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0. INTRODUCTION

Let H be a real Hilbert space with inner product <+, +» and with the corresponding
norm | +|. Let K be a closed convex cone in H with its vertex at the origin, We shall
suppose that 4 : H —» H is a linear symmetric completely continuous operator. We
shall consider the following problem:

M . uek,
(0] {u — Au,v —u) =0 forall vek,

where 1 is a real parameter. A real number A is said to be an eigenvalue of the varia-
tional inequality (I), (II) if there exists a nontrivial u satisfying (I), (II). In this case
the element u is said to be the corresponding (to 1) eigenvector of the variational
inequality (I), (IT). The aim of this paper is to study the existence of eigenvalues and
eigenvectors of the variational inequality which are not eigenvalues and eigenvectors
of the operator A. The basic idea is the following. We shall introduce a penalty
operator f (for the properties of f see Section 2) and consider an eigenvalue 1) of 4
corresponding to an eigenvector u(® ¢ K of A. Starting with 1, = A, uy = u®,
we want to prove the existence of branches 4,, u, (¢ € <0, + o)) satisfying the equation
with the penalty

A, — Au, + efu, =0

and converging to an eigenvalue A, and an eigenvector u,, of (I), (II). The original
idea was to prove the existence of such functions 4,, u, on the basis of the abstract
implicit function theorem. A result of this type was announced in [8] (without
proof) and a complete version of this part of the theory is given in [9]. However,
this approach requires very strong assumptions (it is supposed that the linear operator
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A — & p'(u) for an arbitrary fixed u € H and ¢ 2 0 has only simple eigenvalues) and
only very simple examples covered by the theory are known to the author. In the
course of inyestigation, it turned out that it is possible to use the known global results
of the bifurcation theory to prove the existence of branches of eigenvalues and
eigenvectors of the equation with the penalty. This approach seems to be substantially
more effective. Under certain assumptions it is possible to start with the eigenvalue
A of A of an arbitrary multiplicity and with the corresponding eigenvector u(® ¢ K
and to prove the existence of a closed connected (in a certain sense) and unbounded
ineset Sy of triplets [4, u, e] € R x H x R satisfying the conditions [A, u(®, 0] € S,

lu =1, 2 <2<2*, u¢kK,
Au— Au + efu=0,

where A,, A* are some suitable eigenvalues of A. Such a set S, contains at least one
sequence [4,, u,, & such that 1, - 4, u, - u,, where 1, and u,, is an eigenvalue
and an eigenvector of (I), (II), respectively. Moreover, u,, € 0K and it is a “new eigen-
vector of (I), (I)”, i.e. u,, is not an eigenvector of 4. In certain cases, this method
yields an infinite sequence of eigenvalues and “new” eigenvectors of (I), (II). In
special cases the set S, can be described by smooth functions 4,, u, (see [9]).

In this paper we shall study the case of a simple initial eigenvalue A(°). It is easier
than the case of a multiple eigenvalue A® which will be treated in the paper [10].
The proof of existence of an unbounded branch S, for a simple eigenvalue A is
based on a global bifurcation result of E. N. DANCER [3] (see Section 3).

A classification of eigenvalues of (I), (II) and of 4 is given and their basic properties
are explained in Section 1 of this paper. The main result is formulated in Section 2
(Theorems 2.1, 2.2, 2.3). Further, general properties of the branches S, of the above
mentioned type with the exception of the fact that S, is unbounded are proved.
This represents the first part of the proof of the main results. Section 3 contains an
explanation of the above mentioned result of E. N. Dancer [3] (which is a streng-
thening of Rabinowitz’s result [14]). Further, on the basis of this result it is proved
that under certain assumptions the branch S, is unbounded. This is the second part
of the proof of the main theorems. Applications to the case of variational inequalities
describing a beam which is supported by fixed obstacles are given in Section 4.

A very special situation occurs if K is a halfspace. This corresponds to the case
of “one point obstacle” (i.e. n = 1 in the notation of Example 1.1 and Section 4).
In this case, the method from the papers [8], [9] can be used and 4, is a decreasing
function. Moreover, the eigenvalues of (I), (II) can be calculated in concrete examples
on the basis of a method given by S. Fu¢ik, J. MiLoTA [7] and therefore our theory
has no practical significance for this special case.

The eigenvalue problem for variational inequalities in a more general setting is
studied in [11], where we use a modification of the Ljusternik-Schnirelamann theory
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for the corresponding penalty problem. We obtain formally infinitely many eigen-
values (or critical levels in a more general situation) but it is not clear if they all are
mutually different. A better situation occurs again in the case of a halfspace. Using
a certain special trick, we prove the existence of an infinite set of mutually different
eigenvectors lying on 0K with the corresponding critical levels (or eigenvalues)
converging to zero.

Let us remark that E. MIERSEMANN investigated a more general variational ine-
quality than (I), (II) (with nonlinear operators) on a cone. He proved the existence
of n bifurcation points, where n is determined by the parameters of the problem (see
[12]). The proof is based on a Krasnoselskij’s sup-min principle.

Speaking about the eigenvalue problem for variational inequalities, we should
mention also other papers about this topic (for example [1], [2], [4], [5], [6]. [13],
[15]). However, the approach to the problem in these papers is completely different
from that explained above and the existence results are of the other type than in the
present paper.

1. TERMINOLOGY AND GENERAL REMARKS

Denote by dK and K° the boundary and the interior of K, respectively. The sets
of all eigenvalues of the operator A and of the variational inequality (I), (II) will be
denoted by A4, and A, respectively. Analogously, we shall denote by E, and E, the
sets of all eigenvectors of the operator 4 and of the variational inequality (I), (II),
respectively. The strong convergence and the weak convergence will be denoted by —
and —, respectively.

Remark 1.1. It is easy to see that E,nK < Ey, E, n K° = E, n K°. The
second assertion follows from the fact that if u € K° then there exists 8 > 0 such that
v=w+ ueK forall we H, |w| < 6 and therefore (II) implies

(u — Au,w) 20 forall weH, |w]|<6.

The last inequality holds also for all w e H which means Au — Au = 0.

