

Werk

Label: Article Jahr: 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?31311157X_0105|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

CONJUGATE CYCLIC (v, k, λ) -CONFIGURATIONS*)

Věroslav Jurák, Poděbrady

(Received July 6, 1977)

I. BASIC DEFINITIONS AND THEOREMS

Definition 1. Let $\mathscr{X} = \{x_0, x_1, ..., x_{\nu-1}\}$ be a set of distinct integers modulo ν and $B_0, B_1, ..., B_{h-1}$ a system \mathscr{B} of distinct subsets (blocks) of \mathscr{X} . If the system \mathscr{B} satisfies the following axioms:

- (I) $|B_i| = k \ (i = 0, 1, ..., b 1),$
- (II) each pair of distinct elements of \mathscr{X} occurs together in exactly λ distinct sets of \mathscr{B} ,
- (III) the integers v, k, λ satisfy the inequalities $0 < \lambda, k < v 1$, then \mathcal{B} is called a (b, v, r, k, λ) -configuration. (As in [1].)

For the (b, v, r, k, λ) -configurations we have the following theorems:

- (IV) each element of \mathcal{X} occurs in exactly r sets of \mathcal{B} ,
- (V) bk = vr,
- (VI) $r(k-1) = \lambda(v-1)$,
- (VII) $b \ge v \ (\Rightarrow r \ge k)$.

(The proofs are in [1].)

Definition 2. Let $\mathscr{X} = \{x_0, x_1, ..., x_{v-1}\}$ be a set of distinct integers modulo v and $B_0, B_1, ..., B_{v-1}$ a system \mathscr{B} of distinct subsets (blocks) of \mathscr{X} . If the system \mathscr{B} satisfies the following axioms:

- (1) $|B_i| = k \ (i = 0, 1, ..., v 1),$
- (2) $|B_i \cap B_j| = \lambda$, $i \neq j$, (i, j = 0, 1, ..., v 1),
- (3) the integers v, k, λ satisfy the inequalities $0 < \lambda < k < v 1$,

^{*)} The author had presented this result in another form at the Conference on Graph Theory — Smolenice (Czechoslovakia), March 1976.

then \mathscr{B} is called a (v, k, λ) -configuration. (As in [1].) The system \mathscr{B} is also called the (v, k, λ) -configuration $(\mathscr{X}, \mathscr{B})$. We note that any (v, k, λ) -configuration is in fact a (v, v, k, k, λ) -configuration. (See [1].)

Definition 3. Two (v, k, λ) -configurations $(\mathcal{X}, \mathcal{B}), (\mathcal{X}, \mathcal{B}')$ are said to be identical if and only if $\mathcal{B} = \mathcal{B}'$, and we write $(\mathcal{X}, \mathcal{B}) = (\mathcal{X}, \mathcal{B}')$.

Proposition 1. Given a (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$, there exists no $(v + 1, v, k, k, \lambda)$ -configuration $(\mathcal{X}, \mathcal{B}^*)$ such that $\mathcal{B}^* = \mathcal{B} \cup B$ where $B \subset \mathcal{X}$, $B \neq B_i \in \mathcal{B}$ (i = 0, 1, ..., v - 1) and |B| = k.

Proof. From Theorem (V) we get

$$(v+1) k = vk$$

and this implies k = 0; a contradiction with Axiom (3).

Definition 4. An isomorphism α of a (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ is a permutation of \mathcal{X} such that if $x \in \mathcal{X}$ and $B \in \mathcal{B}$, then

$$x \in B \Leftrightarrow \alpha(x) \in \alpha(B)$$
.

(As in [2].) If $\alpha(\mathcal{B}) = \mathcal{B}$, then the isomorphism α is called an automorphism of the (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$.

Definition 5. A (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ is called *cyclic* if there exists its automorphism α such that

$$\alpha: i \mapsto i + 1 \pmod{v}$$
 for each $i \in \mathcal{X}$

and the system \mathcal{B} is denoted so that

$$B_i \mapsto B_{i+1}$$
, $i + 1 \pmod{v}$ for each $B_i \in \mathcal{B}$.

