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ON CHARACTERIZATION OF THE SPHERE IN E*
BY MEANS OF THE PARALLELNESS OF CERTAIN VECTOR FIELDS

KAREL SvoBODA, Brno

(Received September 16, 1977)

In this paper we present a certain generalization of the results contained in [3].
Using the parallelness of a certain normal vector field associated to a given couple
of tangent vector fields, we prove theorems analogous to those of [3] to get the base
for other considerations.

1. Let M be a surface in the 4-dimensional Euclidean space E* and dM its bounda-
ry. Let the surface M be covered by domains U, in such a way that in any U, there
is a field of orthonormal frames {M; vy, v,, v3, v,} With vy, v, € T(M), vs, v, € N(M),
T(M), N(M) being the tangent and the normal bundle of M, respectively. Then

(1) dM = o'v; + @?v,,
do, = o, + oivy + olo,,
dv, = —w?v, + 03v; + wiv,,
dvy = —wiv, — wiv, + wiv,,
dv, = —wiv, — otv, — wlvs;

(2 do' = o’ A 0], do] =00} o],

o] + 0} =0, 0 =0*=0 (i,j,k=12734).
Using the well-known prolongation procedure, we get the existence of real functions
a,b;(i=123),a,p(i=123,4),4,B,....E, (i = 1,2)in each U, such that
(3) 0} = a,0' + a,0?, 0} = a,0! + a;0?,

(0: blwl + bzwz ’ wg = bzwl + b3(02 5

(4) dal = 2a2€0f = blw‘; = dlwl + azwz >

2
da, + (a; — a3) 0] — b0} = w,0' + z0?,
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da; + 2a,0? — b0} = az0! + w,0?,

db, — 2b,0? + a,0% = B@" + B,0?,
db; + (by — b3) @F + a,03 = f,0" + B0,
db; + 2b,00} + a;05 = 0" + 07 ;
6) do; — 3n,0] — Byof = A;0' + (B — a,K — 3b,k) ?,
do, + (¢, — 203) @} — B,w§ = (By + a,K + 3b,k) o' +
+ (Cy + a;,K — 1b,k) 0?,
doy + (20, — o) @ — Bsw§ = (Cy + a3K + 1bk) 0! +
+ (Dy + a,K — 1bsk) 0?,
doy + 3uaw] — Bu0s = (D — a,K + 3b3k) ' + Ej0?,
dp, — 3,0} + a 05 = A,0' + (B, — b,K + }a,k) 0?,
dBy + (B1 — 2B3) of + 0,05 = (B, + b,K — }a,k) o' +
+ (C, + biK + }ayk) 0?,
dBs + (2B, — Bs) 0] + 0305 = (C, + b3K — da,k) o' +
+ (D, + bK + }a3k) 0?,

dBs + 3P0} + o005 = (D, — b,K — ask) o' + E,0?,
where
K = aja; — a3 + byby — b3, k= (a; — a3)b, — (by — b3)a,,

the function K being the Gauss curvature of M. As always,
H = (a1 + a3)2 + (bl + b3)2

denotes the mean curvature and

&=(a; + as)vs + (by + b3) vs

the mean curvature vector field of M.

Let us remark that the normal vector field n = xv; + yv, being parallel in N(M)
we have k = 0 (see [1], p. 61), and since v,, v, € T(M) generates an orthogonal
conjugate net of lines on M, [2], we have

(6) a2=0, b2=0

and again k = 0 on M. In addition, in the last case, because of (4), there are real
functions g, o such that
(7) 0? = o' + ow?,

a, = g(a; — as), a3 =o(a; — a;),

B Q(b1 = bs), Bs = U(bx == bs)-
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Like in [3], all theorems contained in this contribution are proved by means of
the maximum principle.

Let f: M — % be a real function. The covariant derivatives f;, f;; (i,j = 1, 2)
of its restriction to U, with respect to the frames {M; vy, v,, v3, v,} are introduced
by the formulas

(8) df = fro' + fr07,
dfy — fo01 = f1,0" + f,0%, df; + fi0} = f,0" + f07.
We use the maximum principle in this form:
Let M be a surface in E* and M its boundary. Let f be a real-valued function

on M and f,, fi; (i,j = 1, 2) its covariant derivatives. Let (i) f = 0 on M; (ii) f = 0
on dM; (iii) f satisfy the equation

ay fir +2a5,f12 + azfy; + aify + ayf, +agf =a

with a, <0, a = 0 and the quadratic form aijx‘xj positive definite. Then f = 0
on M.