Definition 1.1. We shall say that

(1) Aedy is a boundary eigenvalue of (I), (II) if there exists a corresponding
eigenvector u € 9K n E, and there is no u € K° n E, corresponding
to 4;

(2) AeAy is an interior eigenvalue of (I), (II) if 4 is not a boundary eigenvalue
of (I), (I) and there exists a corresponding eigenvector u € K° n Ey;

(3) AeAy, is a boundary (with respect to K) eigenvalue of A if there exists a cor-

responding eigenvector u € K n E, and there is no u € K° n E, cor-
responding to 4;
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(4) Ae A, is an interior (with respect to K) eigenvalue of A if there exists a cor-
responding eigenvector u € K° n E;

(5) 4eAy is an external (with respect to K) eigenvalue of A if u ¢ K for all the
corresponding eigenvectors u € E ,.

The set of all interior eigenvalues of (I), (II) (or 4*’) will be denoted by A;. Further,
we shall denote by Ay , 4, and A, the set of all boundary eigenvalues of (I), (II),
the set of all boundary eigenvalues of A and the set of all external eigenvalues of A4,
respectively.

Remark 1.2. It is clear that Ay, = A; U Ay, A;N Ay, = 0. Analogously,
Ayg=A;,0 4,0 A, ;0 4, =0, 4,n A, =0, A;n A, = 0. Further, 4, < Ay,
On the other hand, if A € 4y ,, then there are three possibilities (the concrete illustra-
tion will be given in Example 1.1):

() A€ 4,, ie. Ais simultaneously a boundary eigenvalue of A4; in this case there is
a common eigenvector u€ 0K N E, 0 E, of A and of (I), (II) corresponding
to 4;

(B) A€ A, ie. Ais simultaneously an eigenvalue of 4 but the corresponding eigen-

vectors of 4 are not in K, i.e. they are different from the corresponding eigenvec-
tors of (I), (IT);

(v) A¢ A4

Remark 1.3. In general, the set of eigenvectors of (I), (II) corresponding to a given
eigenvalue A € Ay, need not to be convex. (See Bxample 1.1.) A certain information
about the structure of the set of eigenvalues of (I), (II) corresponding to a given
eigenvalue 1€ A, n A, is given by Lemma 1.1 below.

Lemma 1.1. Suppose that 1€ A, and there is a corresponding eigenvector u, e
€eE,nK. If u;eEy is an arbitrary eigenvector of (I), (II) corresponding to 1,
then for arbitrary t, 2 0,-t; = 0 the point u = tquy + t,u, is an eigenvector
of (1), (II) corresponding to A, too. Moreover, if uy€ E, 0 K°, then E,() n K =
= Ey(A), where E,(2) and E,(2) denote the sets of all eigenvectors of A and of (1),
(IT), respectively, corresponding to A.

Proof. It is easy to see that the conditions (I), (II) are equivalent to the condition
(1) and
(1.1) u — Au,v) 20 forall vekK;
(1.2) {Au — Au,u) = 0.

*) A number A is an interior eigenvalue of A if and only if it is an interior eigenvalue of (I)
(I1). The corresponding eigenvectors of (I), (II) lying in K 0 are those of 4. This follows from
Remark 1.1.
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Clearly, (I) and (1.1) are true for u = touy + tyu; (to 2 0, t; = 0). Using (1.2) for
ug, Uy, Wwe obtain

<A(t0“0 + tlul) == A(touo + tlul), todo + t1u1> =
= 2t0t1</1u0 - Auo, u1> = 0

because u, is an eigenvector of A. Thus (1.2) is proved and that means u € Ey.
Further, let uoe K°. It is clear that E,(1) n K = E,(4). On the other hand, if
u, € E,(A), then we have proved that tu, + (1 — t)u, € Ey(4) for all te<0, 1).
Moreover, it is clear that tuy + (1 — t)u, € K° for 1€ (0,1) and therefore tu, +
+ (1 — t)uy € E4(2) for all t€ (0, 1) (cf. Remark 1.1). The set E(4) is closed and
therefore u; € E 4(4).

Remark 1.4. It is possible that there are eigenvalues in A, , which are not simple*)
even in the case that the operator A has only simple eigenvalues (see Example 1.1
and [6, Section 1]). Nonetheless, it follows from Lemma 1.1 that A € 4; is a simple
eigenvalue of (I), (IT) if and only if 4 is a simple eigenvalue of 4.

The definitions and assertions mentioned in this section can be best illustrated by
the following Example 1.1, in which the set of eigenvalues and eigenvectors of (I),
(IT) can be completely described in an elementary way (see [6, Section 1]).

Example 1.1. Denote by H = W;(O, 1) the well-known Sobolev space of all
absolutely continuous functions on <0, 1) vanishing at 0 and 1 whose derivatives are
square integrable over {0, 1). Introduce the inner product on H by

1
{u,v) = J u'v'dx forall u,veH
0

(instead of the usual equivalent inner product (u,v) = [g (u'v’ + uv)dx). Set
K={ueH; u(x)20, i=1,...,n}, where x;€(0,1) (i=1,...,n) are given
numbers (n is positive integer). Let us define the operator 4 by

1
(Au, v) =J uvdx forall u,veH.
0
It is easy to see that 1 € A, and a nontrivial u is a corresponding eigenvector from E,
if and only if u has a continuous second derivative on <0, 1) and
(1.3) " +u=0 on (0,1),
(1.4) u(0) =u(1)=0.

*) By a simple eigenvalue of (I), (I) we mean a number 4 € 4, such that there exists only one
corresponding eigenvector u € Ey, with |u| = 1.
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Further, denote xo = 0, x,,; = 1, u'(x;+) = lim w/(x,). It is easy to show that
x—x;it

A€ Ay and u is a corresponding eigenvector from Ej if and only if u is a nontrivial

continuous function on <0, 1) with a continuous second derivative on (x;, x;4,)

(i =0,..., n) satisfying

(1.5) W +u=0 on (x,x%41), i=0,..,n,
(1.6) u(0) = u(1) = 0,

(1.7) u(x)20, i=1,..,n,

(1.8) w(x,~)—uw(x+)20, i=1,..,n,

(1.9 u(x) [w'(x;—) — v'(x;+)] =0, i=1,..,n.
Mor'eover, A€ Ay, if and only if each corresponding eigenvector u satisfies
u(x;) = 0 at least for one i.
Analogously, A € A; if and only if the corresponding eigenvector satisfies the con-
dition
u(x;) >0 forall i=1,...,n.

