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INTRODUCTION

In the framework of the classical Nevanlinna theory, see [4]—[9], sufficient
conditions for 6(a) = 0 have been examined. In this paper we shall solve the same
problem for the case of holomorphic mappings f:V — M, where Y is an open
Riemann surface and M is a closed Riemann surface. Our basic reference is [2].

The layout of this paper is as follows. Section 1 contains basic concepts and
denotations and First and Second Main Theorems. Basic concepts from the Ahlfors
theory of covering surfaces are briefly introduced as necessary for the formulation
of the Ahlfors covering theorem. The Ahlfors covering theorem is used in Section 2
to derive a generalization of Cartan’s formula. Sufficient conditions for é(a) = 0
are treated in Sections 3 and 4; they are followed by several closing notes in Section 5.

1. DENOTATIONS, BASIC CONCEPTS AND THEOREMS

From now on, it is assumed that V is an open Riemann surface, M is a compact
Riemann surface and f : ¥V - M is a holomorphic mapping. This standard notation
will be adhered to throughout the paper. We shall assume that a harmonic ex-
haustion exists on V.

Definition 1.1. A function 7:V - [0,s), (s < oo) will be called a harmonic
exhaustion on the open Riemann surface V iff
(i) =: ¥ > [0, 5) is onto.
(ii) Te C=(V).
(iii) 7 is proper, i.e. the inverse image of a compact set is compact.
(iv) 7 is eventually harmonic, i.e. there exists a number r(t), 0 £ r(z) < s, such
that 7 is harmonic on {p : 1(p) 2 r(r)}.
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If s < oo, we say that ¥ admits a finite harmonic exhaustion. If s = oo, we say that V
admits an infinite harmonic exhaustion.

Theorem 1.0. A Riemann surface is parabolic if and only if it carries a har-
monic exhaustion with s = .

The first part of Theorem 1.0 was proved by NAKAI [12]. If the surface carries
a harmonic exhaustion with s = oo, then such surface must be parabolic, because
the harmonic measure of the ideal boundary is zero, see [13], p. 204, 6E.

Example. In the classical case of meromorphic functions on V = C, log |z|
outside of a certain disc can be used as an exhaustion function.

Denotation 1.1. The following denotation will be used:

(i) V[r] = {peV, «p) < 1},

(ii) oV[r] = {peV, «(p) = r},
(iii) n(r, a) denotes the number of pre-images of a in V[r], counting multiplicity,
(iv) N(r, a) = [;, n(t, a) dt, where r, = r(t) is a given number.

Definition 1.2. A real number r is called a critical value of a function 7, if 7~ 1(r)
contains a critical point of 7.

Remark 1.1. (,,(,, * d7 is a constant for all r = (7).

For the proof see Corollary 4.3 in [2]; an easy proof can be obtained with help
of Green’s formula, see [13], p. 133. If we apply Greens formula to the function t

that is harmonic on the compact bordered surface W = V[r]\V[r,], we obtain

0=J *dt=J‘ *dr-f *dt .
ow av[r]l oV[ro]

Thus [,y * d = const. for every r = ry 2 r(1), QED.

With the help of the function 7 a holomorphic function { is constructed. This
function will be used as a coordinate function (or local parameter). Let us suppose
that (r,, r,) does not contain any critical value of 7, and suppose Wis one component
of Int (V[r,]\ V[r,]). Let y be one of the level curves of 7in W,say,y = Wn aV[r]
for some r € (ry, r,). We call _fy xdt = I' a period of * dt and define the conjugate
harmonic function ¢ of t by ¢(p) = [ *dr, where p, is a fixed point of . Since
d(*dr) = 0, g is defined up to periods, i.e. up to integral multiples of I and dg = *dt.
Consequently, { = 7 + ig is a holomorphic function on W, but it is multi-valued.
Let « = {pe W, o(p) = 0 (mod I')}.

Lemma 1.1. For { = t + ig as above, { : WNa — (ry, ;) x (0, ) = C is biholo-
morphic. '
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Proof see [2].

Definition 1.3. The holomorphic coordinate function { from Lemma 1.1 in a com-
ponent of t~!((ry, r,)) is called a special coordinate function.