In the following we use the function f: M — # defined by
9) f=H—4K = (a; — a3)* + (b, — b3)* + 4a3 + 4b3,

satisfying f = 0 on M and f = 0 at the umbilical points of M. Using (4), (5) and (8)
we get the covariant derivatives of f, in particular

(10)  fyy, = —2[(ay — as) az + (by — b3) by — 4(aj + b3)]K —
— [k + 4(a;b, — aby)] k + 2(ay; — a3)* + 2(B; — B3)* +
+ 8(a3 + B2) + 2(a; — az)(A; — Cy) + 2(by — by) (4, — Cy) +
+ 8(a,B, + b,B,),
f,,= 2[(ay — a3)a, + (by — b3) by + 4(a5 + b3)] K —
— [k + 4(asb; — asby)] k + 2y — ag)® + 2(B, — Ba)* +
+ 8(c3 + B3) + 2(ay — as)(Cy — Ey) + 2(by — b3)(C, — E,) +
+ 8(a,Dy + b,D;).
2. Let M be a surface in E* and let V,, V, € T(M) be fixed orthonormal vector
fields. In all the following considerations we choose orthonormal frames {M; v,, v,,

v3, 04} of M in such a way that Vi = vy, ¥, = v, at any point m € M. Define further
normal vector fields Vi;, Vju, Vijii (i, j, k = 1, 2) by the relations

Vi = (VtVi)Ns Vju = (Vlei)Ns iju = (V;chu)N (i,j, k=1, 2) ’
where (Y)" denotes the normal component of the vector field Y.
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It is easy to see that
(11) Vii =avs + bivy, Vy, = asv; + byv,.
Suppose further that V;, V, generate an orthogonal conjugate net of lines on M,
i.e. we have (6) and (7) on M. Then we get from (11) using (1), (3) and (4)
dVy; = V0" + V0%, dVy, = V50! + Vapo? (mod vy, v,)
with
(12) Viig = 03 + Byva s Vagy = apv3 + Bovg,
Viza = o303 + B3va, Viay = 2403 + Bavs .
By differentiating the relations (12) and using (1), (3), (5) we obtain
dViy = Vin@' + Vo110, dVyyq = Vig@' + Vypq0%,
dViz2 = Vii220" + V212,0%, dVyap = Vigga0! + Vyppp00? (mod V15 U2)
where
(13) Vi = (Ay + 3a50)v3 + (Az + 3B20) v4,
Vo111 = (By + 3“20) U3 + (Bz + 3B,0) vy,
Vizig = [By — (¢ — 203) @] vs + [B, — (By — 2B3)e] va,
Vaain = [C1 + a,K — (2 — 203) 0] v3 + [C, + b,K — (B, — 2B5) 0] 4,
Vitzz = [Cy + a3K — (20, — ag) @] v3 + [C; + b3K — (2B, — Ba) ] va s
Vatzz = [Py — (20 — ag) 0] vs + [Dy — (2B, — Ba) o] 04,
Viazs = (D1 — 3a30) v3 + (Dz - 3ﬂ3@) Vg,
Vazaa = (E1 — 3“3‘7) v3 + (Ez = 3/330') Vg,
@, o being the functions defined by (7).

From (11) it follows that
f = V11 + sz .

This vector field can be considered as a special case of the normal field

(14) X = PVyy + QV,, = (Pa; + Qaz) vy + (Pby + Qb;) vy,

where P, Q € # are constants with P> + Q% + 0.

