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NOTE ON OPERATORS PRODUCED BY SESQUILINEAR FORMS

MIROSLAYV Sova, Praha

(Received February 28, 1977)

The purpose of this note is to show some “interior” properties characterizing the
operators produced by certain sesquilinear forms which are frequently studied in the
theory of elliptic operators.

We shall denote by H an arbitrary complex Hilbert space with a norm |-| and
scalar product {.,.)». Further, let L*(H) be the set of all linear operators from H
into itself. The complex number field will be denoted by C.

Let A e L*(H). The operator A is called nondissipative if Re {Ax, x) = 0 for
any x e'D(A).
Let A € L*(H). The operator 4 will be called special if
(A,) for every x, y e H for which there exists a sequence x; € D(4), ke {1,2,...}
such that x, — x, the sequence Re (A4x;, x;> is bounded and {Ax,, z)> —
— {y, z) for any z € D(4), we have x € D(4) and Ax = y,
(By) [Im <Ax, x)| < d[|Re (4x, x)| + ||x||*] for any x € D(4) with a fixed constant
d=0.
Let V be a linear space and S a mapping of the set ¥ x Vinto C. The mapping S
is called a sesquilinear form on the space V if

S(oeyxy + 05%5, ¥) = ay S(x, y) + o, S(x,, ),
S(x, 0y yy + a3,) = & S(x, y;) + &, S(x, y,)

for any x, y, x;, X5, ¥y, ¥, € Vand a,, a, € C.

Let A € L*(H). The operator A will be called sesquilinearizable (or produced by
a sesquilinear form) if there exist a Hilbert space ¥V and a sesquilinear form S on V
such that :

(A;) Vis a dense subset of H,

(B;) there exists a positive constant g > 0 such that |x|, = g|x| for any xe ¥,
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(C,) there exists a nonnegative constant M Z 0 such that |S(x, x)| £ M|x||? for
every xe V,

(D,) there exists a positive constant m > 0 such that |Re S(x, x)| = m| x| for every
xel,

(E.) D(4) =V,

(Fy) <Ax,z) + <x,z) = S(x, z) for every x € D(4) and z€ ¥,

(G,) if x € V and there exists y € H such that S(x, z) = (y, z) for any z € ¥, then
x € D(A).

Remark. A very closely related notion is that of “‘regularly accretive’” operators
used in [2]. More precisely, an operator A € L*(H) is regularly accretive if and only
if there is a constant w € R such that A + wlI is nondissipative and sesquilinearizable.

Lemma 1. Let V be a pre-Hilbert space and S a sesquilinear form on V. If
lS(x, x)l < K”x“2 for any x eV, then |S(x, y)l < 2K||x” ; |]y|| for any x,yeV.

Proof. See [1], Chap. 12, Cor. 3.2.

Lemma 2. Let V be a Hilbert space and S a sesquilinear form on V. If there exist
constants 0 < m £ M such that meIl2 < S(x, x) = M“x||2for any x € V, then for
every ® € V*,

(a) there exists a unique x € V such that &(z) = S(z, x) for any z € ¥,
(b) there exists a unique x € ¥ such that &(z) = S(x, z) for any z € V.

Proof. An easy consequence of the Riesz theorem on the representation of con-
tinuous linear functionals on Hilbert spaces.

Theorem 1. Let A € L*(H). If the operator A is nondissipative and special, then it
is sesquilinearizable.

Proof. The symbols (A,), (B,) and (A,)—(F,) refer to the defining properties of
special and sesquilinearizable operators, respectively.

Let us now define
(1) |x| = [|Re<4x, x)| + ||x|*]*/* for xeD(4),
(2) (x,y) = 3[<Ax, y> + <x, Ayd] for x,yeD(4).

It is easy to see from (1) and (2) with respect to the nondissipativity of 4 that for
every X, X, X,, y € D(A) and o, o, € C it is

) Kzl
@ =),
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(5)  (@xy + 22%3 ¥) = ay(x, ¥) + (%2, ¥)
© xy)=0%.
The statements (3)—(6) show that
(7) D(A)is a pre-Hilbert space with the norm || and the scalar product (-,*).
. Let us now choose a fixed constant d for which (B,) holds, i.e.
(8) |Im {Ax, x)l < d[Re {4x, x) + "x”z] for any xe D(4).
We obtain easily from (1) and (8) that
(9)  [|K4x, x)| = [(Re <4x, x))* + (Im {4x, x))*]'/* <
. S 2[|Re (Ax, x| + |Im <4x, x)|] =
< Z[IRe {Ax, x)l + d|Re {(Ax, x)| + d|]x||2] <
< 2(1 + d) [|Re <4x, x)| + |!x||2] =2(1 + d) |x|2 for every xeD(4).
Further, let us take
(10) K =21 +d).

It is clear from (7), (9) and (10) that D(A4), {4.,.) and K fulfil the assumptions of
Lemma 1 and consequently

(11) |<4x, py| < 2(1 + d) |x||y| for every x,yeD(A).

Let us now define V as the completion of the pre-Hilbert space D(4) defined by (7).
Then

(12) Vis a Hilbert space (with the norm | +||, and the scalar product <.,.»),
(13) D(A) is dense in the space V.

Moreover, (3) implies that we can immersc the space V into H in a natural way
so that

(14) |x|v = |x]| forany xeV.
It follows easily from (A,) that

(15) D(A) is dense in the space H.
Now we conclude from (13) and (15) that
(16) V is a dense subset of H.