Let us show that all the situations described in Remark 1.2 are possible.

If we take n =1, x, = }, then 4 = (})* (1/n*) e A4y, is the second eigenvalue
of (I), (IT) corresponding to the eigenvector uy € Ey,

0 on <0, x,),

—singn(x — ) on {(x;, 1),

uy(x) = <

but it is not an eigenvalue of 4 (see Fig. 1.1).

Fig. 1.1

If we choose n = 2, x; = 4, x, = %, then A = (3)? (1/n%) € 4y, N A, is the second
eigenvalue of (I), (II) and simultaneously the second eigenvalue of 4. However, we
have u, ¢ K, —u,¢K, u, + uy, ¥+ —u,, where

ol = <(_)- : on <0, x;)uU<x,; 1),

sin 27(x — 1) on <{x;,x,),

u (x) =sin27x on <0,1),
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u, € E, is a corresponding eigenvector of 4 and u, € E, is a corresponding eigen-
vector of (I), (IT) (see Fig. 1.2).

Fig. 1.2

By the same choice of X,, X,, the value A = (})? (1/n*) e 4, (i.e. also L€ Ay ) is
the fourth eigenvalue of A and simultaneously the third eigenvalue of (I), (II), cor-
responding to a common eigenvector u € E, N Ey, u(x) = sin 4nx.

; SN N,
S N A NG

Fig. 1.3

If we set K = {ue W)(0,1); u(}) 2 0, u@3) < 0}, then the functions u, u,,

sin4nx on <0,%),

0 on {3} 1),

0 on <0,1),

—sinf(x —3) on (&, 1)

are eigenvectors of (I), (II) corresponding to the eigenvalue A = (3)*(1/n%)e A4,
(Fig. 1.4), but for arbitrary ¢ € (0, 1) the point tu, + (1 — t)u, is not an eigen-

vector. That means that 1 is not simple (although A has only simple eigenvalues)
and the set of the corresponding eigenvectors is not convex.

uy(x) =

uy(x) = <

Fig. 1.4
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2. BRANCHES OF EIGENVALUES FOR THE EQUATION WITH PENALTY

In the sequel, we shall consider a nonlinear continuous operator f: H — H
satisfying the following assumptions:

P pu = 0 if and only if u e K, {Bu, u) > 0 for all u ¢ K (i.e. B is the penalty
operator corresponding to K);

(H)  B(tu) = tpufor all t = 0, u € H (i.e. B is positive homogeneous);

(CC) B is completely continuous; moreover, if ¢, > 0, u,e H (n =1,2,...) are
such that the sequence {¢,fu,} is bounded then {¢,fu,} contains a strongly
convergent subsequence;

(M)  <Pu — Bv,u — vy 2 0 for all u, ve H (i.e. f is monotone);
(B, K if ueK® v¢K, then {Buv, u) * 0.

The points u € H satisfying the following “symmetry condition” will be useful for
our further considerations:

(SC) there exists a neighborhood U of u such that
{Bu, vy = {Pv,u) forall velU.

The eigenvalues A € A, with the following property will play a special role:

(SC’) if u is an arbitrary eigenvector of A corresponding to A and u ¢ K, then u
satisfies the condition (SC).

Remark 2.1. If H and K are the space and the cone from Example 1.1, then we
can define the operator f by the formula

By = = T u(x) o)

where u~ denotes the negative part of u. It is easy to see that the assumptions (P),
(H), (CC), (M), (B, K°) are fulfilled and that (SC) holds for each u € H. In particular,
all eigenvalues of A satisfy the assumption (SC’), where A can be an arbitrary linear
completely continuous operator in H.

Now, let us consider the situation from Example 1.1 but with the cone

K, = {ueH;u(x) 2 0 on (% %}

instead of K. We candefine the operator f by

{Bu,v) = — J.alsu'(x) v(x)dx forall u,veH.

2/5

It is easy to see that the function u € H satisfies the condition (SC) if and only if
Iu(x)| > Ofor all x € (%, ). All the other assumptions mentioned above are obviously
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fulfilled. Hence, if A, > A, > ... is the sequence of all eigenvalues of the operator A
from Example 1.1, then only the eigenvalues 1, A, satisfy the condition (SC’). (The
eigenvector u, corresponding to 4, is given by u,(x) = sin nnx.)

The main results formulated in Theorems 2.2, 2.3 are somewhat formally compli-
cated and therefore we shall first formulate Existence Theorem 2.1. In fact, Theorem
2.1 is a part of the assertion of Theorems 2.2 and 2.3. Theorems 2.2, 2.3 explain how
the eigenvalues and eigenvectors from Theorem 2.1 can be obtained by a limiting
process from the branches of eigenvalues and eigenvectors of the equation with
penalty.

Theorem 2.1. Let iV, 2@e A, 0 <D < i@, (A0, 19) A (4,0 4;) = 0.
Suppose that 2, 1V are simple and u‘® is an eigenvector corresponding to A%,
u® ¢ K, —u® e K° Assume that there exists an operator B satisfying the conditions
(P), (H),(CC),(M),(B,K°) and such that 2,2V satisfy the condition(SC'). Then there
exists Ao, € Ay 5 0 (A, 29) with a corresponding eigenvector u,, € 0K N (E, \ E,).

Definition 2.1. We shall denote by S the set of all triplets [4, u,e]e R x H x R
satisfying the conditions
(@) u] =1, e=0
(b) u — Au + gfu =0.

Now we are able to formulate the main results. An additional explanation to
Theorems 2.2, 2.3 will be given in Remark 2.2 below.