First of all we prove that the normal vector field X is invariant on M when choosing
the orthonormal frames in the above mentioned way. To this end, consider another
orthonormal frame {M;?,, B,, b, 74} on M such that V; = &;, ¥, = 0,. Then we have
(15) Uy, =v;, D3 =ECOSO .03 —SiNG.0V,,

i, =10,, Dy =c¢sin oc.v3 +cosa.v, (e =1)

and the following lemma is valid:
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Lemma 1. On M, it is

X=X,
Proof. It is easy to see that
a, = ¢la;cose + by sino), by = —(a,sine + b, cos o),
a; = elazcos o + bysino), by = —(azsino + b cos o)

and according to (15) and the preceding equations we obtain
Vu = Vi1 sz =V

As P = P, Q = Q, our assertion is proved.
Now, define normal vector fields X;, X;; (i, j = 1, 2) by the formulas

Xi = (V'X)N ’ Xij = (Vin)N (ls.] = ls 2)’
where the symbol (Y)" denotes again the normal component of the vector field Y-

Then we have the following

Lemma 2. Let V,, V, € T(M) generate an orthogonal conjugate net of lines on M.
Then for the normal vector field X = PV, + QV,,, P, Q € & we have

(16) X, =PV + QViazs X, =PVyyy + QVips,
(17) X11=PViii1 + QVitzas X2 = PViayyr + QViz22s
X1 = PVy11 + QVa1225 Xz = PVaayy + QVa22s -

Proof. The relation (14) yields

dX = PdVll + QdV22
and hence

dX = (PV111 + QV122) wl + (PVle + QV222) 0)2 (mod Ul, Uz)
which implies (16). Further

dX‘=PdV111+QdV122, dX2=PdV211 +QdV222,
that is
dX, = (PViqy1 + QVigaz) @' + (PVayyy + QVayp,) @7,

dx, = (PV1211 + QVIZZZ) o' + (PVy311 + QV2222) w? (mod vy, U;) .
This proves the validity of (17).

Thus, assuming that V,, V, € T(M) generate an orthogonal conjugate net of lines
on M, we have from (12) and (16)

(18) ‘ X, = (Pal + Qa3)v; + (Pﬂl + 0B3) vy,
X, = (Pa2 + Q%) vz + (Pﬁz + Qﬁ-t) Uy



and from (13) and (17)

(19) X, = {PA; + Q(C, + a3K) + ¢[(3P — 2Q) a; + Qu,]} vs +

+ {PA, + Q(C, + bsK) + o[(3P — 2Q) B, + QB4]} va,

Xy, = {PBy + QD; — o[Pa; — (2P — 3Q) a3]} v5 +
+ {PB, + 0D, — o[PB, — (2P — 30Q) B3]} va

X;;, = {PB; + QD, + o[(3P — 2Q) a, + Qu,]} vs +
+ {PB, + QD, + o[(3P — 2Q) B, + QB.]} v4

X,, = {P(Cy + a;K) + QE, — o[Pa; — (2P — 3Q) a3]} v3 +
+ {P(C, + b,K) + QE, — o[PB, — (2P — 3Q) B3]} v4 .

By these remarks we have completed all preliminaries necessary for our con-
siderations.

3. Now we are going to prove the basic

Theorem 1. Let M be a surface in E* and 0M its boundary. Let

(i) K > 0 on M;

(ii) there exist Vi, V, e T(M) generating an orthogonal conjugate net of lines
on M;

(iii) X = PVy, + QV,,, where P,Qe R satisfy the relations P* + Q> > 0,
PQ = 0, be parallel in N(M);

(iv) @M consist of umbilical points.
Then M is a part of a 2-dimensional sphere in E*.

Proof. As remarked, we use the maximum principle for the invariant function f
defined by (9). Since the assumption (ii) implies (6) in M, we have in virtue of (10)
(20) Pfy;y + Qf22 — 2[(“1 — a3) (Qa1 — Pajy) + (bl — bs) (Qb, — Pby)] K =

=2V + 29
where »
(1) V=Pl —a3)* + (By = B3)’] + Qe = @a)® + (B2 — Ba)’] +
+ 4P(a] + B3) + 4Q(o3 + B3)
and
(22) ® = (a, — a3) [P(4, — Cy) + Q(C, — E\)] +
+ (by — by) [P(4; — C) + Q(C; — Ey)].
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Now, the condition (iii) for X defined by (14) yields
(23) . d(Pa; + Qa;) — (Pby + Qb3)w} =0,
d(Pb, + Qb;) + (Pa; + Qaj)wi =0
and hence according to (4) and (6)

(24) Poy + Quy3 =0, Pa;, + Quy =0,
Pﬁl+Qﬁ3=0, Pﬁ2+Qﬂ4=0.

