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I. BASIC DEFINITIONS AND THEOREMS

Definition 1. Let 2 = {x,, xy, ..., x,,_l} be a set of distinct integers modulo v
and By, By, ..., B,_; a system % of distinct subsets (blocks) of Z. If the system 2
satisfies the following axioms:

(@) |B| =k (i=0,1,....,b - 1),
(IT) each pair of distinct elements of % occurs together in exactly 4 distinct sets
of 4,

(III) the integers v, k, A satisfy the inequalities 0 < 4, k < v — 1,
then 4 is called a (b, v, r, k, A)-configuration. (As in [1].)

For the (b, v, 1k, A)-conﬁgurations we have the following theorems:

(IV) each element of & occurs in exactly r sets of %,
(V) bk = or,
(VI) r(k — 1) = (v — 1),
(VI) b 2 v (=r 2 k).
(The proofs are in [1].)

Definition 2. Let Z = {x,, xy, ..., X,—} be a set of distinct integers modulo v and
By, By, ..., B, a system 2 of distinct subsets (blocks) of & If the system # satisfies
the following axioms:

(1) |Bl =k (i=0,1,..,0—1),
(2) |BinB)| =4, i+j, (i,j =0,1,...,0 = 1),

(3) the integers v, k, 4 satisfy the inequalities 0 < A < k < v — 1,

*) The author had presented this result in another form at the Conference on Graph Theory —
Smolenice (Czechoslovakia), March 1976.
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then 4 is called.a (v, k, A)-configuration. (As in [1].) The system 4 is also called the
(v, k, A)-configuration (Z, #). We note that any (v, k, 4)-configuration is in fact
a (v, v, k, k, A)-configuration. (See [1].)

Definition 3. Two (v, k, A)-configurations (%, 8), (Z, #’) are said to be identical
if and only if Z = %', and we write (', 8) = (2, #').

Proposition 1. Given a (v, k, A)-configuration (%, #), there exists no (v + 1, v, k,
k, A)-conﬁguration (.96“, .43*) such that #* = 20U B where B< %, B+ B;e¢ %
(i=0,1,....,v— 1) and |B| = k.

Proof. From Theorem (V) we get
v+ 1)k = vk
and this implies k = '0; a contradiction with Axiom (3)
Definition 4. An isomorphism o of a (v, k, 4)-configuration (%, %) is a permutation
of & such that if x € & and B € 4, then
x € B < ox) e oB).

(As in [2].) If «(#) = 4, then the isomorphism « is called an automorphism of the
(v, k, A)-configuration (%, B).

Definition 5. A (v, k, 4)-configuration (Z, %) is called cyclic if there exists its auto-
morphism a such that

a:i+>i+ 1 (modv) foreach ied
and the system 2 is denoted so that
B, B;,;, i+ 1 (modv) foreach B,eZ.

(Asin [2])

Proposition 2. For a given integer j define a mapping o of the given cyclic (v, k, A)-
configuration (%, &) onto (', &) by

a:i+>i+ j(modv) foreach ieZ, and
B;—B;.;, i+ j(modv) foreach B;eZ.
Then a is an automorphism of (%, ).

Proof. This Proposition follows from a composition of automorphisms from
Definition 5.
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Definition 6. A set D = {a,, a,, ..., a;} of integers modulo v is called a (v, k, 1)-
difference set, if for each d ¥ 0(mod v) there are exactly A distinct ordered pairs
(a;, a;), where a;, a; € D, such that a; — a; = d (mod v). (As in [2].)

Theorem 1. A set D = {ay, a,, ..., a,} of integers modulo v is a (v, k, A)-difference
set if and only if a system of v sets B, = {a, + p,a, + p,..., a, + p} modulo v
(p=0,1,...,v—1) is a cyclic (v, k, A)-configuration. (Cf. the proof in [2].)
Hence B, = D and each set B, is a (v, k, A)-difference set.

We shall use the (v, k, A)-configuration (Z, #) where the system % = {B,}
(p=0,1,...,v — 1) is the system of sets from Theorem 1, and its isomorphism «
which is given by the following definition:

a:x+>v— x(modv) foreach xeZ .
Theorem 1 implies

B,={a, + p,a; + p,...,a, + p} (modv) (p =0,1,...,0—1).