Remark 1.2. It is well known (see Lemma 1.2 in [2]) that on every compact
Riemann surface M a Hermitian metric of constant Gaussian curvature can be
introduced. Let us denote this metric by G and its volume element by Q. In local
coordinates we have:

G = g(dx* + dy?), Q=gdx A dy.
By a suitable choice of a multiplicative constant the standardization [y Q =1 is
easily achieved.
Theorem 1.1. Let a € M be a fixed point of M. Then there exists a real-valued
function u, with the following properties:
1. u, is C* in M\ {a}.

2. idd"ua = Q in M\{a}.
2n

3. If z is any a-centered holomorphic coordinate function in a neighborhood U
of a, then u,(z) + log lzl is C® on U.
4. u, =2 0.

Proof see [2].

Denotation 1.2. Let us set

M ofr) = j .

[rl

(i) m(r, a) = L] f*u, *dt,
T Javir

(iii) T(r)f u(t)dt,
ro
T(r) is the Nevanlinna characteristic function of the mapping f,
(iv) E(r) = J x(t) dt,
ro

where x(1) denotes the Euler characteristic of V[t] (x(S) = +2, where S denotes
the Riemann sphere),

™) —E(),

x = limsup —+*

r-s T(r)
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Remark 1.3. Let us recall that for a nonconstant holomorphic mapping f: V - M,
where V is a parabolic, we have T(r) - oo as r — oo, for

T(r) = J’;v(t) dt > v(ro)(r —ro) >0 as r— .

Remark 1.4 A nonnegative function h is defined by the relation
1) f*Q = hdr A =dt.

The function h is not defined at the critical points of z; see [2], p. 501.

Theorem 1.2. (First Main Theorem). For every r 2 r(t),
(2) m(r, a) + N(r, a) = T(r) + m(ro, a)

Definition 1.4. Let us put (for a € M)

5(a) = lim sup< _ N, a))

ros T(r)

The quantity 6(a) is called the defect of the value a. If 8(a) > O then the value a is
said to be the deficient or Nevanlinna exceptional value.

Remark 1.5. For a mapping with an unbounded characteristic function T(r)
(i.e. lim T(r) = o), the quantity 6(a) can be defined by the relation

res

r,a)

3) Ha) = Honins 2@

rs  T(r)

as can be seen from relation (2) in Theorem 1.2.

Theorem 1.3 (Defect relations). If f: VY — M is holomorphic and VY admits an
infinite harmonic exhaustion, then

(4) 2, Ha) 5 (M) + 1.
If Y admits a finite harmonic exhaustion, then

S E“é(d) < M)+ x+e,

where

¢ = lim sup 1 {— log (T(r) + const.) + 2 log

res T(r) |4

+ const. .
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Basic concepts from the Ahlfors theory of covering surfaces will now be introduced.
For a more detailed study we refer to [11], Vol. 2, Chap. VII and X.

Let Wand W, be two topological spacesand F : W — W, a continuous mapping
from W into W,. Let M be the set of ordered pairs [p, F(p)] = [p, Po). P W
Po € Wy, Po = F(p). The set M will be endowed with a topology in this manner:
By a neighborhood of a point [g, g, ] € R we understand the set of pairs [p, po] € N,
where p moves through a neighborhood of the point g. The set i, endowed with this
topology, will be denoted by (W,)F and (W,)f will be called a covering space of the
base space W,. The point p, € W, associated with the point [p, p,] € (W,)¥ is called
the trace point of [p, p,]; one also says that [p, p,] lies over p,.

‘Let W, be a compact surface with a normal metric, let W be an arbitrary topo-
logical surface and F an inner mapping. (For definitions of the normal metric and
the inner mapping we refer to [11].) The metric on the base surface W, is carried
over to the surface W with help of the mapping F in the following manner:

(i) Length of a curve. The properties of the inner mapping imply: Each curve f
on W can be decomposed into parts, on which the mapping F is topological and with
each such part the length of its image on the base surface W, is associated. The total
length of the curve B is equal to the sum of the lengths of these parts.

(ii) Area. Let D = W be a compact region. We can decompose the region D into
parts, on which the mapping F is topological and we associate with each such part
the area of its image on the base surface W,. The total area of the region D is equal
to the sum of the area of these parts.