Theorem 2.2. Let all the assumptions of Theorem 2.1 be fulfilled and let
(A1, 2) A A, = 0. Denote by S, the component of S containing the point
[A9, 49, 0]. Then for each ¢ > 0 there exists at least one couple [A,u]e R x H
such that [A, u, €] € Sy. For all [, u, g] € Sy, the following conditions are satisfied:

©] u¢K,
(@) if [Au €]+ [29u®0], then Ae(AV,2?).

If [Ay tp €,] €S (n=1,2,...) is an arbitrary sequence such that g, - + o0,
then there exists a subsequence of indices r, (n = 1,2,...) such that r, » + o0,
Ay = Ay Uy, = Uy, Where 1, €(Ay N A,) 0 (AP, A9) and u, e(E,\NE,) n 3K
is a corresponding eigenvector of (I), (II).

Theorem 2.3. Let all the assumptions of Theorem 2.1 be fulfilled. Then there
exists a set S, = S having all the properties of S, from the assertion of Theorem
2.2 with A, € Ay, instead of A, € Ay y\ Ay. S, is either closed and connected or

x
So = U S; (¢ > 1 integer), where S; are closed connected sets with the following
i=1 ~ : .
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property: there exist A;€ (A", A%), u, ¢ K, 7, ¢ K(i = 1, ..., x — 1) such that each
S, contains the points [A;_y, u;_4, 0], [A, @, 0] for i =1, ..., x — 1, where A, =
= 19, uy = u®, and S, contains [A,_,, u,_,, 0] and is unbounded.

Remark 2.2. Theorems 2.2, 2.3 guarantee the existence of an unbounded in ¢ and
(in a certain sense) connected branch S, = S joining the given eigenvalue 2> and
the eigenvector u(® with an eigenvalue 1, and eigenvector u, of (I), (II). If
(A, 29) A A, = 0, then [A?, u(®, 0] is the only point of the type [4, u, 0] lying
on S, and the branch S, is connected in this case (Theorem 2.2). In the general case,
we admit the existence of some external eigenvalues of 4 in (A), 2®’) (Theorem 2.3).
In this case the branch S, can contain points of the type [4, u, 0], 1 € (A, A9) » 4,,
u is the corresponding eigenvector, and the connectedness in the variable u can be
violated at these points. In ether words, S, consists of the (connected) components S;
joining points of the type [4;_y, u;—y, 0], [A; i, 0], where Ay = A©, ug = u®,
e A, (A, A9) and u,, iI; are the corresponding eigenvectors. The branch S,
will be obtained in Section 3 by a transformation from a bifurcation branch C, for
a suitable bifurcation equation (B”) which is an extension of the penalty eqéation (b).
The branch C, will be connected in every case and .the points [4, u, ¢] € S, at which
the connectedness of S, can be lost will be obtained from the points [1/4, 0, 0].

Remark 2.3. The proof of Theorems 2.2, 2.3 consists of three parts. As we
mentioned in Remark 2.2, the existence of S, will be proved in Section 3 on the basis
of Dancer’s global bifurcation result (the last part of the proof). However, for the
use of the known bifurcation results, the validity of the basic conditions (c), (d) is
essential and therefore we shall prove that the conditions (c), (d) are a priori satisfied
on S, (if it exists). An investigation of the properties of S, is the subject of the next
part of this Section. Roughly speaking, the proof of the conditions (c), (d) is based
on the following assertions:

(@) S, starts at A9 > A1), 4 ¢ K (by the assumptions);

(B) the values A are locally decreasing along S, near A = A%, ¢ = 0 (Lemma 2.2);
(y) So cannot intersect the lines A = A®, A" (with the exception of the point

[A©, 4®, 0]) and it cannot intersect K (Lemmas 2.1, 2.3).

On the whole, the conditions (c), (d) follow from (a — v) if the branch S, under
consideration is connected. In the case of Theorem 2.3, (c), (d) will be preserved
because the set S, will be “connected in A and ‘“connected in u except for the
points [4;, u;, 0], [4;, @;, 0]” (cf. Remark 2.2) and u,, i; ¢ K because 1, € A4, by the
assumptions. The fact that the branch S, gives the eigenvalues and the eigenvectors
of (I), (II) (for € - + o) can be proved by a modified penalty method technique
(see Lemma 2.4).

Lemma 2.1. If A9 € A, and the condition (B, K°) is fulfilled, then
(2.1) A — Au + efu =0 forall u¢K, £>0.
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Proof. There exists an eigenvector u® € K° n E, corresponding to 4. If (2.1)
is true, then we have
A — Au + efu =0,

20040 _ 440 = 0

for some u ¢ K, ¢ > 0. This implies
A0u, u©®y — (Au, u'®> + eBu, u®y =0,
AU, uy — CAu D, uy =0,

and therefore in virtue of the symmetry of A we obtain {Bu, u®> = 0. But this
contradicts the assumption (B, K°).

Remark 2.4. It is clear from the condition (P) that if [4, u,¢] € S and ¢ = 0 or
ueK, then Ae A, and u is a corresponding eigenvector. In particular, if 1, € A4,
then there exists & > 0 such that if [A, u,e]€e S, 0 < IA - Aol < 8, then ¢ > 0,
u ¢ K. (We use the fact that the eigenvalues of A are isolated.)

Lemma 22. Let [Ag, g, €] €S, [Aw Um€]€S, & +8& (n=12..),
[As s €,] = [Ao> U0, 80] in B x H x R, let uq satisfy the condition (SC) and let
(M) be fulfilled. Then

(2.2) lim . {Bug, upy < 0.
n-o €, — & .
If uo ¢ K and (P) is fulfilled, then the last expression is even negative.
Proof. If [4, u, €] € S, then the conditions (a), (b) from Definition 2.1 imply
. A= NKu,u) = {Au, u) — epu, u) .
Hence using the symmetry of 4, we obtain
Ay — Ao = AUy, u, — ugy — &,{Puy, u, — ugy + {Aug, u, — ug) —
— golPug, Uy — Uy + (8o — &,) {Pug, Uy — Uy +
+ &,(CButo, ta) — {Butp, uo)) + (80 — ) (Pto, o) =
= Aty Uy — oY + Aglg, Uy — U + (€0 — &,) {Pug, U, — Ug) +
+ es(CBuo, Up) — By o)) + (80 — &4) {Ptto, o) =
=2y — Ao + (Ao — 4,) {ttp, o) + (20 — &,) {Pug, y, — oy +
+ &,(CButgs Uy — P, uod) + (60 — &) {Btto, Uo) -

Dividing this equation by (&, — &,) and using the assumption (SC), we obtain (for
n 2 n,, n, sufficiently large)

A=A

-0 <um u0> = - <Bu09 u, — u0> - <ﬂu0’ u0> .

