

Werk

Label: Article Jahr: 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON FORMS AND CONNECTIONS ON FIBRE BUNDLES

ANTON DEKRÉT, Zvolen

(Received October 20, 1977)

Let $\pi: E \to M$ be a fibre bundle. Let J^1E be the first prolongation of E, i.e. J^1E is the set of 1-jets of all local cross-sections of E. Let us recall (see for example [1], [4]) that a connection on E is a global cross-section $\Gamma: E \to J^1E$, that is a distribution of horizontal tangent subspaces Γ_u , where $T_uE = T_uE_x \oplus \Gamma_u$, $u \in E$, $\pi u = x$. In this paper we find some relations between forms and connections on E. Our considerations are in the category C^{∞} .

1. Let M be a differentiable manifold. Let L(M) or $\Lambda(M)$ or S(M) be the algebra of all forms or of all antisymmetric or of all symmetric forms, respectively, on M. Let $\psi: TM \to TM$ or $\varphi: \bigwedge^{r+1}TM \to TM$ be a vector bundle morphism or an antisymmetric vector bundle morphism, respectively. Let ω or ε be a form or an antisymmetric form, respectively, of degree p on M. Let f be a function on M. Put

$$\begin{split} D_{\psi}f &= 0 \;, \quad d_{\varphi}f = 0 \;, \\ \left(D_{\psi}\omega\right)\left(X_{1}, \ldots, X_{p}\right) &= \sum_{i=1}^{p}\omega\left(X_{1}, \ldots, \psi X_{i}, \ldots, X_{p}\right), \\ \left(d_{\varphi}\varepsilon\right)\left(X_{1}, \ldots, X_{r+p}\right) &= \sum_{\sigma \in S}\operatorname{sgn} \; \sigma\varepsilon\left[\varphi\left(X_{\sigma 1}, \ldots, X_{\sigma(r+1)}\right), \ldots, X_{\sigma(r+p)}\right] \end{split}$$

where S is the set of all such permutations of the set $\{1, ..., r+p\}$ that $\sigma 1 < ... < \sigma(r+1)$; $\sigma(r+2) < ... < \sigma(r+p)$.

Let us recall the following properties.

Lemma 1. The mapping $D_{\psi}: \omega \to D_{\psi}\omega$ is a differentiation of degree 0 on algebras L(M), $\Lambda(M)$, S(M).

Lemma 2. The mapping $d_{\varphi}: \omega \to d_{\varphi}\omega$ is a differentiation of degree r on $\Lambda(M)$, that is

$$d_{\varphi}(\omega_1 \, \wedge \, \omega_2) = d_{\varphi}\omega_1 \, \wedge \, \omega_2 \, + \, (-1)^{pr} \, \omega_1 \, \wedge \, d_{\varphi}\omega_2 \, ,$$

where ω_1 is a p-form on M; i.e., if r is even or uneven, then d_{φ} is a differentiation or antidifferentiation of degree r on $\Lambda(M)$.

For $\varepsilon \in \Lambda(M)$ $d_{\psi}\varepsilon = D_{\psi}\varepsilon$.

2. Let $\pi: E \to M$ be a fibre bundle. Let (x^i, y^α) or $(x^i, y^\alpha, y^\alpha_i)$, $i = 1, ..., \dim M$, $\alpha = 1, ..., \dim E_x$, be a local chart on E or on J^1E , respectively. Let a connection $\Gamma: E \to J^1E$ be locally given by $(x^i, y^\alpha) \to (x^i, y^\alpha, y^\alpha_i = a_i(x, y))$. Denote by Γ_u the horizontal tangent subspace determined by $\Gamma(u)$, $u \in E$. Then $T_uE = \Gamma_u \oplus T_uE_x$, $x = \pi u$. There are two canonical projections $v: T_uE \to T_uE_x$, $h: T_uE \to \Gamma_u$ and we have two canonical vector bundle morphisms $h: TE \to TE$ and $v: TE \to VTE$, where VTE denotes the fibre bundle of all vertical tangent vectors on E. Let ω be a form on E. Denote by $h^*\omega$ and $v^*\omega$ the forms ωh and ωv , respectively.