Let W, = W be a compact polyhedral region with a boundary dW,. The covering
surface (W,)F" is contained in the covering surface (W) .

Definition 1.5. (i) The quantity

A,

S, =
4o

(where A, is the total area of W, and A, is the area of the base surface W,) is called
the mean sheat number of W, over W,.

(ii) Let y be a curve on W,. The quantity

o) = L)
{7) L.()

(where Ly(y) stands for the length of y and L,(y) fot the total length of the arcs lying
over y on W,), is called the mean sheet number over the curve y.

Theorem 1.4 (Ahlfors Covering Theorem). Let y be a regular curve on the base
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surface W,. Then there exists a finite number k dependent only on W, and y, such
that

IS, = s.(7)| < kL,
where L, is the length of oW,.

2. GENERALIZATION OF CARTAN’S FORMULA

Let us interpret the mapping f:V — M as a covering mapping. Then (M)‘,' is
a covering surface. It is possible to assume the metric G on the surface M (from
Remark 1.2) to be normal. By the uniformization theorem, every compact Riemann
surface is covered by either the complex plane, or the unit disc, or the Riemann
sphere. These three spaces can be equipped with a Hermitian metric that is normal.
Consequently, the surface M can also be equipped with such a metric.

The quantity

ur) = f*Q
VIr]

is the mean sheet number of V[r] over M (for [, @ = 1). The quantity s,(y) will
be denoted from now on by s(r, ). If ds denotes the element of arc-length of the
curve 7, then the following identity is evident:

1
(7) s(r,7) = 4[ n(r, a) ds(a) .
Lo(v) J,
With this notation, the relation (6) from Theorem 1.4 yields
(8) [o(r) = s(r,9)| < k L(r),

where L(r) is the length of the curve dV[r] in the metric f*Q. Thus

©) L(r) = f h''? % dt ,
avi[r]

where the function & is defined by the relation (1) from Remark 1.3.
The following well-known lemma will be used:

Lemma 2.1. Suppose Y is q once continuously differentiable, positive, increasing
function on [ro, ). Then for any real number & > 0, y'(1) < {y(1)}'** on [r,, )
except on an open set I < [r,, ) for which [, dt < co.

Definition 2.1. Let S(r, f) dendte the quantity defined by
S(r. f) = of T(r)}

for r - o0, re[re, 0)\I, [;dx < oo.
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Lemma 2.2. Let f : V— M be a nonconstant holomorphic mapping from a para-
bolic Riemann surface V into M. Then

J :L(t)dt — S(rnf).

Proof. Let K, denote the set of critical values of the function 7. Then

(10) J L(t)dt = j L(t)dt = f (f h'/2 *dr> dr.
ro (ro,r)\Ko (ro,r)\Ko ov[t]

If the Schwarz inequality is applied to the inner integral, we obtain

12 12 12
(11) J h'/? xdt < {j h *dt} {f *d‘t} = \/L{J. h *dr} .
avin ovIal avin avin

The following result is obtained from (10), (1 1) by repeated application of the Schwarz

inequality:
r 1/2
J.L(t)dt§\/LJ‘ (j h*dr) dr <
ro (ro,r)\Ko av(t]

1/2 r 1/2
el ot ) )
(ro,r)\Ko av[t] ro

1/2
= JL(r — ro) {J‘ (j h *d‘t) dt} <
(ro,r)NKo \J aV[1]
< JLJ(r - rO)A/<.,‘ hdr A *dr) =
VIrl\VIrol

= JLJ(r = r0) J(o(r) — v(ro)) < VL /(r.o(r),
i.e. we proved
(12) j ;L(t) dt £ JLJ(r. o).
As
d7(r) _ dT(r)

r.ofr)=r s
() dr dlnr

Lemma 2.1 applied to the function y(t) = T(r), where t = Inr and & = § yields

(13) ro(r) = {T(n}**

outside of the set I for which [; In x dx < co. Finally, as a consequence of (12), (13),
we obtain

j L(t)dt < JL{T()}"* = S(r. 1), QED.
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Lemma 2.3. n(t, a) is a measurable function on [0, s) x M.

Corollary. n(t, a) is an integrable function on [r,, r,] x y, where [ry, r,] is any
finite closed subinterval of (r(z), s) and y is a regular curve on M.