We obtain easily from (1), (3), (9), (12) and (13) that there exists a unique sesquili-
near form S on V'such that .

(17) S satisfies the assumptions of Lemma 2 with M = 2(1 + d) and m = 1,
(18) S(x, z) = {Ax, z) + {x, z) for any x € D(4) and z€ V.
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Now we shall prove that
(19) for any y € H, there exists x € D(4) so that Ax + x = y.

Let ye H and let I(z) = {y, z) for any z € H. Moreover, let @ be the restriction
of I to V. It follows from (14) that ® e V*. By (17), we can apply Lemma 2 and
hence there exists x € V so that

(20) S(x,z) = ®(z) = <y, z) forany zeV.
By (16), there exists a sequence x,, k € {1, 2, ...}, such that
(21) x,eD(4) forany ke{l,2,..} and x, - x in the space V
By (18), (20) and (21) we obtain
(22) <xp 2) + Ax, 2) > (p,z) forevery zeV.
Further, we see from (14) and (21) that
(23) x4} »x in H.
Moreover, (11) and (21) imply that
(24) {Ax, x;» is a bounded sequence.
Now we see easily from (13), (16) and (21) —(24) that (A, ) applies to A which proves

(19).
Summing up (12), (13), (15)—(19) we see that the operator A is sesquilinearizable,
which proves Theorem 1.

Theorem 2. Let Ae L*(H). If the operator A is sesquilinearizable, then it is
special.

Proof. The symbols (A,), (B,), (C,) and (A,)—(F,) refer to the defining proper-
ties of special and sesquilinear operators, respectively.

We shall first prove
(1) R(I + 4) =H.

Indeed, let ye H and let us define &(z) = <y, z). Then (B,) implies & € V*.
By (C,) and (D,) we can apply Lemma 2 and hence there exists x € ¥ such that

(2 S(x,z) = &(z) =<y,z) forany zeV.
 We see from (E,)—(G,) that (2) implies x € D(4) and x + Ax = y which verifies

(1).

Further, we need to prove that

(3) D(A) is dense in V.
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Let this be not true. Then there exists v.€ V such that
(4 v+0 and {(v,x), =0 forany xe D(A).
By Lemma 2, there exists w € V such that
(5) <v,z)y, =S(w,z) forany zeV.
It follows from (4) and (5) that
(6) S(x,w)=0 forany xe D(A).

Hence by (F,) we see from (6) that {x + Ax, w) = 0 for any x € D(4) and con-
sequently, by (1), w = 0. This implies by (5) that v = 0 which contradicts (4). Hence
(3) is true.

We shall now prove that

(7)  |Im (4x, x)| £ (I—inz <M + 1)) (|Re <4x, x)| + |x]?)
m q
for any xe D(A).
Indeed, we have by (C,) and (F,) that for any x € D(A)

[Cax, x> + <[] < M|«
Hence for x e D(A4)
[<ax, x| = [x]* = M=y

which implies according to (B,)

1 1
®  [cax o] s Ml + [ 5 s+ 2 Jolp = (0 + 2) p

for any x e D(A).
On the other hand,

(9) [<4x, x)| = [(Re (4x, x))* + (Im {Ax, x))*]*/2

v

2 —13 [|Re (4x, x)| + [Im <4x, x)[] 2

1

V2
Consequently, (8) and (9) yield

(10) [Im {4x, x)| < /2 [K4x, x)| + |Re (dx, x)| =

2 — — |Re (dx, x| + \%2 |Im (4x, x)| forany x e D(A).

< |Re (Ax, x)I +.4/2 (M + i) ”x“;z, for any x e D(A).
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Using now (D,) and (F,) we obtain from (10) that

lIm (Ax, x5 < |Re (dx, x| + Y2 (M + 1) (|Re <4x, x)| + [x|*) <
m q
< [1 ua ‘Lz (M + l):l (]Re (Ax, x)| + "x"z)
m q

which verifies (7).
Suppose that

(11) x,yeH, x,eD(4), x— x, Re{Ax,x,> isa bounded sequence and
{Axy, z) = {y,z) forany ze D(A).

Since by the assumption (1 1) the sequences Re {Ax,, x,> and Hx,J[ are bounded we
conclude from (D,) and (F,) that

(12) the sequence x, is bounded in V.

The assumption {4x,, z) — <y, z) for any z € D(4) and x;, — x (from (11)) may
be rewritten by (F,) in the form

(13) S(xp z) > <y, 2> + {x,z) forany ze D(A).
On the other hand, by (12) and (C,) we have
(14) |S(xw z)| < K(sup x]|%) |z]ly forany ke{1,2,..} and yeV.
k

Applying the Banach-Steinhaus theorem, we obtain from (3), (13) and (14) that
(15) S(xx, z) = {y,z) forevery zeV. ‘

Next we shall prove that
(16) the sequence x; is weakly fundamental in the space V.

Indeed, let @ € V*. By (C,), (D,) and Lemma 2 there exists z € ¥ such that ¢(x) =
= S(x, z) for every x e V. Hence (15) implies &(x,) — {y, z) which proves (16).

On the other hand, since V is assumed to be a Hilbert space, it follows from (16)
that

(17) the sequence x, is weakly convergent in V, i.e. there exists x, € V such that
X = X, weakly in V.

Using (A,), (B,), we deduce easily from (18) that
(18) x; » x, weakly in H.

But due to (11) and (18), it is necessarily
(19) x, = x.
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