Let p be a fixed integer. Then to each d % O(mod v) there exist exactly A distinct
ordered pairs (a; + p, a; + p) where a; + p,a; + pe B, such that

(@i +p)—(a; + p) = a; — a; = d (mod v).
We get

«B,) = {v —(a; + p),v—(ay + p),...,v — (a, + p)} (mod )
(p=0,1,...,v—1).

Let p be a fixed integer. Then to each d % 0 (mod v) there exist exactly A distinct
ordered pairs (v — (a; + p), v — (a; + p)) where v — (a; + p), v — (a; + p)e
€ «(B,) such that

(v—(aj+p)—(—(a;+p)=a;,—a;=d (modv).
The foregoing remarks yield

Proposition 3. Let a set D = {ay, a,, ..., a;} of integers modulo v be a (v, k, 1)-
difference set. Given a fixed integer p, then the set

«(B,) = {v — (a; + p), v — (az + p),...,v — (a; + p)} (mod v)
is a (v, k, A)-difference set. The system of sets-

% ={«B,)} (p=0,1,...,0—1)

is a cyclic (v, k, A)-configuration.
It is easy to see the validity of the following two propositions:

Proposition 4. Let a;, a;, p, v be integers. Then

v—a;=a;+ p(modv)<>a;, +a;=v— p (modv).
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Proposition 5. Let p be an integer and let & = {x,, Xy, ..., X,_} be a set of distinct
integers modulo v. Then the congruence

(*) v —x =x+ p (modv)

has at most one solution from Z for v odd and at most two solutions from Z for v
even.

These facts are important for the formulation of suppositions in the following
considerations. '

II. OBSERVATIONS FOR v ODD
Now, we shall prove the following

Lemma 1. Let v be an odd integer and let the set D = {ay, a,, ..., a;} of integers
modulo v be a (v, k, A)-difference set. We have here a cyclic (v, k, A)-configuration
(%, B) with the system # = {B,} (p=0,1,...,0— 1) where B, ={a, + p,
a, + p,...,a; + p}. If we define an isomorphism of (Z, %) as follows:

a:x+ v — x (modv) foreachof xeX,
then B, + o«(B,) for allp =0,1,...,v — 1.

Proof. To prove this lemma we consider four cases.
1. Let k be an odd integer. Let each a; € B, satisfy the condition a; + a; =
= v — p(mod v). Next, let the elements of B, be suitably denoted so that

@3-y + a3, = v — p (mod v),
where r = 1,2, ..., (k — 1)/2. Hence we get that

I P = a, + p (mod v)
and also

U — ay = az-y + p (modv),

where r = 1,2, ..., (k — 1)/2. Then «(B,) and B, have k — 1 elements in common.
Since
‘ay + a, £ v — p (mod v)

(cf. the suppositions and Proposition 5), it follows that
v—a,£a +p (mdd.v).
That is, B, + a(B,).
2. Let again k be an odd integer. Let the elements of B, be suitably denoted so that

a; +a; =v— p (modv)
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and

(a) ay + 3,4y = v — p (mod v)

for all r = 1,2, ...,(k — 1)/2. Hence and from Proposition 4 it follows that B, =
= a(B,).

2,. Now, let also A be an odd integer. The number of congruences (a) is (k — 1)/2,
the number of differences a,, — Gz41, G2r41 — G2 (r=1,2,...,(k — 1)[2) is
k — 1 and in view of Axiom (3) itis k — 1 < v — 2. Hence there exists at least one
number d % 0 (mod v) for which

Ay — Q2p415 A1 — Ay E‘E d (mOd ‘U)

for all r =1,2,...,(k — 1)/2. Then it is possible that there exists a convenient
s=1,2,...,(k — 1)/2 such that

either a,, — a; = d (modv) or a, — a,,=d (modv).
This s fulfils
Ay, + Gz, = v — p (modv).
Hence in the first case we have in fact also
a; — a4y = d (mod v)
and in the second case also
dy41 — a; = d (mod v).
Then to d in the first case there exist two pairs (a,s, a4), (a4, @55+ ,) satisfying
Ay — Gy, Ay — A4 = d (mod v)
and in the second case there exist two pairs (ay, d,,), (@254 1, 1), satisfying
a; — Ay, Ay,4y — ay = d (mod v).
For each a,, t =.2, 3,...k, t + 2s,itis
either a, —a, £ d (modv) or a; —a, % d (modv).