Proposition 1. Let ω be a form of degree p on E. Then

(1)
$$D_h\omega + D_v\omega = p\omega ,$$

$$v^*D_v\omega = p(v^*\omega) = D_v(v^*\omega) ,$$

$$h^*D_h\omega = p(h^*\omega) = D_h(h^*\omega) .$$

Proof.

$$\omega(X_{1},...,X_{p}) = \omega(hX_{1} + vX_{1},X_{2},...,X_{p}) = \omega(hX_{1},...,X_{p}) + \omega(xX_{1},...,X_{p})$$

$$\omega(X_{1},...,X_{p}) = \omega(X_{1},...,X_{p-1},hX_{p} + vX_{p}) = \omega(X_{1},...,hX_{p}) + \omega(X_{1},...,vX_{p}).$$

By summation we get $D_h\omega + D_v\omega = p\omega$. Then $v^*D_v\omega = p(v^*\omega)$, $h^*D_h\omega = p(h^*\omega)$ and by the definitions of D_v , D_h we get $D_v(v^*\omega) = p(v^*\omega)$, $D_h(h^*\omega) = p(h^*\omega)$. Since $v \cdot h = h \cdot v = 0$, the definitions of D_v and D_h immediately yield

Proposition 2. The composition of D_v and D_h is commutative, i.e. D_v . $D_h = D_h$. D_v . A form ω of order p on E will be said to be Γ -vertical or total Γ -vertical, if $h^*\omega = 0$ or if $\omega(X_1, ..., X_p) = 0$ when at least one vector of the set $\{X_1, ..., X_p\}$ is horizontal. This implies

Proposition 3. The form $v^*\omega$ or $D_v\omega$ is total Γ -vertical or Γ -vertical, respectively.

Proposition 4. If a form ω is total Γ -vertical then $D_h\omega = 0$ and $D_v\omega = p\omega$. It is easy to see that $\omega - h^*\omega$ is Γ -vertical.

Let us recall (see [2]) that a form ω is semi-basic if $\omega(X_1, ..., X_p) = 0$ when $\exists i \in \{1, ..., p\} : X_i \in VTE$. Therefore an antisymmetric p-form is semi-basic if and only if $i_y \omega = 0$ for any vertical tangent vector Y, where $i_y \omega$ denotes the contraction of ω by Y. Locally, a form ω is semi-basic if

$$\omega = a_{i_1...i_p} dx^{i_1} \otimes \ldots \otimes dx^{i_p}.$$

If ω is semi-basic then $D_v\omega = 0$ and $D_h\omega = p\omega$.

An antisymmetric p-form on E will be said to be quasi-semi-basic if $i_Y\omega$ is semi-basic for any $Y \in VTE$. Locally, ω is quasi-semi-basic if and only if

(3)
$$\omega = a_{i_1...i_p} dx^{i_1} \wedge ... \wedge dx^{i_p} + a_{i_1...i_{p-1}\alpha} dx^{i_1} \wedge ... \wedge dx^{i_{p-1}} \wedge dy^{\alpha}.$$

By the definition of D_h , D_v we have $D_v(dx^i) = 0$, $D_v(dy^\alpha) = dy^\alpha - a_i^\alpha dx^i$, $D_h(dx^i) = dx^i$, $D_h(dy^\alpha) = a_i^\alpha dx^i$. This gives

Proposition 5. If ω is quasi-semi-basic but not semi-basic then $D_v\omega$ and $D_h\omega$ are quasi-semi-basic but not semi-basic.

Recall (see for example [1], [4]) that the curvature form of Γ is an antisymmetric 2-morphism

$$\Phi: TE \otimes TE \to TE$$

$$\Phi(X_u, Y_u) = v(\lceil hX, hY \rceil),$$

where [hX, hY] is the Lie bracket of such fields X, Y on E that $X_u \in X$, $Y_u \in Y$, $u \in E$. Locally

(4)
$$\Phi = \frac{1}{2} \left[\left(\frac{\partial a_k^{\alpha}}{\partial y^{\beta}} a_j^{\beta} - \frac{\partial a_j^{\alpha}}{\partial y^{\beta}} a_k^{\beta} + \frac{\partial a_k^{\alpha}}{\partial x^j} - \frac{\partial a_j^{\alpha}}{\partial x^k} \right) dx^j \wedge dx^k \right] \otimes \frac{\partial}{\partial y^{\alpha}} = \frac{1}{2} A_{jk}^{\alpha} dx^j \wedge dx^k \otimes \frac{\partial}{\partial y^{\alpha}}.$$

