and only if a,5¢* = 0. Then w is connecting if and only if
det (a,) * O, i.e. if and only if the restriction of @ to vertical tangent vectors is
a regular form. This yields
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Proposition 10. Let w be connecting. Then w is associated with a connection I' if
and only if I' = “I. '

Let us recall that if w is quasi-semi-basic then it is not connecting. If w is a 2-form
(i.e. antisymmetric of the second order) then it can be connecting only if dim E,
is even.

Proposition 11. Let w be a connecting 2-form on E. Then the connection “I" is
integrable if and only if

h*(Lyw — iydw) = 0
for any vertical tangent field Y.

Proof. By definition “I is integrable if and only if h*(diyw) = 0 for any vertical
tangent field Y. The known relation Ly = iyd + diy completes our proof.

Let w or I' be a bilinear form or a connection, respectively, on E. Denote by
Wyg, Wyg, Wiz, Wy the following forms:

0 o(X,Y) = w(hX,Y), ,(X,Y)=o0(X,Y),
wo (X, Y) = o(X, hY), we,(X,Y) = o(X, vY),
0,(X, Y) = o(hX,vY), 0,(X,Y) = o(vX,hY).

Lemma 3. Let w or I be a bilinear form or a connection, respectively, on E. Then

(8) Wi = h*o + w,,, Wy = V*0 + wy,,
Wy = h*® + W, wo; = v*0 + @y,
Dyw = w0 + oy, D,w = w30 + o, ,

D,w — Do = 2(h*w — v*w), o = h*o + D,D,w + v*w,

D,Dyw = w;, + w;;, D,Dyw = D0 + 2v*w,
Dhth = th + 2h*w . ‘
Proof. wo(X,Y) = w(hX, hY + vY) = w(hX, hY) + o(hX,vY) = h* o(X, Y) +

+ w;,(X, Y). The other relations can be proved analogously.

Proposition 12. A bilinear form w is associated with a connection I if and only if
w21 = 0.

Proof. Let w,; = 0. Then h*iy o(X) = iy o(hX) = (Y, hX) = w,,(Y,X) =0
for any vertical tangent vector Y. Let w be associated with I'. Then w,(Y, X) =
= w(vY, hX) = h*i,y o(X) = 0.

Corollary. The forms wg,, @14, @2, h*®, v*@ are associated with I.

Lemma 4. Let w be either antisymmetric or symmetric. Then w,, = 0 if and
only if w,, = 0.
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Proof is obvious.

Proposition 13. Let w be either antisymmetric or symmetric. Then w is associated
with a connection I' if and only if Dyw is semi-basic.

Proof. wy(Y,X) = o(vY, hX) = D,w(vY, X) = i,yD,w(X). Then the definition
of the semi-basic form and Proposition 12 complete our proof.

Proposition 14. Let o be either antisymmetric or symmetric. Then w is associated
with I if and only if izw is semi-basic for any horizontal vector Z.

Proof. ,(X,Y) = w(hX, vY) = ijxw(vY). Proposition 12 and Lemma 4
complete the proof.
By the relation (8) we get

Proposition 15. Let w be either antisymmetric or symmetric and associated with I'.
Then
D,Djw =0, Dw=2*w, Dw=2h*w, o=h*o+ v*o.

Corollary. If w is associated with I', I'-vertical and either antisymmetric or sym-
metric then Dy = 2"w.

Lemma 5. Let w or I' be a bilinear form or a connection, respectively, on E.
Then

(w = h“‘w)“ = (Dvw)Zl = (th)n = (w20)21 = (wm)zn = Wy .

Proof. (o — h."‘co)zl (X, Y) = (0 — h*@) (vX, hY) = 0(vX, hY) = 0,(X, Y).
The other relations can be proved analogously.

Corollary of Lemma 5 and Proposition 12. Let @ or I' be a bilinear form or a con-
nection respectively on E. Then the forms w, ® — h*w, D,w, Dy, w,,, Wy, are
associated with I if and only if one of them is associated with I'.

Proposition 16. Let w be a bilinear connecting form on E. Let I' be a connection
on E. Then the forms w — h*w, D,w, w,q, ®Wg,, V*w determined by I' are con-
necting and T = I = ""°T. '

Proof. Letlocally = a;;dx’ ® dx/ + a,dy* ® dx’ + a,dx' @ dy* + a,dy* ®
® dy’. Let _

Qe {D,w, W30, Wgy, © — h*w, v*w} .

Then Q = Cydx' ® dx/ + Cudy* ® dx' + Cidx’ @ dy® + cady* ® dy? where
¢ % 0is a constant. As det (ca,;) + 0 we conclude that Q is connecting. By Proposi-
tion 10 and Corollary of Proposition 12, I' = “?°[" = **“I".
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Proposition 17. Let w be a bilinear connecting form on E. Let ® — h*w, D,w, w,,
be determined by “I'. Then

or — w—h'wr — Dowr = @0

Proof. The form w is associated with “I'. Therefore by Lemma 5 and Proposition
12 the forms w — h*w, D,w, w,, are associated with ®I". Then Propositions 16 and
10 complete our proof.

Proposition 18. Let w be a connecting 2-form on E. Then a connection I" on E is
integrable if and only if dgw is semi-basic.

Proof. Let us recall that I' is integrable if and only if the curvature form @ of I’
vanishes, i.e. if 4; = 0. Let @ = }a;;dx" A dx) + a,dy* A dx' + Ya,dy* A dy”.
Then dow = a,A4dx) A dx* A dx' + a,pA%dx) A dx* A dy? is semibasic if and
only if a,pA% = 0. As det (a,4) * 0, it holds a,z4% = 0 if and only if A%, = 0.

Remark. Using the local expresion of dew we obtain: If w is a connecting 2-form
and I is a connection on E then dgw is semi-basic if and only if dpw = 0.

Let Q be a ternary from on E. Let I' be a connection on E. Denote by Q,,, the
form determined by ‘

Q11:(X, Y, Z) = Q(hX, hY, vZ) .

Lemma 6. Let w be a connecting 2-form on E. Let I' be a connection on E. Let ¢
be the curvature form of I'. Then dew = 0 if and only if (dew);1, = 0.

Proof. Locally, (dgw)y;, = —apd5aldx’ A dx* A dx' + a,pA5dx) A dx* A
A dy®. This yields our assertion.

Proposition 19. Let w be a 2-form on E. Then
(d(v*w))uz = —(dow)uz
for any connection I' on E.
Proof. (dv*w),;, (X, Y, Z) = dv*w(hX, hY, vZ) = hX(v*e(hY, vZ)) —
— hY(v*o(hX, vZ)) + vZ(v*w(hX, hY)) — v*@([hX, hY], vZ) + v*o([X, vZ], hY) —
— v*o([hY, vZ], hX) = —o(v[hX, hY], vZ) = —(dow);12(X, Y, Z).

Corollary of Proposition 18, 19 and Lemma 6. Let w be a connecting 2-form on E.
Then a connection I is integrable if and only if (dv*w),,, = 0.

Proposition 20. Let » be a connecting 2-form on E. Then the connection “I is in-
tegrable if and only if

(dd,,w)uz = 0 .
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