&y — &

399



This implies (2.2) because of u, — u, and (M). The last assertion of Lemma 2.2 is
a consequence of the assumption (P).

Lemma 2.5. Let the assumptions of Theorem 2.1 be fulfilled. Let S, be a connected
subset of S containing a point [7, 4, 0], where 1e (A, A9, i ¢ K. Then for all
[4, u, €] € S, the conditions (c), (d) are fulfilled.

Proof. Denote by S; the component of the set
{[Aue]lesS,; AeA®, A0}

containing [1, i, 0]. First, we shall prove that (c), (d) are true for all points from S,.
We have i ¢ K, [1,u1,0] € S, and S, is connected. Thus, if (c) is not true on S,
then .there exists [/, i, £] € S; such that @ € K. We have Bi = 0 by (P) and (b)
implies £ € A4, n (A1, A%, This is a contradiction with the assumptions and hence
(c) is proved for the points from S;. Now, let us suppose that (d) is not true on S;.

Then there exists [A, u, s] € S, such that either

(2.3) 2=2©, [u,e] + [u©,0]
or
(2.4) A=,

If 2 = A9, then ¢ = 0 with respect to Lemma 2.1 and (c). On the other hand, the
only normed eigenvector of 4 corresponding to A(® and satisfying (c) is u‘®. Thus
(2.3) is not possible. If A = A", then ¢ = 0 with respect to Lemma 2.1 again. The
set S; is connected and therefore there exists a sequence [4,, u,, &,] € S; such that
>0 g, 20,4, - AP, g, — 0, u, —» u. In virtue of Remark 2.4 we have ¢, > 0
and u € E,. But this is not possible due to Lemma 2.2 and (P) because A" satisfies
the condition (SC') and u ¢ K since (c) holds for the points from S;. Hence, neither
(2.3) nor (2.4) can occur which proves (d) for the points from S;.

Now we shall show that S, = S; and the proof of Lemma 2.3 will be complete.
Let us suppose that S, + S;. Then there exists [, u, €] € S, such that 1 ¢ (A", 20},
Simultaneously, the set {[4, u, €] € S.; A€ (A1, A9, [4, u, &] ¢ S,} is either empty
or separated from the set S;. This together with the connectedness of S, implies that
there exist [4,, u,, &,] € S, such that A,¢ (A, A% (n =1,2,...), 4, > 4, u, > u,
&, — & where [4,u,e] € S;. We have 1€ (A", @) from the definition of S, i.e.
we obtain A = A or 2 = A(®. Moreover, (d) holds for the points from S; which
implies A = A9, u = 4, ¢ = 0. That means 4, > A9, 1, > 19, ¢, > 0%),¢, >0
and this contradicts Lemma 2.2 because A% satisfies the assumptions (SC’) and u(® ¢
¢ K. Hence we have S; = S_ and Lemma 2.3 is proved.

Lemma 2.4. Let AV, A9 € A, be simple, 0 < AV < A® and let the assumptions
(P), (CC) and (M) be fulfilled. Suppose that there exist &,, u,, A, (n = 1,2, ...) sat-

*) We use Remark 2.4 again.
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isfying the conditions

(@) lwa] =1, n=1,2,..., &>+,
(v) Aty — Au, + €pu, =0, n=1,2,...,
(¢) u,¢K°, n=12,...,

) (A0, 29), n=1,2,....

If {r,} is an arbitrary sequence of indices such that r, - ©, A, — Ay, U, — U,
for some Ay, Uy, then L, € Ay, 0 (A, A9), u, - u,, and u,, € E, n 0K is a cor-
responding eigenvector of (1), (II).

Remark 2.5. It follows from the boundedness of (1), A©% and the weak com-
pactness of the unit sphere in H that there exists at least one sequence r, mentioned
in the assumptions of Lemma 2.4. That means that Lemma 2.4 guarantees the
existence of at least one couple 4, u.

Proof of Lemma 2.4. The sequences {4,u,}, {Au,} are bounded and therefore
{e,Bu,} is bounded by (b’). The assumption (CC) implies that there exists a strongly
convergent subsequence of the sequence {g, Bu,, }. This together with (b"), (d’) and
the fact that A is completely continuous implies that there exists a strongly con-
vergent subsequence of {u, }. But we have u, — u,, and therefore u, — u,,. (If this
were not the case, we could obtain another subsequence of {u,."} strongly convergent
to the point @, #+ u,, which is not possible.) Using the assumptions (b’), (P), (M)
we obtain for an arbitrary v € K that

oy, — Al v — Uy = lim {4, u, — Au,,v —u,» =
n—w0

= lime, {(fv — Pu, , v —u, > =20.
Further, pu, — 0 because {¢,pu,} is a bounded sequence and &, - oo. Hence we
have by (M)
<ﬂv’ v = uco> = lim <iBU - Bur,.’ v = ur,.> .2_. 0

n—>oo

for an arbitrary v € H. Setting v = u,, + tw for an arbitrary t > 0, w e H, we obtain

PBluy, + tw),w) 2 0.

Passing to the limit for ¢+ - 04, we obtain the last inequality for ¢t = 0 and for each
w € H. This is equivalent to (u,) = 0, i.e. u,, € K by (P). We have proved that
Ao U, satisfy (I), (II). Moreover, u,, ¢ K°, ||u,| = 1, u,, - u,, and therefore u,, € 0K,
|4,| = 1. This together with the assumption A, 1® € A, implies that neither the
case A, = A nor 1, = A® is possible. (We use also the assumption that A,
A® are simple and Lemma 1.1.) Hence we obtain 1, € (A", *’) and the proof is
complete.
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3. USING A GLOBAL BIFURCATION RESULT.