The mapping d_{Φ} is an antidifferentiation of the first degree and

(5)
$$d_{\mathbf{\Phi}}(dx^i) = 0 , \quad d_{\mathbf{\Phi}}(dy^{\alpha}) = \frac{1}{2} A^{\alpha}_{jk} dx^j \wedge dx^k .$$

Proposition 6. Let Φ be the curvature form of the connection Γ . Then $d_{\Phi}d_{\Phi}=0$.

Proof. The mapping d_{Φ} being an antidifferentiation of $\Lambda(E)$ with the property $d_{\Phi}f = 0$ for any function f on E, it is determined by its action on $\Lambda^{1}(E)$. Using (5) we get our assertion.

Denote
$$H_u = \{ \Phi(X, Y) : X, Y \in T_u E \}.$$

Proposition 7. Let ω be a (p-1)-form on E. Let $i_Y\omega=0$ for any vector tangent field, the value of which lie in the spaces H_u . Then $d_{\Phi}\omega=0$.

Proof.
$$d_{\Phi}\omega(X_1,...,X_{p+1}) = \sum_{\sigma \in S} \operatorname{sgn} \sigma\omega(\Phi(X_{s_1},X_{s_2}),X_{s_3},...,X_{s_{p+1}}) = \sum_{\sigma \in S} \operatorname{sgn} \sigma i_{\Phi(X_{s_1},X_{s_2})}\omega(X_{s_3},...,X_{s_{p+1}})$$
. This completes our proof.

Quite analogously, if $i_Y\omega=0$ for any horizontal tangent vector Y then $\omega\in \operatorname{Ker} D_h$. Let d denote the exterior differentiation on $\Lambda(E)$. Then $\overline{d}=D_vd-dD_v$ is an anti-differentiation of degree 1 on $\Lambda(E)$. By Proposition 3 we get

$$h^*\overline{d} = -h^*dD_v.$$

Proposition 8. Let ω be a p-form on E. Then

$$h^*(d\omega) = -h^*d_{\sigma}\omega$$
.

Proof.
$$h^*dD_v\omega(X_1, ..., X_{p+1}) = dD_v\omega(hX_1, ..., hX_{p+1}) =$$

$$= -\sum_{i < j} (-1)^{i+j} D_v\omega([hX_i, hX_j], hX_1, ..., hX_i, ..., hX_j, ..., hX_{p+1}) =$$

$$= -\sum_{i < j} (-1)^{i+j} \omega(v[hX_i, hX_j], hX_1, ..., hX_i, ..., hX_j, ..., hX_{p+1}) =$$

$$= \sum_{i < j} (-1)^{i-1+j-2} \omega(\Phi(hX_i, hX_j), hX_1, ..., hX_i, ..., hX_j, ..., hX_{p+1}) =$$

$$= d_{\Phi}\omega(hX_1, ..., hX_{p+1}) = h^*d_{\Phi}\omega(X_1, ..., X_{p+1}), \text{ where the symbol } \land \text{ indicates that a vector } \hat{X} \text{ is dropped. The relation } (6) \text{ completes our proof.}$$

Proposition 9. If the form $D_v\omega$ is closed then $d\omega$ is Γ -vertical. If the form ω is closed then $D_v\omega$ is closed if and only if $d\omega = 0$.

Proof follows from the definition of \bar{d} .

3. In the sequel we are going to study in detail some relations between bilinear forms and connections on E. Let $\omega = a_{ij}dx^i \otimes dx^j + a_{\alpha i}dy^{\alpha} \otimes dx^i + a_{i\alpha}dx^i \otimes \otimes dy^{\alpha} + a_{\alpha\beta}dy^{\alpha} \otimes dy^{\beta}$ be a bilinear form on E. Then $D_h\omega$ is quasi-semi-basic. Let $Y = b^{\alpha}(\partial/\partial y^{\alpha})$ be a vertical tangent field. Then

$$i_{\mathbf{Y}}\omega = a_{\alpha i}b^{\alpha}dx^{i} + a_{\alpha\beta}b^{\alpha}dy^{\beta}, \quad h^{*}(i_{\mathbf{Y}}\omega) = (a_{\alpha i} + a_{\alpha\beta}a_{i}^{\beta})b^{\alpha}dx^{i}.$$