Proof of Lemma 2.3. Let (1, a) € [0,s) x M, (t;,a;) - (t,a) as i > co. We will
prove
lim sup n(t;, a;) < n(t, a),
which is equivalent to the semi-continuity. Let {t;} = {r;} U {s;} where r, =1,
s; < t. It suffices to prove

(i) lim sup n(r;, a;) < n(t, a),
i—+ oo

(if) lim sup n(s;, a;) < n(t, a).
i—» o

First we prove the following statement: There exists such a neighborhood U of
the point a that

(iii) n(t, a’) < n(t, a) for all a’ e U.

Let us denote f~'(a) nV[t] = {p1...., P> 415 -, dm} Where {py, ..., p} € V[{]~
\oV[] and {q,, ..., gm} € dV[t]. We can choose neighborhoods Uj, ..., U, of the
points py, ..., p, with the following properties:

a) U;c V[t]\oV[t] for i =1,2,...,k;

b) If f assumes the value a at the point p; with a multiplicity m; (i = 1,2, ..., k),
then for an arbitrary a’ € U exactly m, distinct simple roots of the equation f(z) = a’
lie in U,. Hence for an arbitrary a’ € U, the contributions of the points from U; to
n(t, a’) and n(t, a) are equal.

We will now investigate the points gy, ..., q,,. Let the neighborhoods V, ..., V,
of the points gy, ..., g,, have the property b) above. Then for an arbitrary a’ € U
the contributions of the points from V; to n(t, a’) are less or equal than to n(t, a),
as some preimages of the point a’ can lie outside of V[¢].

We will first prove (ii). It is self-evident that n(s;, a;) < n(t, a;) and according to
(iii) n(t, a;) < n(t, a) for every i sufficiently large. Hence (ii) is valid. As for (i) we
will prove it by contradiction. Assume (i) is false, then

lim sup n(r;, a;) > n(t, a).
i-» o

Passing to a subsequence if necessary, we may assume that we have lim n(r;, a;) >
i— o0

> n(t, a), where ry 2 r,... 2 t, and furthermore that V[r,] encloses the same

number of preimages of the point a as V[{], i.e., n(ry, a) = n(t, a). For every i suf-

ficiently large we have n(r;, a;) < n(ry, a;) < n(ry, a) = n(t, a), which contradicts

our assumption, therefore (i) is valid. :
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Proof of Corollary. The function n(t, a) is semi-continuous on the set [0, s) x M,
hence n(t, a) is also semi-continuous on the set [0, s) x y. The set [ry, r,] x 7 is
a compact set, thus the semi-continuous function n(t, a) is bounded on [ry, r,] x ¥
and hence integrable, QED.

Remark 2.1. Let y be a curve on M and L,(y) its length. Let ds be the element of
arc-length of the curve y and
ds

ds® = —_.
Lo(?)

The relation (7) can now be written as

s(r,7) = f (r,0) 45°a) .

Theorem 2.1 (Generalized Cartan’s formula). Let f:V - M be a holomorphic

mapping from a parabolic Riemann surface V into M, y a regular curve on M.
Then

(14) T(r) = J.YN(r, a) ds°(a) + S(r,f) .

Proof. From the relation (8) we obtain by integration

(15) "o(f) dt —J.rs(t, y) di| < k.er(t) dt .

Furthermore, (Fubini Theorem and Lemma 2.3)

:;s(t, y)dt = J.;( L n(t, a) ds°(a)> 5 e

J([e)at - st

Substitution in the relation (15) yields

(16) T(r) - ny(r a) ds°(a)

< S(r.f). QED.

3. THE CASE OF A PARABOLIC RIEMANN SURFACE

Theorem 3.1. Let f :V — M be a transcendental') holomorphic mapping from
a parabolic Riemann surface V into M a, e M, and D(a,) its neighborhood. Let
the portion of surface (M)} over the neighborhood D(a,) consist of a system of

1) Let us recall that the mapping f: YV — M is transcendental iff lim (r/T(r)) = 0, see [2].

r—o
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regions G, = (M) with the following properties: If G, = (M)} is an arbitrary
domain over D(ao)., then over every point a € D(ao) there lie just A, points and
1 £ 4, £ A < w; every ramification point of an order m is counted (m + 1)-
times. Then the value a, is not a deficient value of the mapping f, i.e.