If there exists no s with the above properties, then there are necessarily such m, n =
=1,2,...,(k — 1)/2, where m =+ n, that either the equivalence

Ay — A2, = d (Mod v) <> a3, 1 — dzmsy = d (mod v)
or
Aym — Agpvy = d (mod v) <> ay, — aymsy = d (mod v)

holds. This means that to d there exist either two pairs (@zm, @24), (A2n+ 1> G2m+1)
satisfying

Aym — Q2py A2p41 — Qomer = d (mOd U)
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or two pairs (azm, @2n+1)s (@20, A2m+ ) satisfying
* Gym — G241 G2n — G2m+y = d (mod v).
Altogether, we have that the number of pairs (a,, a;) with a;, a; € B, such that
a; —a; =d (modv),

is even; a contradiction with A odd, Hence B, + a(Bo).
2,. Now, let A be an even integer. By congruences (a) we have

A — Q3,41 =243, — v+ p (mod ), az4y — a3 = 2a3,4; — v + p (mod v)

Since all elements of B, are different, the same holds for all numbers 2a,, — v+ p,
2a3,+1 — v + p(modv) for all r = 1,2,...,(k — 1)/2. None of these numbers are
congruent with 0 (mod v) by the assumption and Proposition 5. Then to some d
# 0(mod v) there exists a convenient r = 1,2, ...,(k — 1)/2 such that the con-
gruence

ay — G4 = d (mod v)

holds. To complete the proof we use the same argument as in 2, of this, proof, now
with this d. However, now the number of pairs (a;, a;) with a;, a; € B, such that

a; — a; = d (mod v)

is even or zero. Hence we conclude that the number of these pairs (a;, ;) is odd;
a contradiction with the assumption that it is even. Thus B, #+ «(B,).

3. Let k be an even integer. Let each a; € B, satisfy the condition a; + a; %
% v — p (mod v). Next, let the elements of B, be suitably denoted so that

(b) az—1 + a3 =v — p (modv),

where r = 1,2, ..., k[2. Hence and from Proposition 4 it follows that B, = a(B,).
3,. Let us consider the integer A to be odd. The number of congruences (b) is k/2,
the number of differences a,, — ay,—q, a3,—1 — a5, (r = 1,2,...,k[2) is k and in
view of Axiom (3) it is k < v — 1. Hence there exists at least one number d %
% 0 (mod v) for which '
’ a3 — Gy,_y, A3,y — Gz F d (mod v)

for all r = 1,2, ..., k[2. Then there are necessarily such s,t = 1,2, ..., k2, where
s ¥ t, that either the equivalence

as — a3, =d (modv)<>a,,_; — ay,—y =d (modv),
or . )
ays — a3y = d (mod v) <> a,, — ay,_; = d (modv)

holds. This means that to d there exist either two pairs (a,, as,), (@2,—1, @25—1)
satisfying
Ays — Agpy Ggp—q — A5y = d (mod v)
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or two pairs (azS, A3e-1)s (az,, az,-1) satisfying
Ay — @341, Gz, — Gz4-y = d (mod v).

Hence we conclude that for this d the number of pairs (a;, a;) with a;, a
that

; € Bg such

a; — a; = d (mod v)

is even; a contradiction with 4 odd. Thus B, + «(B,).

3,. Let 4 be also an even integer. By congruences (b) we have
ay, — a3y =245, — v + p (modv), a,_, — a; =2a,_, — v+ p (modv).
As in 2, of this proof these differences are distinct, in fact % 0 (mod v), for all
r =1,2,...,k/2. Then to each d % 0 (mod v) there exists a convenient r = 1,2, ...
— k/2 such that the congruence

Ay -1 — Gy, = d (mod v)
holds. Now we proceed with this d in the same way as in 3, of this proof. We have
here that the number of pairs (a;, a;) with a;, a; € B, such that
a; — a; = d (mod v)

is even or zero. Hence we conclude that the number of these pairs (a;, a;) is odd;
a contradiction with the assumption that 4 is even. Thus B, % a(B).
4. Let k be an even integer. Let the elements of B, be denoted in a suitable way
so that
a; +a; =v— p (modv)
and
zp + A3ppy =V — P (mOd U)

for all r =1,2,...,(k — 2)/2. Hence and from Proposition 4 it follows that B,
and a(BO) have k — 1 elements in common. In view of Proposition 5 the congruence
(*) is satisfied for precisely one element. With regard to the supposition we may
assume that this occurs exactly for x = a,, and thus it is

v— a, % a; + p (modv).
Then B, + a(B,).
This completes the proof of Lemma 1.
III. OBSERVATIONS FOR v EVEN