(As in [2].)

Proposition 2. For a given integer j define a mapping α of the given cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ onto $(\mathcal{X}, \mathcal{B})$ by

$$\alpha: i \mapsto i + j \pmod{v}$$
 for each $i \in \mathcal{X}$, and

$$B_i \mapsto B_{i+j}$$
, $i + j \pmod{v}$ for each $B_i \in \mathcal{B}$.

Then α is an automorphism of $(\mathcal{X}, \mathcal{B})$.

Proof. This Proposition follows from a composition of automorphisms from Definition 5.

Definition 6. A set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v is called a (v, k, λ) -difference set, if for each $d \not\equiv 0 \pmod{v}$ there are exactly λ distinct ordered pairs (a_i, a_j) , where $a_i, a_j \in D$, such that $a_i - a_j \equiv d \pmod{v}$. (As in [2].)

Theorem 1. A set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v is a (v, k, λ) -difference set if and only if a system of v sets $B_p = \{a_1 + p, a_2 + p, ..., a_k + p\}$ modulo v (p = 0, 1, ..., v - 1) is a cyclic (v, k, λ) -configuration. (Cf. the proof in [2].) Hence $B_0 = D$ and each set B_p is a (v, k, λ) -difference set.

We shall use the (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ where the system $\mathcal{B} = \{B_p\}$ (p = 0, 1, ..., v - 1) is the system of sets from Theorem 1, and its isomorphism α which is given by the following definition:

$$\alpha: x \mapsto v - x \pmod{v}$$
 for each $x \in \mathcal{X}$.

Theorem 1 implies

$$B_p = \{a_1 + p, a_2 + p, ..., a_k + p\} \pmod{v} (p = 0, 1, ..., v - 1).$$

Let p be a fixed integer. Then to each $d \not\equiv 0 \pmod{v}$ there exist exactly λ distinct ordered pairs $(a_i + p, a_j + p)$ where $a_i + p, a_j + p \in B_p$ such that

$$(a_i + p) - (a_i + p) = a_i - a_i \equiv d \pmod{v}.$$

We get

$$\alpha(B_p) = \{v - (a_1 + p), v - (a_2 + p), ..., v - (a_k + p)\} \pmod{v}$$

$$(p = 0, 1, ..., v - 1).$$

Let p be a fixed integer. Then to each $d \not\equiv 0 \pmod{v}$ there exist exactly λ distinct ordered pairs $(v - (a_j + p), v - (a_i + p))$ where $v - (a_j + p), v - (a_i + p) \in \alpha(B_p)$ such that

$$(v - (a_i + p)) - (v - (a_i + p)) = a_i - a_i \equiv d \pmod{v}$$
.

The foregoing remarks yield

Proposition 3. Let a set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v be a (v, k, λ) -difference set. Given a fixed integer p, then the set

$$\alpha(B_p) = \{v - (a_1 + p), v - (a_2 + p), ..., v - (a_k + p)\} \pmod{v}$$

is a (v, k, λ) -difference set. The system of sets

$$\overline{\mathcal{B}} = {\alpha(B_n)} \quad (p = 0, 1, ..., v - 1)$$

is a cyclic (v, k, λ) -configuration.

It is easy to see the validity of the following two propositions:

Proposition 4. Let a_i , a_j , p, v be integers. Then

$$v - a_i \equiv a_j + p \pmod{v} \Leftrightarrow a_i + a_j \equiv v - p \pmod{v}$$
.

Proposition 5. Let p be an integer and let $\mathcal{X} = \{x_0, x_1, ..., x_{v-1}\}$ be a set of distinct integers modulo v. Then the congruence

$$(*) v - x \equiv x + p \pmod{v}$$

has at most one solution from \mathscr{X} for v odd and at most two solutions from \mathscr{X} for v even.

These facts are important for the formulation of suppositions in the following considerations.