First we shall explain a result of E. N. Dancer [3] which is a strengthening of
Rabinowitz’s result [14]. Let X be a real Hilbert space*) with an inner product (*, *)
and with the corresponding norm , L: X - X a linear completely continuous
selfadjoint*) operator in X. Further, let G be a nonlinear completely continuous
mapping of R x X into X such that

.

(3.1) lim 9”('”—’“%) = 0 uniformly on bounded subsets of R .
111x=0i]] X

We shall consider the bifurcation problem for the equation
(B) x — pL(x) + G(u,x) =0,

where p is a real parameter. A point [, 0] is said to be a bifurcation point of (B)
(with respect to the line {[, 0]; u € R} of trivial solutions) if for each neighbourhood
U(o, 0) of [ o, 0] in R x X there exists [u, x] € U(u,o, 0) satisfying (B) and |||x|| # 0.
Denote by r(L) the set of all characteristic values of L, i.e. the set of the reciprocals
of the non zero eigenvalues of L:

r(L) = {ueR; x — pL(x) = 0 for some xe X, ||x|| + 0} .

Remark 3.1. It is well-known that if [y, 0] is a bifurcation point of (B) then
uer(L). Indeed, there exist p, x, (n =1,2,...) such that ||x,[]| >0, u, - pu,
Al — 0 and

(®) %0 = o L(53) + Gt %) = 0.

We can suppose that y, = x,[|[x,|| — y for some y € X. (In the opposite case we
can pass to suitable subsequences.) Dividing (B) by ||x,|||, passing to the limit with
n — oo, using (3.1) and the complete continuity of L we obtain that y, - y, y —
— uL(y) =0, ||y|| = 1. That means p e r(L).

Now denote by C the closure of the set of all nontrivial solutions of (B), i.e.

My

C = {[mx]eR x X; [[x]] + 0, (B is fulfilled} .

Remark 3.2. A point [, 0] is a bifurcation point of (B) if and only if [u, 0] € C.
It follows directly from the previous definitions.

Further, let pu, be a given simple characteristic value of L with a corresponding
eigenvector X, [|xo|| = 1. Then [, 0] is a bifurcation point of (B) (see [14]). Denote
by C, the component of C containing the point [p,, 0]. Thus, C, is non-empty.

*) In the papers [3], [14], a general Banach space and a non-selfadjoint operator L are con-
sidered. We are formulating the results for symmetric operators in a Hilbert space because it is
simpler and fully sufficient for our purposes.
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Moreover, roughly speaking, C, “consists of two branches C; and C; starting in
the direction x, and —Xx,, respectively”’. This situation will be useful for our pur-
poses and we shall describe it precisely.

Let us choose 7 € (0, 1) and define

K, = {[m x]eR x X; |(x, xo)| > nl|=]} ,
K, = {[n x] e K,; (x, xo) > 0},
K; = K,\K; .
There exists R > 0 such that
(€~ {[1o, O1}) N Ba(po, 0) = K,

where Bg(po, 0) = {[s, x] € R x X; |u — po| + [|x[| < R} (for the proof see [14,
Lemma 1.24]). For each r € (0, R) denote by D,;” and D, , respectively, the com-
ponents of the sets {[uo, 0]} U (C N B,(to, 0) " K,;) and {[po, 0]} U (C N
A B,(uo, 0) N K,) containing [po, 0]. Further, denote by Cg, and Cg, réspectively,
the components of C,\ D, and C,\ D, containing [, 0]. Set

Co=U Cors Co= U GCop-
0<rs<R 0<rsR
This definition of Cg, Cq is independent of the choice of # € (0, 1) (see [14, Lemma
1.24]), the sets Cy, Cq are connected and
Cy =€ uCs

(for the proof see [14]; cf. [3]). Further, the following implications are true (they
follow directly from [14, Lemma 1.24] and from the definition of Cg, Cg):

(3.2) if [ x,] € C5 NK,; N By(po,0) for some & >0,
o Mo, x| =0, then 7 xg;
EA
(3.3) if [fn o] € Cg NK; N By(sty, 0) for some & >0,
Hn = o> |xs] =0, then In_ —Xg .
[

Theorem 3.1. (E. N. Dancer [3, Theorem 2]). Either C§ and C; are both unbound-
ed or Cg 0 Cq * {[10> 0]}.

Remark 3.3. Let us consider the situation from Theorems 2.2, 2.3. Let us define
X = H x R and introduce the operators L, G from X into X by

L(x) = I([v, e]) = [4v,0) forall x =[v,e]leX,
G(u, x) = G([, v, €]) = [ueBv, — ||v]|*] forall x =[v,e]leX.
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We shall study the situation from the beginning of this Section with these special
operators and with o = 1/A?. It is easy to see that L, G satisfy all the assumptions
mentioned above. The equation (B) can be written as

-

(B") [0, €] — u[Av, 0] + [uepo, — [o]?] =0
or in the form '
(") lo]? =&,

(v") v — pAv + pefv = 0.

In particular, we have

C={[pve]leR x HxR;e>0,(a"),(b") are fulfilled} .

Remark 3.4. It is clear that u is a characteristic value of L with a corresponding
eigenvector [u, €] if and only if ¢ = 0 and p is a characteristic value of 4 with a cor-
responding eigenvector u. In this case, the multiplicities of x as a charactetistic value
of Land A are equal. Especially, pu, = 1/A) is a simple characteristic value of L
with a corresponding eigenvector [u(®, 0] under the assumptions of Theorem 2.1.

Remark 3.5. If we write A = 1/p, u = v/\/e, then the conditions (a"), (b”) together
with u # 0, o] > 0 (or & > 0) are equivalent to the conditions (a), (b) from Defini-
tion 2.1 and A # 0, ¢ > 0. This together with Remarks 3.2, 3.4 yiedls

([ u, 6] € S; 4+ 0} ={B ﬁ,{l; [0 €]€C. i % 0, s>0}u

U {[4,4,0]; 2+ 0, 1€ A,, u corresp. eigenvector, |u = 1}.