Differentiating these equations and using (24) again, we obtain the relations

(25) , [PA; + Q(Cy + a3K)] @' +(PB; + OD,) w* +
+ [(3P - 2Q)a, + Qu,] 0} =0,
[PAZ + Q(Cz + b3K)] o! + (PBZ + QDz) w? +
+ [P - 20) B, + QBs] 0] = 0,
(PB, + QD,) ' + [P(Cy + a,K) + QE,] 0* —
— [Po; — (2P — 3Q)as] wi =0,
(PB, + QD,) ' + [P(C, + b,K) + QE,] 0? —
— [PB, — (2P — 3Q) B3] wi =0.
Multiply the equations containing A, ..., E; by a; — a5 and the relations containing
Aj, ..., E; by by — bj. Then according to (7) we get in particular
(26) (ay — a3)[PA; + Q(Cy + a3K)] + a,[(3P — 2Q) o, + Quy] = 0,
(by — b3)[PA; + Q(C; + b3K)] + B,[(3P — 2Q)B, + QB,] =0,
(ay — a3)[P(Cy + a,K) + QE,] — o3[ Pay — (2P — 3Q) 3] =0,
(by — b3)[P(C; + byK) + QE,] — B3[PB, — (2P — 3Q) B3] = 0

and hence

(a, — a3) [P(4; — Cy) + Q(C, — E,)] = (a, — a;3) (Pa; — Qa;)K —
— 0,[(3P — 2Q) o, + Qu,] — as[Pa, — (2P — 3Q) &3],
- (by = b3) [P(4; — C3) + Q(C, — E;)] = (by — b3)(Pby — Qbs3)K —
— B2[(3P — 2Q) B, + QB.] — Bs[PB, — (2P — 3Q) B5] .
Using these relations we obtain from (22)
@ = [(a; — a3)(Pa; — Qas) + (by — bs)(Pb, — Qb,)] K —
— a,[(3P — 2Q) a; + Qoy] — az[Pay — (2P — 3Q) a3] —
= ﬂz[(3P —2Q) B, + 0B,] — Bs[PB, — (2P — 30) B5]
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and the equation (20) has the form

(27) Pfiy + Qf2 — AP + Q)fK = 2W
where

W=V-—a[(3P —2Q)a, + Qu,] — oc3['1”oc1 — (2P - 3Q) 3] —
— B2[(3P — 20) B, + 0B.] — Bs[PB: — (2P — 3Q) B5] .

From this identity and from (21) we finally have

W= P[(2; — 3a5)* + (B, — 385)°] + O[(@s — 3%2)* + (Bs — 38,)*] +
+ 3(4P + 3Q) (a3 + B3) + 4(3P + 40Q) (e5 + B3) .

If P20, Q=0 and P> + Q> >0, we have —(P + Q)K <0, W= 0 and the
quadratic form corresponding to Pf;; + Qf,, is positive definite so that, according
to the maximum principle, the theorem is true. On the other hand, if P <0, Q0 =<0
and P> + Q*>0, it is —(P + Q)K 20, W< 0 and the form corresponding
to Pf,;, + Qf,, is negative definite. Then it is sufficient to multiply the equation (27)
by —1 to get the condition (iii) of the maximum principle. Thus the assertion is
proved.

As an immediate consequence of this theorem we introduce

Corollary 1. Let M be a surface in E* possessing the properties (i), (ii) and (iv)
of Theorem 1. Let

(iii") Vy, € N(M) or V,, € N(M) be parallel in N(M).
Then M is a part of a 2-dimensional sphere in E*.

It is sufficient toput P =1, Q = 0or P = 0, Q = 1 in Theorem 1.