II. OBSERVATIONS FOR v ODD

Now, we shall prove the following

Lemma 1. Let v be an odd integer and let the set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v be a (v, k, λ) -difference set. We have here a cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ with the system $\mathcal{B} = \{B_p\}$ (p = 0, 1, ..., v - 1) where $B_p = \{a_1 + p, a_2 + p, ..., a_k + p\}$. If we define an isomorphism of $(\mathcal{X}, \mathcal{B})$ as follows:

$$\alpha: x \mapsto v - x \pmod{v}$$
 for each of $x \in X$,

then $B_p \neq \alpha(B_0)$ for all p = 0, 1, ..., v - 1.

Proof. To prove this lemma we consider four cases.

1. Let k be an odd integer. Let each $a_i \in B_0$ satisfy the condition $a_i + a_i \equiv v - p \pmod{v}$. Next, let the elements of B_0 be suitably denoted so that

$$a_{2r-1} + a_{2r} \equiv v - p \pmod{v},$$

where r = 1, 2, ..., (k - 1)/2. Hence we get that

$$v - a_{2r-1} \equiv a_{2r} + p \pmod{v}$$

and also

$$v - a_{2r} \equiv a_{2r-1} + p \pmod{v},$$

where r = 1, 2, ..., (k - 1)/2. Then $\alpha(B_0)$ and B_p have k - 1 elements in common. Since

$$a_k + a_k \not\equiv v - p \pmod{v}$$

(cf. the suppositions and Proposition 5), it follows that

$$v - a_k \not\equiv a_k + p \pmod{v}.$$

That is, $B_p \neq \alpha(B_0)$.

2. Let again k be an odd integer. Let the elements of B_0 be suitably denoted so that

$$a_1 + a_1 \equiv v - p \pmod{v}$$

and

(a)
$$a_{2r} + a_{2r+1} \equiv v - p \pmod{v}$$

for all r = 1, 2, ..., (k - 1)/2. Hence and from Proposition 4 it follows that $B_p = \alpha(B_0)$.

 2_1 . Now, let also λ be an odd integer. The number of congruences (a) is (k-1)/2, the number of differences $a_{2r} - a_{2r+1}$, $a_{2r+1} - a_{2r}$, (r = 1, 2, ..., (k-1)/2) is k-1 and in view of Axiom (3) it is k-1 < v-2. Hence there exists at least one number $d \equiv 0 \pmod{v}$ for which

$$a_{2r} - a_{2r+1}, a_{2r+1} - a_{2r} \not\equiv d \pmod{v}$$

for all r = 1, 2, ..., (k - 1)/2. Then it is possible that there exists a convenient s = 1, 2, ..., (k - 1)/2 such that

either
$$a_{2s} - a_1 \equiv d \pmod{v}$$
 or $a_1 - a_{2s} \equiv d \pmod{v}$.

This s fulfils

$$a_{2s} + a_{2s+1} \equiv v - p \pmod{v}.$$

Hence in the first case we have in fact also

$$a_1 - a_{2s+1} \equiv d \pmod{v}$$

and in the second case also

$$a_{2s+1} - a_1 \equiv d \pmod{v}.$$

Then to d in the first case there exist two pairs $(a_{2s}, a_1), (a_1, a_{2s+1})$ satisfying

$$a_{2s} - a_1, a_1 - a_{2s+1} \equiv d \pmod{v}$$

and in the second case there exist two pairs $(a_1, a_{2s}), (a_{2s+1}, a_1)$, satisfying

$$a_1 - a_{2s}, a_{2s+1} - a_1 \equiv d \pmod{v}$$
.

For each a_t , t = 2, 3, ..., k, $t \neq 2s$, it is

either
$$a_t - a_1 \not\equiv d \pmod{v}$$
 or $a_1 - a_t \not\equiv d \pmod{v}$.