Remark 3.6. The implications (3.2), (3.3) are equivalent to the following ones
in the situation of Remark 3.3:

(3.2) if [ty 0 €0] € Cd NK; O Bypto, 0) for some & >0,
Mo to, o] >0, then o0, Tmy®
el el
(3.3) if  [#n Vm €] € Co NK; N By(pto, 0) for some & >0,
8"

Hn = Ko > "%"’"09 then -0, __ﬂl__,__u(o)’
Jeal

el

Remark 3.7. If [u, v, s] e C and ¢ = 0 or ve K, then p is a characteristic value
of A and either ||v] = 0 or v is an eigenvector of A corresponding to p. This follows
from Remarks 3.1, 3.2, 3.4, from the equations (a”), (b”) (see Remark 3.3) and the
assumption (P). In particular, if u € r(4), then there exists § > 0 such that if [, v, ¢] €
eC,0< |u - u0| < 6, then ¢ > 0, v ¢ K. (We use the fact that the characteristic
values of A4 are isolated; cf. also Remark 2.4.)
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Proof of Theorem 2.3. Let X, Land G be the space and the operators introduced
in Remark 3.3, po = 1/A, u, = 1/A%. We shall show on the basis of Theorem 3.1
that the set Cg is unbounded. The set S, will be obtained by a transformation
from Cy and the conditions (c), (d) for S, will be proved. Hence it will follow
that S, is unbounded in ¢ and this will be the essential part of the proof.

First, we shall show that
(34) C; ={[mv.e]eRx HxR; p=po, 620, v=—/(¢) u(o)} .

It is easy to see that the set on the right-hand side of (3.4) is a subset of Cy. (It is
sufficient to use the fact that tu® e K for all t < 0, i.e. f(tu'®) = 0 by (P), and that p,
is a characteristic value of A with a corresponding eigenvector u®.) On the other
hand, if C; contains some elements of the other type, then in virtue of the con-
nectedness of Cy there exists a sequence {[,, v, &,]} = Co N K, such that

(3.5) loa] > 0, [ — po| + h +u®| >0, m oo,
(3.6) v, > tu® forsome t=<0.

It follows from (3.6) that

(3.7) a0y,

[oa]

Indeed, this is clear in the case t < 0 while in the case ¢ = 0 this follows from (3.3')
(see Remark 3.6). But we have —u(® € K° by the assumptions, therefore v,/||v,| € K
for n sufficiently large by (3.7). The conditions (P), (3.5), (3.7) and (b”) imply that
Hn % Mo because p, is simple. This is not possible due to Remark 3.7. Hence (3.4)
is proved. Now, it is easy to show by an analogous argument using the definition
of Cg that

(3.8) Co N Cy =[50, 0] .

Theorem 3.1 implies that the set Cg is unbounded.
Now let us consider the set

{[wv.e]leC3; p+0, o] >0}.

This set consists of a system of components C, (x €1, I is a suitable set of indices).
Let us define

S, = {[,1, uel; A=

Se=US,.

ael

Ju=-", [u,v,SJGC.},

w® =
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Itis S, = S and S, is closed and connected for each o € 1. We have [y, 0,0] € C,,
at least for one a, € I and therefore there exist [ ,, v, &,] € C,, such that [y, v,, &,] =
— [0, 0,0]. It is C, = C; which together with (3.8) implies that [u,, v,, &,] ¢
¢ K, N By(fip, 0) for some & sufficiently small. Now we obtain v,/|v,|| — u® by
(3.2') and that means [A, 4'?, 0] € S,,. Thus Lemma 2.3 implies that (c), (d) are
fulfilled for all [4, u, €] € S,,. We shall show that this is true for all S,, a 1. Let us
suppose the contrary. We have Cq = |J C, and this set is connected. Therefore there

ael

exist ay, a, €I such that C,, n C,, + 0, (c), (d) are fulfilled for all [4, u, £] € S,, but
not for all [4, u,¢] €S,,. Let [4, 3, ] € C,, n C,,. It follows from the definition of
C,,, C,, that either 7 = 0 or ||| = & = 0. We have ji e {uo, p,) as (d) holds for the
points from S,, and therefore i # 0, ||5| = & = 0. Remarks 3.1, 3.2 imply i € r(L).
If i = po, then we obtain [V, u®, 0] € S,, N S,, as above for S,,. If jie (1o, p1),
then there exist [u(”, v{", &{"] € C,, such that [y“) v“’ ¢’ - [4,0,0](i =1,2)and
we obtain v{”[||v{”| - u,, where u, (i = 1, 2) are eigenvectors of A corresponding
to 1= 1/ie A, (see Remarks 3.1, 3.4). Hence it follows that [1,u,,0]€S,,
[1, u,,0]€S,,. We have u, ¢ K, u, ¢ K be cause we assume (1(” A (4,0 4)=0.

Consequently, in each case S,, contains an element [/, @, 0] with 1e (A", 29,

ii ¢ K and Lemma 2.3 implies that (c), (d) are fulfilled for all [4, u, ¢] € S,,, which is
a contradiction. Hence (c), (d) hold for all [, u, e] € S, = U S,

We have proved that C, is unbounded. It follows from here and (a), (d) that S,
is unbounded in &. Using the connectedness of Cg and the previous considerations,
it is easy to see that we can choose a finite subsystem S, ..., S, of the system S,
with the properties mentioned in Theorem 2.3. The last part of the assertion of
Theorem 2.3 follows from Lemma 2.4.

Remark 3.8. It is easy to see from the proof of Theorem 2.3 that Theorem 2.2
can be proved in the analogous way, only some steps of the proof will be easier.

4. APPLICATION TO THE SUPPORTED BEAM

Let us denote H = {u € WZ(0, 1)); u(0) = u(1) = 0}. It is a Hilbert space with
the inner product

{u,v) = jlu”(x) v"(x) dx .
0

Let 4 be an operator in H defined by
1
{Au, vy = j w'(x)v'(x)dx forall u,veH.
0
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A real 1 is an eigenvalue and u € H is a corresponding eigenvector of A if and only
if the function u has a continuous derivative of the fourth order on <0, 1> and

(4.1) Au® +u"=0 on <0,1),
(4.2) u(0) = u(1) = u"(0) = u"(1) = 0.