From the proof of Theorem 1, we easily see that in the case P = Q we can omit
the assumption (ii). But there is another interesting possibility how to do it. It is
formulated in

Theorem 2. Let M be a surface in E* satisfying the conditions:
(i) K >0 on M;

(ii) there are orthonormal vector fields V,, V, € T(M) such that linearly in-
dependent vector fileds
X = PV, + QVs,eN(M), Y =RV, + SV,,eN(M), P,Q,R Se#,
are parallel in N(M);

(iii) @M consists of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.

63



Proof. The condition (ii) yields (23) and
- d(Ra, + Sa;) — (Rb; + Sb;) w3 =0,
d(Rb, + Sb;) + (Ray + Saz;)w} =0
and hence according to (4)
(Pay + Qaz) o' + (Pa, + Qay) 0 + 2a,(P — Q)wi =0,
(PBy + QB3) o' + (PP, + QBs) @* + 2by(P — Q)i =0,
(Ray + Saz) o' + (Ray + Sauy) o + 2a,(R — S) 0} =0,
(RBy + SB3) @' + (RB, + SBs) @® + 2by(R — S) w? =0,
PS— QR +0.

First of all suppose P = Q, R =+ S. Multiply the first two equations by R — S and the
other two by P — Q. Subtracting the corresponding equations we get

(R — S)(Poy + Qu3) — (P — Q) (Ray + Saz) =0,
(R — S)(Pay + Qu,) — (P — Q)(Ra, + Sa,) = 0,
(R = S)(Pﬁl + Qﬁa) - (P - Q)(Rﬁ1 + SB;) =0,
(R — 5)(PB; + QBs) — (P — Q) (RB; + SBs) = 0

and hence
oy +o3 =0, o, +a, =0,

Bi+B3=0, B, +B,=0.

We could obtain the same relations assuming either P = Q or R = S. The exterior
differentiation of these equations and their repeated use finally implies

(28) A, +C +a,K=0, C,+E +aK=0, B,+D, =0,
Az+C2+b3K=0, C2+E2+b1K=0, B2+D2=0.

Now, consider the function f defined by (9). Since the assumption (ii) implies k = 0
on M, we obtain according to (10)

(29) J1 +f22—2fK=2V+2‘P+8q0+8(a§+b§)K
where
(30) V= (“1 - t"3)2‘ + (“2 - “4)2 + (ﬂ1 - ﬂs)z + (ﬁz - ﬂ4)2 +
+ 4(03 + o3) + 43 + B3)
¢ = (a, — a3)_(A1 — E;) + (b; —b3)(4, — E,),
@ = ay(B; + D) + by(B, + D,).
From (28) it follows immediately that ¢ = 0 and

® = [(a; — a5)* + (by — bs)] K.
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Thus the relation (29) has the form
Juu+ S22 —4K =2V

and the maximum principle yields our assertion.

Notice that in the case P = Q we have X = P&, where ¢ is the mean curvature
vector field, and thus we can omit the supposition concerning the vector field Y.
Analogously in the case R = S. (See [3].)

Corollary 2. Let M be a surface in E* with the properties (i) and (ii) of Theorem 2.
Then the condition

(ii) linearly independent vector fields Vy,, V,, € N(M) are parallel in N(M)
implies that M is a part of a 2-dimensional sphere in E*.

Weput P=1,Q0=0,R=0,S = 1in Theorem 2.
Now, we introduce a certain modification of Theorem 1.

Theorem 3. Let M be a surface in E*, M its boundary and let
(i) K > 0 on M;

(ii) there exist Vy, V, € T(M) generating an orthogonal conjugate net of lines
on M;

(iii) X = PV, + QVs; e N(M), P, Qe ®, P* + Q* > 0, PQ = 0, be such that
X,, X, € N(M) are parallel in N(M);

(iv) OM consist of umbilical points.
Then M is a part of a 2-dimensional sphere in E*.