If there exists no s with the above properties, then there are necessarily such m, n = 1, 2, ..., (k-1)/2, where $m \neq n$, that either the equivalence

$$a_{2m} - a_{2n} \equiv d \pmod{v} \Leftrightarrow a_{2n+1} - a_{2m+1} \equiv d \pmod{v}$$

or

$$a_{2m} - a_{2n+1} \equiv d \pmod{v} \Leftrightarrow a_{2n} - a_{2m+1} \equiv d \pmod{v}$$

holds. This means that to d there exist either two pairs (a_{2m}, a_{2n}) , (a_{2n+1}, a_{2m+1}) satisfying

$$a_{2m}-a_{2n}, a_{2n+1}-a_{2m+1}\equiv d \pmod{v}$$

or two pairs (a_{2m}, a_{2n+1}) , (a_{2n}, a_{2m+1}) satisfying

•
$$a_{2m} - a_{2n+1}, a_{2n} - a_{2m+1} \equiv d \pmod{v}$$
.

Altogether, we have that the number of pairs (a_i, a_i) with $a_i, a_i \in B_0$ such that

$$a_i - a_i \equiv d \pmod{v}$$
,

is even; a contradiction with λ odd, Hence $B_p \neq \alpha(B_0)$.

 2_2 . Now, let λ be an even integer. By congruences (a) we have

$$a_{2r} - a_{2r+1} \equiv 2a_{2r} - v + p \pmod{v}, \quad a_{2r+1} - a_{2r} \equiv 2a_{2r+1} - v + p \pmod{v}$$

Since all elements of B_0 are different, the same holds for all numbers $2a_{2r} - v + p$, $2a_{2r+1} - v + p \pmod{v}$ for all r = 1, 2, ..., (k-1)/2. None of these numbers are congruent with $0 \pmod{v}$ by the assumption and Proposition 5. Then to some $d \not\equiv 0 \pmod{v}$ there exists a convenient r = 1, 2, ..., (k-1)/2 such that the congruence

$$a_{2r} - a_{2r+1} \equiv d \pmod{v}$$

holds. To complete the proof we use the same argument as in 2_1 of this, proof, now with this d. However, now the number of pairs (a_i, a_j) with $a_i, a_i \in B_0$ such that

$$a_i - a_j \equiv d \pmod{v}$$

is even or zero. Hence we conclude that the number of these pairs (a_i, a_j) is odd; a contradiction with the assumption that it is even. Thus $B_p \neq \alpha(B_0)$.

3. Let k be an even integer. Let each $a_i \in B_0$ satisfy the condition $a_i + a_i \not\equiv v - p \pmod{v}$. Next, let the elements of B_0 be suitably denoted so that

$$a_{2r-1} + a_{2r} \equiv v - p \pmod{v},$$

where r=1,2,...,k/2. Hence and from Proposition 4 it follows that $B_p=\alpha(B_0)$. 3_1 . Let us consider the integer λ to be odd. The number of congruences (b) is k/2, the number of differences $a_{2r}-a_{2r-1}$, $a_{2r-1}-a_{2r}$ (r=1,2,...,k/2) is k and in view of Axiom (3) it is k < v - 1. Hence there exists at least one number $d \not\equiv 0 \pmod{v}$ for which

$$a_{2r} - a_{2r-1}, a_{2r-1} - a_{2r} \not\equiv d \pmod{v}$$

for all r = 1, 2, ..., k/2. Then there are necessarily such s, t = 1, 2, ..., k/2, where $s \neq t$, that either the equivalence

$$a_{2s} - a_{2t} \equiv d \pmod{v} \Leftrightarrow a_{2t-1} - a_{2s-1} \equiv d \pmod{v}$$

or

$$a_{2s} - a_{2t-1} \equiv d \pmod{v} \Leftrightarrow a_{2t} - a_{2s-1} \equiv d \pmod{v}$$

holds. This means that to d there exist either two pairs (a_{2s}, a_{2t}) , (a_{2t-1}, a_{2s-1}) satisfying

$$a_{2s} - a_{2t}, \ a_{2t-1} - a_{2s-1} \equiv d \pmod{v}$$

or two pairs $(a_{2s}, a_{2t-1}), (a_{2t}, a_{2s-1})$ satisfying

$$a_{2s} - a_{2t-1}, \ a_{2t} - a_{2s-1} \equiv d \pmod{v}$$
.