The form ω will be said to be associated with a connection Γ on E if $h^*i_Y\omega = 0$ for any vertical tangent vector Y. Locally, a bilinear form ω is associated with a connection Γ on E if and only if

$$a_{\alpha i} + a_{\alpha \beta} a_i^{\beta} = 0.$$

Let ${}^{\omega}T_{u} = \{X \in T_{u}E : i_{Y} \omega(X) = 0 \text{ for any } Y \in T_{u}E_{m}, \pi u = m\}$. The bilinear form ω on E will be called connecting if the distribution of the tangent subspaces ${}^{\omega}T_{u}$ determineds a connection on E. If ω is connecting then the connection of the tangent subspaces ${}^{\omega}T_{u}$ will be denoted by ${}^{\omega}\Gamma$.

As dim $\{i_Y\omega: Y \in T_uE_m\} \le \dim E_m$, we have dim ${}^{\omega}T_u \ge \dim M$. Then the mapping $u \to {}^{\omega}T_u$ is a connection if and only if the assertion

$$(Z \in T_u E_m \wedge Z \in {}^{\omega}T_u) \Rightarrow Z = 0$$

is true for any $u \in E$. Locally, let $Z = c^{\alpha}(\partial/\partial y^{\alpha})$. Then $Z \in {}^{\omega}T_{u}$ if and only if $i_{Y} \omega(Z) = 0$ for any $Y \in T_{u}E_{m}$, i.e. if and only if $a_{\alpha\beta}c^{\alpha} = 0$. Then ω is connecting if and only if det $(a_{\alpha\beta}) \neq 0$, i.e. if and only if the restriction of ω to vertical tangent vectors is a regular form. This yields

Proposition 10. Let ω be connecting. Then ω is associated with a connection Γ if and only if $\Gamma = {}^{\omega}\Gamma$.

Let us recall that if ω is quasi-semi-basic then it is not connecting. If ω is a 2-form (i.e. antisymmetric of the second order) then it can be connecting only if dim E_x is even.

Proposition 11. Let ω be a connecting 2-form on E. Then the connection ${}^{\omega}\Gamma$ is integrable if and only if

$$h^*(L_v\omega - i_vd\omega) = 0$$

for any vertical tangent field Y.

Proof. By definition ${}^{\omega}\Gamma$ is integrable if and only if $h^*(di_Y\omega) = 0$ for any vertical tangent field Y. The known relation $L_Y = i_Y d + di_Y$ completes our proof.

Let ω or Γ be a bilinear form or a connection, respectively, on E. Denote by $\omega_{10}, \omega_{20}, \omega_{12}, \omega_{21}$ the following forms:

$$\begin{split} &\omega_{10}(X, Y) = \omega(hX, Y), & \omega_{20}(X, Y) = \omega(vX, Y), \\ &\omega_{01}(X, Y) = \omega(X, hY), & \omega_{02}(X, Y) = \omega(X, vY), \\ &\omega_{12}(X, Y) = \omega(hX, vY), & \omega_{21}(X, Y) = \omega(vX, hY). \end{split}$$

Lemma 3. Let ω or Γ be a bilinear form or a connection, respectively, on E. Then

(8)
$$\omega_{10} = h^*\omega + \omega_{12}, \qquad \omega_{20} = v^*\omega + \omega_{21},$$

$$\omega_{01} = h^*\omega + \omega_{21}, \qquad \omega_{02} = v^*\omega + \omega_{12},$$

$$D_h\omega = \omega_{10} + \omega_{01}, \qquad D_v\omega = \omega_{20} + \omega_{02},$$

$$D_h\omega - D_v\omega = 2(h^*\omega - v^*\omega), \qquad \omega = h^*\omega + D_vD_h\omega + v^*\omega,$$

$$D_vD_h\omega = \omega_{12} + \omega_{21}, \qquad D_vD_v\omega = D_v\omega + 2v^*\omega,$$

$$D_hD_h\omega = D_h\omega + 2h^*\omega.$$

Proof. $\omega_{10}(X,Y) = \omega(hX,hY+vY) = \omega(hX,hY) + \omega(hX,vY) = h^* \omega(X,Y) + \omega_{12}(X,Y)$. The other relations can be proved analogously.