Proof. Consider the vector field X. The parallelness of X,, X, is expressed,
according to (18), by the formulas
d(Pa; + Qaj) — (Pﬁ1 + Qﬁs)wg =0,
d(PB, + QBs) + (Pa; + Qus) w3 =0,
d(Pa, + Qa,) — (PB, + QB.) w;=0,
d(PB; + QBs) + (Pay + Qa,) w3 =0
Now, using (5), we obtain the equations (25) and with regard to the proof of Theorem

1 our assertion is true.
Again we have

Corollary 3. Let M be a surface in E* satisfying the conditions (i), (ii) and (iv)
of Theorem 3. Let
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(iii") Vi1, Va11 € N(M) or Vi3, V3, € N(M) be parallel in N(M).
Then M is a pgrt of a 2-dimensional sphere in E*.
It is sufficient toput P =1, Q = 0or P = 0, Q = 1 in Theorem 3.
We complete the results of this corollary by
Theorem 4. Let M be a surface in E* and 0M its boundary. Let
(i) K > 0 on M;
(ii) there exist Vy, V, € T(M) generating an orthogonal conjugate net on M;
(iii) Vi11» V222 € N(M) be parallel in N(M);
(iv) OM consist of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.

Proof. The assumption (ii) implies (6) and (7) on M. The condition (iii) and rela-
tions (12) yield further

dal—ﬂlw;=0, dﬂ1+a1wg=0,
doy — Baws =0, df, + 03 =0
and hence using (5) and (6) we conclude
A,0' + Biw? + 30,02 =0, A,0!' + B,w? + 38,02 =0,
D,0' + E;0* — 3030} =0, D,0!' + E,0* — 38,0} =0.
Thus by means of (7) we have in particular
(31) (al — 03) A1 + 3“% = 0, (bl -— b3) Az + 3ﬁ§ = 0,
(al"'ag)El_3a§=0, (bl_b3)E2—3,B§=0.
Now, because of (6), the equation (29) has the form
fll +f22 - 2_fK = 2V+ 245,
the functions ¥, & being defined by (30). According to (30) and (31) we get
&= —3a+ k4 f1 4 )

so that V 4+ & = 0. This and the maximum principle complete the proof.

4. We revert to the considerations concerning the normal vector field X and we
prove the following assertion generalizing Theorem 3.

Theorem 5. Let M be a surface in E* and 0M its boundary. Let

(i) K > 0 on M;
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(ii) there exist Vy. V, € T(M) generating an orthogonal conjugate net of lines
on M;

(iii) X = PVy,; + QVa, eN(M), P, Qe #, P> + Q*> > 0, PQ = 0, be such that
(@) Xi3+ S(X13 — X31), Vig = V22> 20
on M, where S : M — & is a function with S* < 3, and
(b) X, eN(M) is parallel in N(M)
or
(iii') X = PV, + QV,, € N(M), P, Qe ®, P* + Q* > 0, PQ = 0, be such that
(@) {—=Xz2+ S(X12 — X31), Vis — Vaz) 20
on M, S : M — R being a function satisfying S* < %, and
(b') X, € N(M) is parallel in N(M);
(iv) OM consist of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.

Proof. We prove Theorem 5 under the supposition (iii), its proof with (iii’) being
analogous.

The condition (ii) implies (6) and (7) on M, and accordiﬁg to (11) and (19) the
assumption (iii) (a) yields
(32) (ay — a3) [PA; + Q(Cy + a3K)] + (by — b3) [PA; + Q(C, + b3K)] =
= X1 + S(X12 = X21)s Vig — Vo) —
— (3P — 2Q) o, + Qu,] — [32[(3P —2Q) B, + QB4] +
+ S[P(ay, + B1B,) + (P+0) (“2“3 + B.B3) + Q(“a% + BiB4)] -

The condition (iii) (b) is expressed by the two last equations of (25) from the proof
of Theorem 3. Following the proof of Theorem 1, we have the last two equations of
(26) and adding them we obtain

(ay — a3) [P(Cy + a,K) + QE,] + (by — b3) [P(C; + b,K) + QE,] =
= o3[Pa; — (2P — 3Q) a3] + Bs[PB, — (2P — 3Q) B5] .
Using this relation and (32), we get from (22)

(33) ®=(Xy; + S(X12 — Xa1), Vig = Vo> +
+ [(“1 - a3)(Pal = Qa3) + (bx = bs)(Pbl — Qb, ]K =
= 0‘2[(31) —2Q)a, + Q“4] = ﬁz[(3P -20)B, + Qﬂ4] =
— a3[Pay — (2P — 3Q) a3] — B3[PBy — (2P — 3Q) B3] +
+ S[P(ay2, + B4B;) + (P + Q) (‘12“3 + B2B3) + Oasxy + B3fa)]
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and thus the equation (20) has the form (27) with