The problem describes the behaviour of a beam which is simply fixed on its ends and
compressed by a force P (see Fig. 4.1). Itis A = IE/P, where E is the Young modulus
of elasticity and I is the moment of inertia. The beam can bend if and only if the
force P is such that 1 is an eigenvalue of A (i.e. of (4.1), (4.2)) and the bending is
described by a corresponding eigenvector.

L 5
Fig. 4.1

Now let us consider the eigenvalue problem for the variational inequality (I), (II)
with the convex closed cone

K={ueH; ux)20,i=12,..,n},

where x;€(0,1) (i = 1, ..., n, n positive integer) are given numbers.

It is easy to show that 1 is an eigenvalue and u is a corresponding eigenvector of (I),
(I1) if and only if u has a continuous second derivative on <0, 1), a continuous fourth
derivative on (x;, x;4+,) for all i =0, 1, ..., n (where we set x, = 0, x,,; = 1) and

(4.3) ™ +u =0 on (x;,x;44), i=01,...,n,
(4.4) u(x) =20, i=1..,n,
(4.5) lim u”(x) — lim u"(x) 20, i=1..,n,
Xxi— x—=x;+
(4.6) [ lim u"(x) — lim u"(x)]u(x;) =0, i=1,..,n.
XXi— x—=x;+

~ ///
\\ g 2)

Fig. 4.2. 1) Possible bending 2) Impossible bending
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The problem corresponds to a beam which is simply fixed on its ends, compressed
by a force P and, moreover, supported by fixed obstacles from below at the points x;
(see Fig. 4.2). The parameter A has the same meaning as above. The beam can bend
if and only if 1 is an eigenvalue of the variational inequality (I), (II) (i.e. of (4.3)— (4.6))
and the bending is given by a corresponding eigenvector u of (I), (II).

Let us introduce the penalty operator f by the formula
(4.7) Bu,vy = = Y u (x;)v(x;) forall u,veH,
i=1

where u~ denotes the negative part of u. It is easy to see that the operators A4, f satisfy
all the assumptions of Theorems 2.1 and 2.3. The assumption (8) is fulfilled for each
u € H (see also Remark 2.1). The eigenvalues of 4 (i.e. of (4.1), (4.2)) are the numbers

(4.8) b=~

and the corresponding eigenvectors are the functions
(4.9 u(x) = sin knx
(k=1,2, ...). All eigenvalues of the operator A are simple.
Example 4.1. Let us consider the case n = 2, x; = 4, x, = $. Then we have
Ak €Ay, Agx-3€A;, Agp—1€A;, Agy_,€Ad,, k=1,2,...,
because
sindknx;, =0, i=12, k=12,...,
sin(4k — 1) x; = sin(4k — 1) x, = 0, sin(4k — 1)x, =sin(4k — 1) x, £ 0,
sin(4k — 2)x; = —sin(4k — 2)x, £ 0, k=1,2,....
Thus Theorems 2.1 and 2.3 can be used for each couple

A = Adk-1» A0 = Aak-3 -

For each k = 1,2,..., we obtain an eigenvalue 4, , € Ay, N (Agx—y, Age—3) With
a corresponding eigenvector u; ., € (E,\ E,) n K. That means u, , is a “new”
eigenvector of the variational inequality (i.e: it is not simultaneously an eigenvector
of A) and u(x;) = 0, i = 1, 2, u(x,) u(x,) = 0. In particular, there exists an infinite
sequence of eigenvalues of (I), (II) such that there exist corresponding eigenvectors
which are not eigenvectors of A.
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Example 4.2. Let n = 3 be arbitrary and let x; (i =1 .00 n) be such that
1 ¢ 1 ¢
x;e(0,edDu{-—-,-+-)Yul —¢gl
(0.} <2 2’2 2> < )

and each of the intervals (0, &), (3 — ¢, % + 3&), (1 — ¢, 1) contains at least one x;,
where ¢ € (0, ). We shall consider the eigenvalues 4, with k < 1 [e only. We have

1
).4,‘6/19, )»4](_16/13, 14](_26/12, 2.4,‘_36/15 fOl‘ k = 1, 2,..., [Z"]
€

(where [1/4¢] is the entire part of 1/4¢), because
sindknx >0 on <0,&), sindknx <0 on (1l —¢ 1),
sin(4k — 1)ax >0 on <0,e)ul —¢g 1),
sin(4k — Dnx <0 (3 — e, 1 + 1e),
sin(4k — 2)nx >0 on <0,&), sin(4k —2)nx <0 on <1 —¢1),
sin(4k — 3)nx >0 on (0,educi—1te T +4edu(l —¢ 1),

k =1,2,...,[1/4]. Theorems 2.1, 2.3 can be applied for each couple A? = A4 _,
A = Qpsrs k=1,2,..,[1/4e] — 1. Thus there exists 4 , € Ay N (Aggs1)-3
Jan—3) With a corresponding eigenvector u ., € (Ey\E,) n 0K for k =1,2,...,
..., [1/4€] — 1. That means that u, ,, is a “new” eigenvector of (I), (II) (i.e. it is not
simultaneously an eigenvector of 4) and u; (x;) 2 0,i =1,..., n,u(x,).... . u(x,) =
= 0.

Analogously, we can consider a beam supported not only in a finite number of
points but, for example, on some intervals. This situation corresponds to the varia-
tional inequality (I), (II) with the cone

K={ueH; ux)20 for xelx,y), i=1,..,n},

where x;, y; are given numbers, 0 < x; < y; < ... < X, < y, < 1. In this case, we
can use the penalty operator defined by

{Bu, vy = — i Jy‘u"(x) o(x)dx forall u,veH.
i=1),,

The assumptions of Theorems 2.1, 2.2 are fulfilled again. A point u fulfils the assump-
tion (SC) if and only if |u(x)| >0 on {(x;,y>, i =1,...,n (cf. Remark 2.1). In
particular, an arbitrary interior eigenvalue of A satisfies (SC’).

Example 4.3. Set
K ={ueH; u(x) 20 for xe(} — 15, 1 + 1)},

409



	
	Article