Hence we conclude that for this d the number of pairs (a_i, a_j) with $a_i, a_j \in B_0$ such that

$$a_i - a_j \equiv d \pmod{v}$$

is even; a contradiction with λ odd. Thus $B_p \neq \alpha(B_0)$.

 3_2 . Let λ be also an even integer. By congruences (b) we have

 $a_{2r} - a_{2r-1} \equiv 2a_{2r} - v + p \pmod{v}$, $a_{2r-1} - a_{2r} \equiv 2a_{2r-1} - v + p \pmod{v}$. As in $a_{2r} = 2a_{2r-1} - v + p \pmod{v}$, for all $a_{2r} = 1, 2, ..., k/2$. Then to each $a_{2r} \equiv 0 \pmod{v}$ there exists a convenient $a_{2r} = 1, 2, ..., k/2$ such that the congruence

$$a_{2r-1} - a_{2r} \equiv d \pmod{v}$$

holds. Now we proceed with this d in the same way as in 3_1 of this proof. We have here that the number of pairs (a_i, a_i) with $a_i, a_i \in B_0$ such that

$$a_i - a_j \equiv d \pmod{v}$$

is even or zero. Hence we conclude that the number of these pairs (a_i, a_j) is odd; a contradiction with the assumption that λ is even. Thus $B_p \neq \alpha(B_0)$.

4. Let k be an even integer. Let the elements of B_0 be denoted in a suitable way so that

$$a_1 + a_1 \equiv v - p \pmod{v}$$

and

$$a_{2r} + a_{2r+1} \equiv v - p \pmod{v}$$

for all r = 1, 2, ..., (k - 2)/2. Hence and from Proposition 4 it follows that B_p and $\alpha(B_0)$ have k - 1 elements in common. In view of Proposition 5 the congruence (*) is satisfied for precisely one element. With regard to the supposition we may assume that this occurs exactly for $x = a_1$, and thus it is

$$v - a_k \not\equiv a_k + p \pmod{v}$$
.

Then $B_p \neq \alpha(B_0)$.

This completes the proof of Lemma 1.

III. OBSERVATIONS FOR v EVEN

It is quite easy to verify

Proposition 6. Let v be an even integer. Then the equation

$$\lambda(v-1) = k(k-1)$$

(which follows from Theorem (VI)) is satisfied only for even λ . Now, we shall sketch the proof of the following

Lemma 2. Let v be an even integer and let a set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v be a (v, k, λ) -difference set. We have a cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ with the system $\mathcal{B} = \{B_p\}$ (p = 0, 1, ..., v - 1) where $B_p = \{a_1 + p, a_2 + p, ..., a_k + p\}$. If we define an isomorphism of $(\mathcal{X}, \mathcal{B})$ as follows:

$$\alpha: x \mapsto v - k \pmod{v}$$
 for each of $x \in \mathcal{X}$,

then $B_p = \alpha(B_0)$ for all p = 0, 1, ..., v - 1.

Proof. 1. Let k be an odd integer. Let each $a_i \in B_0$ satisfy the condition $a_i + a_i \not\equiv v - p \pmod{v}$. Further, let the elements of B_0 be denoted in a suitable way so that

$$a_{2r-1} + a_{2r} \equiv v - p \pmod{v}$$

where r = 1, 2, ..., (k - 1)/2. If we proceed in the same way as in part 1 of the proof of Lemma 1 then we have also $B_p \neq \alpha(B_0)$.

2. Let k be an odd integer. Let the elements of B_0 be denoted so that

$$a_1 + a_1 \equiv v - p \pmod{v}$$

and

$$a_{2r} + a_{2r+1} \equiv v - p \pmod{v}$$

for all r = 1, 2, ..., (k - 1)/2. Now we proceed in the same way as in 2_2 of the proof of Lemma 1. Here we have that $B_p \neq \alpha(B_0)$.