Proposition 12. A bilinear form ω is associated with a connection Γ if and only if $\omega_{21} = 0$.

Proof. Let $\omega_{21} = 0$. Then $h^*i_Y \omega(X) = i_Y \omega(hX) = \omega(Y, hX) = \omega_{21}(Y, X) = 0$ for any vertical tangent vector Y. Let ω be associated with Γ . Then $\omega_{21}(Y, X) = \omega(vY, hX) = h^*i_{vY} \omega(X) = 0$.

Corollary. The forms ω_{02} , ω_{10} , ω_{12} , $h^*\omega$, $v^*\omega$ are associated with Γ .

Lemma 4. Let ω be either antisymmetric or symmetric. Then $\omega_{21}=0$ if and only if $\omega_{12}=0$.

Proof is obvious.

Proposition 13. Let ω be either antisymmetric or symmetric. Then ω is associated with a connection Γ if and only if $D_h\omega$ is semi-basic.

Proof. $\omega_{21}(Y,X) = \omega(vY,hX) = D_h\omega(vY,X) = i_{vY}D_h\omega(X)$. Then the definition of the semi-basic form and Proposition 12 complete our proof.

Proposition 14. Let ω be either antisymmetric or symmetric. Then ω is associated with Γ if and only if $i_z\omega$ is semi-basic for any horizontal vector Z.

Proof. $\omega_{12}(X, Y) = \omega(hX, vY) = i_{hX}\omega(vY)$. Proposition 12 and Lemma 4 complete the proof.

By the relation (8) we get

Proposition 15. Let ω be either antisymmetric or symmetric and associated with Γ . Then

$$D_h D_v \omega = 0$$
, $D_v \omega = 2v^* \omega$, $D_h \omega = 2h^* \omega$, $\omega = h^* \omega + v^* \omega$.

Corollary. If ω is associated with Γ , Γ -vertical and either antisymmetric or symmetric then $D_n^n \omega = 2^n \omega$.

Lemma 5. Let ω or Γ be a bilinear form or a connection, respectively, on E. Then

$$(\omega - h^*\omega)_{21} = (D_v\omega)_{21} = (D_h\omega)_{21} = (\omega_{20})_{21} = (\omega_{01})_{21} = \omega_{21}.$$

Proof. $(\omega - h^*\omega)_{21}(X, Y) = (\omega - h^*\omega)(vX, hY) = \omega(vX, hY) = \omega_{21}(X, Y)$. The other relations can be proved analogously.

Corollary of Lemma 5 and Proposition 12. Let ω or Γ be a bilinear form or a connection respectively on E. Then the forms ω , $\omega - h^*\omega$, $D_v\omega$, $D_h\omega$, ω_{20} , ω_{01} are associated with Γ if and only if one of them is associated with Γ .

Proposition 16. Let ω be a bilinear connecting form on E. Let Γ be a connection on E. Then the forms $\omega - h^*\omega$, $D_v\omega$, ω_{20} , ω_{02} , $v^*\omega$ determined by Γ are connecting and $\Gamma = {}^{\omega_{02}}\Gamma = {}^{v^*\omega}\Gamma$.

Proof. Let locally $\omega = a_{ij}dx^i \otimes dx^j + a_{\alpha i}dy^{\alpha} \otimes dx^i + a_{i\alpha}dx^i \otimes dy^{\alpha} + a_{\alpha\beta}dy^{\alpha} \otimes dy^{\beta}$. Let

$$\Omega \in \left\{D_v\omega,\,\omega_{20},\,\omega_{02},\,\omega\,-\,h^*\omega,\,v^*\omega\right\}\,.$$

Then $\Omega = C_{ij}dx^i \otimes dx^j + C_{\alpha i}dy^{\alpha} \otimes dx^i + C_{i\alpha}dx^i \otimes dy^{\alpha} + ca_{\alpha\beta}dy^{\alpha} \otimes dy^{\beta}$ where $c \neq 0$ is a constant. As det $(ca_{\alpha\beta}) \neq 0$ we conclude that Ω is connecting. By Proposition 10 and Corollary of Proposition 12, $\Gamma = {}^{\omega_{20}}\Gamma = {}^{v \cdot \omega}\Gamma$.