W= < X + S(XIZ - X)) Vig = Vo) + V=
— (3P —20) (3 + B2) + (2P — 3Q) (43 + B2) -
— P(ayoz + B1Bs) — Qao%a + BaBa) +
+ S[P(ohaz + ﬂxﬁz) + (P + Q) (aza3 + ﬂzﬂs) + Q(“s‘h + B3B4)]
V being the function defined by (21). Using (21) we obtain

W=<(Xy +S(Xy; — Xpy), Viy — Vo) +
+ Pl(oy — a3)* + (By — B3)*] + Q22 — a)® + (B2 — Ba)*] +
+ (P +20) (o3 + B3) + (2P + Q) (o5 + B3) —
- P(“l“; + BiB3) — Qa2 + B2Ba) +
+ S[P(ay; + BiB>) + (P + Q) (“2“3 + B1B3) + Oz, + B3B4)]
and hence
(34) W= (X + S(Xyz— Xay), Vig — Vo) +
+ P[(xy — 33 + 350,)* + (B; — 35 + 1SB,)*] +
+ Qf(os — 325 + 3S23)* + (Bs — 3B, + 3SB5)*] +
+ 1P[o(a, a3) + o(Bs, Bs)] + 10[o(as, @) + q’(ﬁs, B.)]
where '
o(x, y) = (4 — S?) x* + 10xy + 3y?.
The quadratic form ¢(x, y) being non-negative for all x and y in virtue of |Sl <3

we have W = 0. Considerations analogous to those from the proof of Theorem 1
imply the validity of our assertion.

Remark. The special case (P = 1, Q = 1) of the preceding theorem was proved
in [3] under the supposition that S satisfies the inequality |S| < 4./(2) — 5. As
3 < 4,/(2) - 5, the result obtained in [3] is a little better than that of Theorem 5.
However, in the case PQ > 0, we can replace the inequality lSI < \/% independent
of P, Q by a more suitable one. In fact, the last two terms on the right-hand side of
(34) are equal to the sum of two quadratic forms of the type

(4P + 3Q — PS*) x* + 10(P + Q) Sxy + (3P + 4Q — 05%)y?
which are non-negative for all S éatisfying

S? < (PQ)~'[14(P + Q)* + PQ] — 2|P + Q|+/[49(P + Q)* + 4PQ].

A special case of Theorem 5 is this
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Corollary 4. Let M be a surface in E* possessing the properties (i), (ii) and (iv)
of Theorem 5. Let

(iii) X = PVy; + QV,,€ N(M), P, Qe #, P* + Q%> > 0, PQ 2 0, be such that
(@) Xy + S(Xy2 — X5) =0 0on M, S:M > R being a function with
S? <32, and
(b) X, eN(M) is parallel in N(M)
or
(iii') X = PVy; + QV,,€N(M), P, Qe R, P> + Q* > 0, PQ 2 0, be such that

(@) —X,;, + S(X;; — X,;) =0 on M, where S: M — R is a function
satisfying S* < 3, and

(b') X, e N(M) is parallel in N(M).
Then M is a part of a 2-dimensional sphere in E*.

From the other special cases of Theorem 5 concerning the vector fields Vi, V3,
we introduce only those restricted by S = 0.

Corollary 5. Let M be a surface in E* satisfying the conditions (i),(ii) and (iv) of
Theorem 5. Let
(iii) (a) Vi1 Vig — V22> 2 0 on M and

(b) V211 € N(M) be parallel in N(M)
or
(@) <Vi122, Vay — V22> 2 0 on M and

(b) Va2, € N(M) be parallel in N(M)
or
(iii") (") <=Va211> Vis — V22> 2 0 on M and

(b") Vy11 € N(M) be parallel in N(M)
or
(a") <—=V2222, Vi1 — V22> 2 0 on M and

(b') V122 € N(M) be parallel in N(M).
Then M is a part of a 2-dimensional sphere in E*.
The result follows from Theorem 5 by Lemma 2 for P=1, Q =0 or P =0,
Q=1and S=0.
We complete the assertions of Corollary S by
Theorem 6. Let M be a surface in E* and 0M its boundary. Let
(i) K > 0 on M;

(ii) there exist Vy, V, € T(M) generating an orthogonal conjugate net on M;
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© (i) (a) <Vig1r> Vir — V22> 2 0on M and
(b) Va2, EN(M) be parallel in N(M)
or
(iii') (a’) {(—=V,3222: Vi1 — V2,0 20 on M and
(b") V11, € N(M) be parallel in N(M);
(iv) @M consist of umbilical points.