3. Let k be an odd integer. Let the elements of B_0 be denoted so that

$$a_1 + a_1 \equiv v - p \pmod{v},$$

 $a_2 + a_2 \equiv v - p \pmod{v}$

and

$$a_{2r-1} + a_{2r} \equiv v - p \pmod{v},$$

where r = 2, 3, ..., (k - 1)/2. Then B_p and $\alpha(B_0)$ have k - 1 elements in common. Since

$$a_k + a_k \not\equiv v - p \pmod{v}$$

it is

$$v - a_k \not\equiv a_k + p \pmod{v}$$

in view of Proposition 4. Hence $B_p \neq \alpha(B_0)$.

4. Let k be an even integer. Let $a_i + a_i \not\equiv v - p \pmod{v}$ for each $a_i \in B_0$. Further, let the elements of B_0 be denoted so that

$$a_{2r-1} + a_{2r} \equiv v - p \pmod{v}$$

where r = 1, 2, ..., k/2. Now we proceed in the same way as in 3_2 of the proof of Lemma 1. Here we have $B_p \neq \alpha(B_0)$.

5. Let k be an even integer. Let the elements of B_0 be denoted so that

$$a_1 + a_1 \equiv v - p \pmod{v}$$

and

$$a_{2r} + a_{2r+1} \equiv v - p \pmod{v}$$

for all r = 1, 2, ..., (k - 2)/2. We proceed in this case in the same way as in 4 of the proof of Lemma 1. Here we have that $B_p \neq \alpha(B_0)$.

6. Let k be an even integer. Let the elements of B_0 be denoted so that

$$a_1 + a_1 \equiv v - p \pmod{v}, \quad a_2 + a_2 \equiv v - p \pmod{v}$$

and

$$(c) a_{2r-1} + a_{2r} \equiv v - p \pmod{v}$$

for all r = 2, 3, ..., k/2. From the congruences (c) we obtain

$$a_{2r} - a_{2r-1} \equiv 2a_{2r} - v + p \pmod{v}, \quad a_{2r-1} - a_{2r} \equiv 2a_{2r-1} - v + p \pmod{v}.$$

As in 2_2 of the proof of Lemma 1 these differences are distinct, and $\not\equiv 0 \pmod{v}$ and here even $\not\equiv v/2 \pmod{v}$ for all r=2,3,...,k/2. Then to some $d\not\equiv 0,v/2 \pmod{v}$ there exists a convenient r=2,3,...,k/2 such that the congruence

$$a_{2r-1}-a_{2r}\equiv d\pmod{v}$$

holds. Note that

$$a_1 - a_2, a_2 - a_1 \not\equiv d \pmod{v}$$
.

If we proceed in the same way as in 3_1 of the proof of Lemma 1 with this d, we have again $B_p \neq \alpha(B_0)$.

This completes the proof of Lemma 2.

IV. CONCLUSION

Let, in this section, the set $D = \{a_1, a_2, ..., a_k\}$ of integers modulo v be a (v, k, λ) -difference set. Hence, the system $\mathcal{B} = \{B_p\}$, p = 0, 1, ..., v - 1 where $B_p = \{a_1 + p, a_2 + p, ..., a_k + p\}$ is a cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ and the system $\overline{\mathcal{B}} = \{\alpha(B_p)\}$, p = 0, 1, ..., v - 1 where $\alpha(B_p) = \{v - (a_1 + p), v - (a_2 + p), ..., v - (a_k + p)\}$ is also a cyclic (v, k, λ) -configuration $(\mathcal{X}, \overline{\mathcal{B}})$.

We may summarize the results of the foregoing observations:

Proposition 7. In view of Proposition 1 we can prolongate a cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ neither by $\alpha(B_0)$ nor by any one of $\alpha(B_p)$ (p = 1, 2, ..., v - 1).

Proposition 8. Given a cyclic (v, k, λ) -configuration $(\mathcal{X}, \mathcal{B})$ and its isomorphism

$$\alpha: x \mapsto v - x$$
 for each $x \in \mathcal{X}$,