Proposition 17. Let ω be a bilinear connecting form on E. Let $\omega - h^*\omega$, $D_v\omega$, ω_{20} be determined by ${}^{\omega}\Gamma$. Then

$$^{\omega}\Gamma = ^{\omega - h^*\omega}\Gamma = ^{D_v\omega}\Gamma = ^{\omega_{20}}\Gamma$$
.

Proof. The form ω is associated with ${}^{\omega}\Gamma$. Therefore by Lemma 5 and Proposition 12 the forms $\omega - h^*\omega$, $D_v\omega$, ω_{20} are associated with ${}^{\omega}\Gamma$. Then Propositions 16 and 10 complete our proof.

Proposition 18. Let ω be a connecting 2-form on E. Then a connection Γ on E is integrable if and only if $d_{\Phi}\omega$ is semi-basic.

Proof. Let us recall that Γ is integrable if and only if the curvature form Φ of Γ vanishes, i.e. if $A_{jk}=0$. Let $\omega=\frac{1}{2}a_{ij}dx^i\wedge dx^j+a_{\alpha i}dy^{\alpha}\wedge dx^i+\frac{1}{2}a_{\alpha\beta}dy^{\alpha}\wedge dy^{\beta}$. Then $d_{\Phi}\omega=a_{\alpha i}A^{\alpha}_{jk}dx^j\wedge dx^k\wedge dx^i+a_{\alpha\beta}A^{\alpha}_{jk}dx^j\wedge dx^k\wedge dy^{\beta}$ is semibasic if and only if $a_{\alpha\beta}A^{\alpha}_{jk}=0$. As det $(a_{\alpha\beta})\neq 0$, it holds $a_{\alpha\beta}A^{\alpha}_{jk}=0$ if and only if $A^{\alpha}_{jk}=0$.

Remark. Using the local expression of $d_{\Phi}\omega$ we obtain: If ω is a connecting 2-form and Γ is a connection on E then $d_{\Phi}\omega$ is semi-basic if and only if $d_{\Phi}\omega = 0$.

Let Ω be a ternary from on E. Let Γ be a connection on E. Denote by Ω_{112} the form determined by

$$\Omega_{112}(X, Y, Z) = \Omega(hX, hY, vZ).$$

Lemma 6. Let ω be a connecting 2-form on E. Let Γ be a connection on E. Let Φ be the curvature form of Γ . Then $d_{\Phi}\omega = 0$ if and only if $(d_{\Phi}\omega)_{112} = 0$.

Proof. Locally, $(d_{\Phi}\omega)_{112} = -a_{\alpha\beta}A^{\alpha}_{jk}a^{\beta}_{i}dx^{j} \wedge dx^{k} \wedge dx^{i} + a_{\alpha\beta}A^{\alpha}_{jk}dx^{j} \wedge dx^{k} \wedge dx^{k} \wedge dy^{\beta}$. This yields our assertion.

Proposition 19. Let ω be a 2-form on E. Then

$$(d(v^*\omega))_{112} = -(d_{\Phi}\omega)_{112}$$

for any connection Γ on E.

Proof.
$$(dv^*\omega)_{112}(X, Y, Z) = dv^*\omega(hX, hY, vZ) = hX(v^*\omega(hY, vZ)) - hY(v^*\omega(hX, vZ)) + vZ(v^*\omega(hX, hY)) - v^*\omega([hX, hY], vZ) + v^*\omega([X, vZ], hY) - v^*\omega([hY, vZ], hX) = -\omega(v[hX, hY], vZ) = -(d_{\Phi}\omega)_{112}(X, Y, Z).$$

Corollary of Proposition 18, 19 and Lemma 6. Let ω be a connecting 2-form on E. Then a connection Γ is integrable if and only if $(dv^*\omega)_{112} = 0$.

Proposition 20. Let ω be a connecting 2-form on E. Then the connection ${}^{\omega}\Gamma$ is integrable if and only if

$$(dd_v\omega)_{112}=0.$$