6(ag) =0.

Proof. Let a, € M and let D(a,) be its neighborhood with the property required
by Theorem 3.1. Then every neighborhood U(ao) c D(ao) has this property. We
can choose a chart {U, ¢} in the neighborhood of the point a, so that ¢(a,) = 0 and

@(D(ag)) = {ze C |z| = 1}.
Then
y=0"'({zeC, |z| =R, R< 1})

is a regular curve in D(ao) a, € Int y, where
Inty = ¢~ '{zeC, || <R}).

Let d be the distance between y and dD(a,) on the surface M. Let F, denote the

closed set of the points from G,, lying over Int y. The set F, consists of not more than
A, closed regions. It is known that V and (M))’r are homeomorphic (even conformally
equivalent), i.e. a homeomorphic mapping ¥ exists,

iV (M),

Let us denote D, = y~(G,), C, = ¢y~ !(F,). Further, let a, be an arbitrary point
on y. Every set D, contains the same number of a,-points and a,-points, namely 4,.
All a,-points and a,-points are contained in JC, = UD,. If C, = V[r], then the

v v

functions n(r, a,) and n(r, a,) have the same increment on the set ¥[r]. The incre-
ment equals A,. ' :

Let k(r) denote the number of sets C, that have a nonempty intersection with both
V[r] and Y\ V[r]. Then

(17) n(r, a,) — n(r, aO) S AK(r),

as the number of a,-points in C, is less than or equal to A. If k(r) = 2, then the
whole V[r] cannot lie in a single set D,. If dV[r] intersects k(r) = 2 distinct sets C,,

then f(0V[r]) intersects “the ring” D(a,)\ Int y at least 2 k(r)-times, connecting the
points on dD(a,) with the points on y. Thus

(18) L) 2 2k(r).d,
. 1
(19) ko) S - L)
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From the relations (17) and (18) we obtain
(20) ) — i, ap) = A mian (1, koJ) < 4 (1 + %iL(r))
Integrating the relation (20) from r, to r we have

(21) N(r @) = N(r, a5) < 4 <r L f "L(1) dt).

ro

Further iniegration along y gives
(22) f N(r, @) ds® — N(r, ag) < A (r ; 5% f " L) dt).
v ro
Using Theorem 2.1 and Lemma 2.2 we have
(23) T(r) — N(r, ag) < 4 (r + éS(r, f)).
Using Theorem 1.2 on the left hand side of (23) we obtain

m(r, ap) < S(r,f), ie. &ag)=0, QED.

4. THE CASE OF A HYPERBOLIC RIEMANN SURFACE

We shall prove a theorem analogous to Theorem 3.1 for an open Riemann surface
with finite harmonic exhaustion. The following well-known lemma will be used

(see [2]):

Lemma 4.1. Suppose Y is a once differentiable positive increasing funétion
on [0,s), s < c. Then for every real number ¢ > 0,

' 1 ¢
v(r) s — ()}
s—r
for all re [0, s)\I,, where I, = [0, s) is an open set such that
f dlog(s —r)> —o0 .
I,

We recall that the relation (12) is also valid for a Riemann surface admitting
finite harmonic exhaustion. Since

r<s< o
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in this case, the relation (12) can be rewritten as

(24) - j L(t)dt £ \JL/s \Jo(r) .
If Lemma 4.1 is applied to the function T(r), the result is
or) £ ——(T(r}1+* .
s—r
The inequality
(25) N OE
\/(

is valid on [0, s)\I,.
Let T(r) grow so rapidly that

(26)

{T(r)}'*** (e > O arbitrary)

r)

\/(s - ){T(r)}”’” = o{T(r)}

is valid for ¢ € (0, 1/2). Then Lemma 2.2 is also true for a surface with finite harmonic
exhaustion.

Definition 4.1. Let Q(r, f) denote the quantity defined by
o(r, ) = of T(r)}
for r - s, r e [ro, s)\ I, where I, is the set from Lemma 4.1.
Lemma 4.2. Let f: V- M be a holomorphic mapping from an open Riemann

surface V, admitting finite harmonic exhaustion, into M. If the relation (26) is
valid, then

f:L(t) dt = (r,f).