Then M is a part of a 2-dimensional sphere in E*.

Proof. We have (6) and (7) on M. From (11), (13) we get
M1 Vi — Vaz) = (ag — az) Ay + (by — b3) A4, + 3(053 + ﬂg) .

The condition (iii) (b) is expressed by the two last equations of (31) from the proof
of Theorem 4. Thus (30) implies

@ = Vit Vig — Vo) — 3(“% + o} + B3+ B%)
and hence

(35) fi1 + f22 — 2fK = 2W
where
W=V+4+ &= Vi1, Viy — Vaz) +

+ (2 — a3)? + (@ — xg)® + (By — B3)* + (B, — Ba)® + a5 + o3 + B3 + B3,

V being defined by (30). The maximum principle completes our proof.
A generalization of Theorem 5 is given by the following

Theorem 7. Let M be a surface.in E* and 0M its boundary. Let
(i) K > 0 on M;

(ii) there exist Vy, V, € T(M) generating an orthogonal conjugate net of lines
on M;

(iii) X = PV, + QV;,eN(M), P, Qe R, P* + Q> > 0, PQ = 0, be such that
Kyy = Xy + (X2 = Xa1) Vi — Vi) 2 0
on M, S: M — R being a function with S* < 2;
(iv) OM consist of umbilical points.
Then M is a part of a 2-dimensional sphere in E*.

Proof. We choose orthonormal frames in the usual way and we have the relations
(6) and (7), and the equations (20), (21) and (22) on M.
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Using (11) and (19) we see that the expression (22) has the form

D =< X — Xy + S(X;z - X31), Vig — Vazd +

+ [(a; — a3) (Pa;, — Qas) + (by — bs) (Pb; — Qb3)] K —

= ‘12[(3P —2Q)a, + Quy] — B,[(3P — 2Q) B, + 0B.] -

— a3[Pay — (2P — 3Q) a3] — B3[PBy — (2P — 3Q) B3] +

+ S[P(%“z + BiB2) + (P + Q) (‘12“3 + BaBs) + Q(“s% + BaB4)] -
This relation is, however, formally the same as (33), so that we have (27) where W
is given by (34) when writing X,, — X,, + S(X;, — X,,) instead of X, +
+ S(X;2 — X,;). Thus the assertion is proved.
First of all let us introduce this trivial

Corollary 6. Let M be a surface in E* possessing the properties (i), (ii) and (iv)
of Theorem 7. Let

(iii) X = PVy; + QV,, e N(M), P, Qe ®, P*> + Q> > 0, PQ > 0, be such that
Xy — X33 + S(Xy5 — X5,) =0 on M, S being a real-valued function
on M such that S*> < 3. ,

Then M is a part of a 2-dimensional sphere in E*.
Theorem 7, as a very special case, contains these two results:

Corollary 7. Let M be a surface in E* satisfying the conditions (i), (ii) and (iv)
of Theorem 7. Let -

(iii) Tig = Vazrs Vin = Vo) 20 0on M
or
(iii') Vir2z = Vazaz, Vig — V22D 20 on M.
Then M is a part of a 2-dimensional sphere in E*.
Both the assertions follow from Theorem 7 and Lemma 2 for P =1, Q = 0 or

P=0,Q=1and S =0.
We complete again these two results by

Theorem 8. Let M be a surface in E* and let

(i) K >0 on M;

(ii) there exist Vy, V, € T(M) generating an orthogonal conjugate net on M;
(ii]) <Vi111 — Vazazs Vi — Va2) 20 on M;
(iv) @M consist of umbilical points.
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