It is quite easy to verify

Proposition 6. Let v be an even integer. Then the equation

Mo —1)=k(k — 1)
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(which follows from Theorem (V1)) is satisfied only for even J.
Now, we shall sketch the proof of the following

Lemma 2. Let v be an even integer and let a set D = {a,, a,, ..., a;} of integers
modulo v be a (v, k, A)-difference set. We have a cyclic (v, k, 1)-configuration
(#, B) with the system # ={B,} (p=0,1,...,0 — 1) where B, = {a, + p,
a, + ps ..., a, + p}. If we define an isomorphism of (%, ) as follows:

a:x+>v— k (modv) foreachof xeZ,
then B, % o(B,) forallp =0,1,...,v — 1.

Proof. 1. Let k be an odd integer. Let each a; € B, satisfy the condition a; + a; #
% v — p(mod v). Further, let the elements of B, be denoted in a suitable way so
that

Ay + a3, = v — p (mod v)
where r = 1,2, ...,(k — 1)[2. If we proceed in the same way as in part 1 of the
proof of Lemma 1 then we have also B, + o(B,).
2. Let k be an odd integer. Let the elements of B, be denoted so that

a; +a; =v— p (mod )
and
Ay + Q3,41 =0 — P (mOd U)

forallr=1,2, ...,(k — l)/2. Now we proceed in the same way as in 2, of the
proof of Lemma 1. Here we have that B, + a(B,).
3. Let k be an odd integer. Let the elements of B, be denoted so that

a, +a;,=v—p(modv),
a, + a, = v — p (mod )
and
Azr-1 + a;=0—p (mOd U),

where r = 2,3, ..., (k — 1)/2. Then B, and a(B,) have k — 1 elements in common.
Since

a, + a, £ v — p (modv)
it is
v — a; ¥ a; + p (mod v)
in view of Proposition 4. Hence B, + a(B,).
4. Let k be an even integer. Leta; + a; £ v — p (mod v) for each a; € B,. Further,
let the elements of B, be denoted so that

ay_4 + a5, = v — p (mod v)

where r= 1,2,..., k[2. Now we proceed in the same way as in 3, of the proof of
Lemma 1. Here we have B, + o(B,).
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5. Let k be an even integer. Let the elements of B, be denoted so that

a; + a; =v — p (modv)
and
dy + Az41 = v — p (mod v)
forallr = 1,2,...,(k — 2)/2. We proceed in this case in the same way as in 4 of the
proof of Lemma 1. Here we have that B, & a(B,).
6. Let k be an even integer. Let the elements of B, be denoted so that

a; +a; =v—p(modv), a,+a,=v— p(modv)
and
(c) a3—1 + az, = v — p (mod v)
forall r = 2,3, ..., k[2. From the congruences (c) we obtain
Ay — Ayp—y =2a5, — v + p (modv), dy-y — a3 =245,y — v + p (modv).

As in 2, of the proof of Lemma 1 these differences are distinct, and £ 0 (mod v)
and here even # v[2 (mod v)forallr = 2,3, ..., k[2. Thentosome d = 0, v/2 (mod v)
there exists a convenient r = 2, 3, ..., k/2 such that the congruence

A1 — a3, = d (mod v)
holds. Note that
a; — a,, a, — a, = d (modv).
If we proceed in the same way as in 3, of the proof of Lemma 1 with this d, we have
again B, + a(B,).
This completes the proof of Lemma 2.

IV. CONCLUSION

Let, in this section, the set D = {al, a,, ..., a} of integers modulo v be
a (v, k, A)-difference set. Hence, the system # = {B,}, p=0,1,...,0 — 1 where
B, ={a; + p,a;, + p,...,a, + p} is a cyclic (v, k, 1)-configuration (%, #) and
the system % = {a(B,)}, p=0,1,...,v — 1 where «B,) = {v — (a; + p),
v — (ay + p),...,v — (a, + p)} is also a cyclic (v, k, A)-configuration (%, ).

We may summarize the results of the foregoing observations:

Proposition 7. In view of Proposition 1 we can prolongate a cyclic (v, k, 1)-con-
figuration (Z, %) neither by a(B,) nor by any one of «(B,) (p =1,2,...,v — 1).

Proposition 8. Given a cyclic (v, k, A)-configuration (%, #) and its isomorphism

a:x+v—Xx foreach xeX,
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