Proof follows at once from the relations (24), (25), (26). Furthermore, the fol-
lowing theorems are true.

Theorem 4.1. Let f : V — M be a holomorphic mapping from an open Riemann

surface Y, admitting finite harmonic exhaustion, into M and let y be a regular
curve on M. If the relation (26) is valid, then

T(r) = JN(r, a)ds°(a) + Q(r, f) .
¢
(Thfs is generalized Cartan’s formula in the case s < 0.)
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Theorem 4.2. Let f : YV - M be a holomorphic mapping from an open Riemann
surface V, admitting finite harmonic exhaustion, into M. Let the relation (26) be
valid. Then under the assumptions of Theorem 3.1 its assertion also holds, i.e.
5((10) = 0.

The proofs of Theorems 4.1 and 4.2 are analogous to the proofs of Theorems 2.1
and 3.1. For this reason they are omitted.

Remark 4.1. It is possible to give a weaker condition on the rapidity of the growth
T(r) than (26). If Lemma 4.1 is applied to the function log T(r), the result is

%’)) < %r [log T(7)]"**,

ofr) < S—l_—r T(r) [log T(F)]***.

Then instead of (26) we can introduce the condition

(26 TV TO g T = o{T()}

Remark 4.2. In this remark an example of a mapping satisfying (26) is given. Let
D = {zeC, |z| < 1} and consider the function

2mi
f(2) 1+ exp (=2
defined on D. The point z = 1 is an essential singularity of f. The zeros of f in D
are located at z, = 1 — (1/3/k), k = 1,2, ... and so a circle of radius r < 1 encloses
at most 1/(1 — r)® zeros of f, up to a constant which is independent of r. Further,
we define a harmonic exhaustion of D with help of the function 7(z) = logelz|;
then 7 : D — [0, 1). Let us put r, = 2/e. Then

Jorenyara [ [ oo+ com Jorz e = 0 {2l

From First Main Theorem we obtain

)2 0{r )

hence T(r) satisfies the condition (26).
For the function f(z) = —1 + exp [2ni/(1 — z)*] we similarly obtain T(r) =
= 0 {1/(1 — r)} so that the condition (26) is not fulfilled.
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5. CLOSING REMARKS

In this section We mention several consequences of the preceding theorems. Most
of these results, known from [1], Chap. VI, are obtained here in a quite different
way. The following lemma will be needed:

Lemma 5.1 (Generalized 1’Hospital rule). Let g and h be differentiable functions
on an interval [a, b), b < oo, such that h' exists and is nowhere zero on [a, b). If

lim g(x) = lim h(x) = 0

x—=b- x—=b—
or if
lim g(x) = lim h(x) = o, .
x=b- x—=+b—
then
(27) liminf % < liminf ¢ < limsup < limsup Z.

x-=b— 4 x—=b— h x=>b— x=b—

Proof see [12].
(i) As a consequence of Lemma 2.2 we have

! L(r) dt
lim inf <™ =0

r—o T(r)
Because (|7, L(t) dt)’ = L(r) and (T(r))’ = v(r), we obtain using Lemma 5.1

L(t) dt
(28) lim iani(L) < lim infL =0

r-+on Ul r) r-wo T(I‘)

The relation (28) implies the following assertion:

If f:V—> M is a holomorphic mapping of a parabolic Riemann surface V
into M, then the covering surface (M)} is regularly exhaustible.

(ii) Similarly, we have as a consequence of Lemma 4.2:

Iff : V> Mis a holomorphic mapping of an open Riemann surface Y, admitting
finite harmonic exhaustion, into M, for which the relation (26) is valid, then the
covering surface (M)} is regularly exhaustible.

(iii) In the case of a parabolic Riemann surface H. Wu gave in [2] a simple proof
that f(V) is open dense in M. A much stronger result is known (see [1]): If V is para-
bolic, then M\ f(V) has the capacity zero.

The following assertion follows from Theorem 2.1:

If V is a parabolic Riemann surface and f:V — M a holomorphic mapping,
then for an arbitrary regular curve y on M the intersection

fV)ny

is nonempty.
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